atomic spectroscopy ch 20

18
Atomic Spectroscopy (Chapter 21) Used for qualitative and quantitative determinations Widely used in industrial settings Detection limits: ppm, ppb Convert sample to atoms Determine atom conc. by measuring A or I A = kC I=kC Three classes: absorption emission fluorescence

Upload: vanessawhitehawk

Post on 26-May-2015

166 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: Atomic spectroscopy ch 20

Atomic Spectroscopy (Chapter 21)

Used for qualitative and quantitative determinationsWidely used in industrial settingsDetection limits: ppm, ppb

Convert sample to atomsDetermine atom conc. by measuring A or IA = kC I=kC

Three classes:absorptionemissionfluorescence

Page 2: Atomic spectroscopy ch 20

Atomic Spectroscopy (Chapter 21)

GS

ES

GS

ES

thermal

AAS AES

Page 3: Atomic spectroscopy ch 20
Page 4: Atomic spectroscopy ch 20

Atomic Spectroscopy (Chapter 21)

Step 1: Atomization

Volatilize, decomp. to form atomic gas

1. Convert solution to a mist2. Carry into source

CaCl2(soln) CaCl2(gas) Ca0(gas) + 2Cl0(gas)

Excitation: Ca0(gas) Ca*

(gas)

Emission: Ca*(gas) Ca0

(gas)

AA: measure ground state AE: measure excited state

3. Evaporate solvent4. Vaporize5. Decompose to atoms

Page 5: Atomic spectroscopy ch 20

Why are spectraso narrow?

Page 6: Atomic spectroscopy ch 20

Atomic Spectroscopy (Chapter 21)

Atomization Sources1. Flame (AA, AE)2. Furnace (AA)3. Plasma (AE)

A. Flamepneumatic nebulizerburnerflame temperature is impt (1700 – 3100 C)

Page 7: Atomic spectroscopy ch 20
Page 8: Atomic spectroscopy ch 20
Page 9: Atomic spectroscopy ch 20
Page 10: Atomic spectroscopy ch 20

T ~ 2500 KSmaller volume (L)

Greater sensitivityLonger residence timesLess reproducible, more complicated

why?

Page 11: Atomic spectroscopy ch 20
Page 12: Atomic spectroscopy ch 20

Very high Temperature (6000 - 10,000K)Large ES populationReduced interference

C. Plasma

ICP

why?

Page 13: Atomic spectroscopy ch 20

Atomic Spectroscopy (Chapter 21)

Temperaturevery importantdegree at which sample breaks downdetermine the percent of atoms in GS, ES, or ionized

N* / No = g* / go exp (-E/kT)

If T = 2500 K ( = 500 nm) N*/No = 10-5

If T = 6000 K N*/No = 10-2

AE: I depends of ES populationchange T by 10 K, change N* by 4%

AA: A depends of GS populationChange T by 10K, little change in N

Page 14: Atomic spectroscopy ch 20

Instrumentation

SourceSample cellMonochromatorDetector

Beers Law: “monochromatic”molecule spectra – much broader than bandwidthatomic spectra – much narrower than bandwidth

(0.001 – 0.01 nm)

Page 15: Atomic spectroscopy ch 20

1. Need a special source: Hollow cathode lampelement specific

why?

Page 16: Atomic spectroscopy ch 20

2. Background Subtraction Methodsremove flame signal from atom

Page 17: Atomic spectroscopy ch 20

Interferencesspectralchemicalionization

Spectraoverlap of analyte signal with other signals (molec – element); chose another , change T

Chemicalchemical reactions decrease conc of of analyteexample: Ca2+ in presence of SO4

2-

add a releasing agent (EDTA) or change temp

Ionizationionization of atoms decrease conc. of neutral atomsex. Kg K+ + 1e-

Add an ionization supressor (Csg Cs+ + e-)

Page 18: Atomic spectroscopy ch 20

Detection Limits

Depends on element and method

Element ICP Flame E Flame A FurnaceCa 0.02 0.1 1 0.02Fe 0.3 30 5 0.005Na 0.20 0.1 2 0.0002

units: ng/mL

What is better, big number or small number?