atomic structure and radiative data calculations for …...2014/12/16  · atomic structure and...

5
Faculty of Sciences Faculty of Sciences [email protected] Pascal Quinet Astrophysics & Spectroscopy Atomic Atomic structure structure and and radiative data radiative data calculations calculations for for heavy heavy elements elements of of interest interest in fusion plasma in fusion plasma research research Theoretical Theoretical challenges challenges and and recent recent advances advances Université de Mons Introduction – Motivations 2 P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Fifth row Lanthanides Sixth row Université de Mons Introduction – Motivations 3 Fifth row Lanthanides 4f k nl 4f k-1 nln’l’ 4f k-2 nln’l’n’’l’’ Sixth row 4d k nl 4d k-1 nln’l’ 4d k-2 nln’l’n’’l’’ 5d k nl 5d k-1 nln’l’ 5d k-2 nln’l’n’’l’’ Nb I (Z=41) [Odd configurations] Er II (Z=68) [Odd configurations] 180 180 346 346 213 213 943 45 141 2607 levels 41 759 1628 69 2 589 3088 levels P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons Introduction – Motivations 4 Fifth row Lanthanides 4f k nl 4f k-1 nln’l’ 4f k-2 nln’l’n’’l’’ Sixth row 4d k nl 4d k-1 nln’l’ 4d k-2 nln’l’n’’l’’ 5d k nl 5d k-1 nln’l’ 5d k-2 nln’l’n’’l’’ Collapse of the 4f orbital P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons Introduction – Motivations 5 Fifth row Lanthanides 4f k nl 4f k-1 nln’l’ 4f k-2 nln’l’n’’l’’ Sixth row 4d k nl 4d k-1 nln’l’ 4d k-2 nln’l’n’’l’’ 5d k nl 5d k-1 nln’l’ 5d k-2 nln’l’n’’l’’ Very complex spectroscopic structures (unfilled 4d, 5d, 4f shells) little investigated up to now (both theoretically and experimentally) Interest in many other fields : - Astrophysics (CP stars, nucleosynthesis, …) - Solid state physics (doped crystals, …) - New light sources (lasers, lamps, …) - Plasma physics (fusion, ITER, …) Progress in computers & laser spectroscopy New systematic investigations possible χLupi P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons Theoretically and experimentally... Determination of atomic data 6 Atomic structure parameters • Energy levels, E k , E i • Transition energies, ΔE ki • Wavelengths, λ ki Radiative parameters • Transition probabilities, A ki • Oscillator strengths, f ik • Radiative lifetimes, τ k = 1/Σ i A ki E E k E i A ki , f ik P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons Relativistic Hartree-Fock method (HFR) (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Theoretical approach 7 Based on the Schrödinger equation (atom with N electrons) + - - = < = i j ij i i N i r e r Ze m H 0 2 0 2 2 2 1 4 4 2 πε πε h Ψ = Ψ E H with Central field approximation ) ( ... ) ( ) ( ... ... ... ... ) ( ... ) ( ) ( ) ( ... ) ( ) ( ! 1 ) ,..., , ( 2 1 2 2 2 2 1 1 1 2 1 1 2 1 N N N N N N N N q q q q q q q q q q q q ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ = Ψ ) ( ) , ( ) ( 1 ) ( , 2 / 1 σ q s l s l m lm nl m nlm Y r P r χ φ θ ϕ = Slater determinant P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons Relativistic Hartree-Fock method (HFR) (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981) Theoretical approach 8 Hartree-Fock equations ) ( ) ( 4 ) ( ) ( ) ( 4 ) ( ) ( 4 2 ) 1 ( 2 0 2 * 0 2 2 0 2 2 2 2 2 2 i i i i j j ij j i j j m m i j i i j ij j j i j i i i i i i i r P E r P d r e r P r P r P d r e r P r P r Ze mr l l dr d m j s i s = - + - + + - τ πε δ δ τ πε πε h h Resolution of Hartree-Fock equations Iterative method self-consistent field method P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Upload: others

Post on 01-Jun-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atomic structure and radiative data calculations for …...2014/12/16  · Atomic structure and radiative data calculations for heavy elements of interest in fusion plasma research

Faculty of SciencesFaculty of Sciences

[email protected]

Pascal Quinet

Astrophysics & Spectroscopy

AtomicAtomic structure structure andand radiative dataradiative data

calculationscalculations for for heavyheavy elementselements ofof

interestinterest in fusion plasma in fusion plasma researchresearch

TheoreticalTheoretical challenges challenges

andand recentrecent advancesadvances

Université de Mons

Introduction – Motivations

2P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Fifth row LanthanidesSixth row

Université de Mons

Introduction – Motivations

3

Fifth row Lanthanides

4fknl

4fk-1nln’l’

4fk-2nln’l’n’’l’’

Sixth row

4dknl

4dk-1nln’l’

4dk-2nln’l’n’’l’’

5dknl

5dk-1nln’l’

5dk-2nln’l’n’’l’’

Nb I (Z=41)[Odd configurations]

Er II (Z=68)[Odd configurations]

180

180

346346

213

213

943

45

141

2607 levels41

7591628 69

2

589

3088 levels

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Introduction – Motivations

4

Fifth row Lanthanides

4fknl

4fk-1nln’l’

4fk-2nln’l’n’’l’’

Sixth row

4dknl

4dk-1nln’l’

4dk-2nln’l’n’’l’’

5dknl

5dk-1nln’l’

5dk-2nln’l’n’’l’’

Collapse of the 4f orbital

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Introduction – Motivations

5

Fifth row Lanthanides

4fknl

4fk-1nln’l’

4fk-2nln’l’n’’l’’

Sixth row

4dknl

4dk-1nln’l’

4dk-2nln’l’n’’l’’

5dknl

5dk-1nln’l’

5dk-2nln’l’n’’l’’

Very complex spectroscopic structures (unfilled 4d, 5d, 4f shells)

à little investigated up to now (both theoretically and experimentally)

Interest in many other fields :

- Astrophysics (CP stars, nucleosynthesis, …)

- Solid state physics (doped crystals, …)

- New light sources (lasers, lamps, …)

- Plasma physics (fusion, ITER, …)

Progress in computers & laser spectroscopy

à New systematic investigations possible

χLupi

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Theoretically and experimentally...

Determination of atomic data

6

Atomic structure parameters

• Energy levels, Ek, Ei

• Transition energies, ∆Eki

• Wavelengths, λki

Radiative parameters

• Transition probabilities, Aki

• Oscillator strengths, fik

• Radiative lifetimes, τk = 1/Σi Aki

E

Ek

Ei

Aki , fik

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Relativistic Hartree-Fock method (HFR)(R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981)

Theoretical approach

7

Based on the Schrödinger equation (atom with N electrons)

+−∇−= ∑∑

<= ij iji

i

N

i r

e

r

Ze

mH

0

2

0

22

2

1 442 πεπε

hΨ=Ψ EH with

Central field approximation

)(...)()(

............

)(...)()(

)(...)()(

!

1),...,,(

21

22221

11211

21

NNNN

N

N

NN

qqq

qqq

qqq

qqq

ϕϕϕ

ϕϕϕ

ϕϕϕ

)(),()(1

)( ,2/1 σqslsl mlmnlmnlm YrP

rχφθϕ =

Slater determinant

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Relativistic Hartree-Fock method (HFR)(R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981)

Theoretical approach

8

Hartree-Fock equations

)()(4

)()(

)(4

)()(42

)1(

2

0

2*

0

22

0

2

2

2

2

22

iiiijj

ij

jijjmm

ij

iij

ij

jj

ij

ii

ii

ii

i

rPErPdr

erPrP

rPdr

erPrP

r

Ze

mr

ll

dr

d

m

jsis=

+

++−

∫∑

∫∑

τπε

δδ

τπεπε

hh

Resolution of Hartree-Fock equations

Iterative method à self-consistent field method

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Page 2: Atomic structure and radiative data calculations for …...2014/12/16  · Atomic structure and radiative data calculations for heavy elements of interest in fusion plasma research

Université de Mons

Relativistic Hartree-Fock method (HFR)(R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981)

Theoretical approach

9

Multiconfiguration approach

Relativistic effects

Included perturbationaly (spin-orbit, mass-velocity, Darwin term)

b

k

b

b

k a Ψ=Ψ ∑

Good agreement with fully relativistic methods

Ab initio or semi-empirical approach

Experimental energy levels can be used to optimize the radial parameters

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Relativistic Hartree-Fock method (HFR)(R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981)

Theoretical approach

10

Multiconfiguration approach

b

k

b

b

k a Ψ=Ψ ∑Example : Lu III (Lu2+)

(Ground config. : [Xe]4f145s25p66s)

Intravalence correlation

(up to n=6, l=3)

Even parity

5s25p66s

5s25p65d

5s25p66d

Odd parity

5s25p66p

5s25p65f

5s25p66f

Core-valence correlation (with 5s, 5p)

Even parity

5s25p55d5f

5s25p55d6p

5s25p55d6f

5s25p55f6s

5s25p55f6d

5s25p56s6p

5s25p56s6f

5s25p56p6d

5s25p56d6f

5s5p65d2

5s5p65f2

5s5p66s2

5s5p66p2

5s5p66d2

5s5p66f2

5s5p65d6s

5s5p65d6d

5s5p65f6p

5s5p65f6f

5s5p66s6d

5s5p66p6f

Odd parity

5s25p55d2

5s25p55f2

5s25p56s2

5s25p56p2

5s25p56d2

5s25p56f2

5s25p55d6s

5s25p55d6d

5s25p55f6p

5s25p55f6f

5s25p56s6d

5s25p56p6f

5s5p65d5f

5s5p65d6p

5s5p65d6f

5s5p65f6s

5s5p65f6d

5s5p66s6p

5s5p66s6f

5s5p66p6d

5s5p66d6f+5 levels 885 levels 904 levels6 levels

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Core-polarization effects (HFR + CPOL)(see e.g. Quinet et al., M.N.R.A.S. 307, 934, 1999; Quinet et al., J. Alloys Compd 344, 255, 2002)

11

Intravalence correlation considered within a configuration interaction scheme

Core-valence correlation represented by a core-polarization model potential

depending on two parameters (dipole polarizability αd and cut-off radius rc)

∑= +

−=n

i ci

idP

rr

rV

1322

2

1)(2

∑> ++

−=ji cjci

ji

dPrrrr

rrV

2/322222)])([(

.rr

α

∫∞

0

'' )()( drrPrrP lnnl ∫∞

+−

0

''2/322)(

)(1)( drrP

rrrrP ln

c

dnl

α

Correction to the dipole radial integral

replaced by

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Core-polarization effects (HFR + CPOL)(see e.g. Quinet et al., M.N.R.A.S. 307, 934, 1999; Quinet et al., J. Alloys Compd 344, 255, 2002)

12

Ionic

core

Ionic

core

Core-polarization

Core-penetration

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Semi-empirical optimization(R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley, 1981)

13

Radial parameters (average energies, electrostatic integrals, spin-orbit

parameters) adjusted in order to minimize the discrepancies between

computed Hamiltonian eigenvalues and experimental energy levels

à A good experimental knowledge of the level structure

for the atom (or ion) considered is needed

2)1(

36

2)1(

32

0

44

12

)(100261.2

12

)(

3

64

kkii

k

ki

kkii

k

kiki

JPJJ

E

JPJJ

E

h

aeA

γγ

γγπ

+

∆×=

+

∆=

E

à Optimization of the transition energies and wavefunctions

à Optimization of the radiative decay rates

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

A specific example (Lu III)(Biémont et al., J. Phys. B 32, 3409, 1999)

Radiative lifetimes for 6p 2P1/2 (38401 cm-1) and 6p 2P3/2 (44705 cm-1)

14

1.55 ± 0.202.20 ± 0.20Experiment

1.472.23HFR+POL+PEN

1.382.03HFR+POL

1.061.57HFR

1.001.49HF

2P3/22P1/2Method

1s22s22p63s23p63d104s24p64d104f145s25p6 nl

Lu3+ ionic core with 68 electrons :

αd = 5.20 a03 (Fraga et al., 1976)

rc = <r>5p = 1.39 a0

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Time-resolved laser-induced fluorescence (TR-LIF)(see e.g. Bergström et al., Z. Phys. D 8, 17, 1988; Xu et al., Phys. Rev. A 70, 042508, 2004)

Experimental measurements

15

Accurate measurements of radiative lifetimes (within a few %)

Lifetime range from 1 ns to 300 ns

Selective excitation (no cascading problems)

Many levels accessible (using different laser dyes)

Different ionization degrees accessible in the laser-produced plasma

(neutral, singly-, doubly- and trebly-ionized atoms)

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons 16

Delay

generator

Helmholtz

coil

Top

view

Ablation laser

Nd:YAG

laser (A)

Rotating target

MCP

PMT

Monochromator

Transient

Digitizer

Computer

Trigger

KDP BBO H2 cell

Side

view

Trigger

Nd:YAG

laser (B)

SBS

compressor

Dye

laser

Excitation laser

Single step excitation

Two-step excitation

Two-photon excitation

Ir I (32463.60 cm-1)

τ = 102 ± 9 ns

Ir II (47003.98 cm-1)

τ = 4.3 ± 0.4 ns

Excitation laser

Ablation laser

Vacuum chamber

Plasma plume

TR-LIF setup, Lund University, Sweden

kteItI τ/)0()(

−=

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Page 3: Atomic structure and radiative data calculations for …...2014/12/16  · Atomic structure and radiative data calculations for heavy elements of interest in fusion plasma research

Université de Mons

Results obtained so far

17

Fifth row

Lanthanides

Sixth row

Ce II

Ce III

Ce IV

Pr

I - IV

Nd

I - IVPm II Sm II

Sm III

Eu III Gd III Tb III Dy III Ho III Er II

Er III

Tm II

Tm III

Tm IV

Yb II

Yb III

Yb IV

Lu I

Lu II

Lu III

Nb I

Nb II

Nb III

Y II

Y III

Zr I

Zr IIMo II

Mo III

Tc I

Tc II

Ru I

Ru II

Ru III

Rh II

Rh III

Pd I

Pd II

Pd III

Ag II

Ag IIICd I

Cd II

In II Sn I

Sn III

Sb I

Ba I La I

La III

Hf I

Hf III

Ta I

Ta II

Ta III

W

I - VI

Re I

Re II

Os I

Os II

Ir I

Ir II

Pt II Au I

Au II

Au III

Tl I Pb I

Pb II

Bi II

Bi III

30 ions

~300 lifetimes

30 ions

~200 lifetimes

29 ions

~200 lifetimes

Hg I

Calculations and measurements performed during the period 1998 – 2014

Te II

Te IIIRb III

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Radiative lifetimes, transition rates (lanthanides)

18

Enzonga Yoca & Quinet, J. Phys. B 47, 035002 (2014)Nd IV

Enzonga Yoca & Quinet, J. Phys. B 46, 145003 (2013)Pr IV

Wyart et al., Phys. Scr. 63, 113 (2001)Yb IV

Quinet et al., MNRAS 307, 934 (1999); Fedchak et al., ApJ 542, 1109 (2000)Lu II

Fedchak et al., ApJ 542, 1109 (2000); Dai et al., J. Phys. B 36, 479 (2003)Lu I71

Biémont et al., J. Phys. B 32, 3409 (1999); Fedchak et al., ApJ 542, 1109 (2000)Lu III

Biémont et al., J. Phys. B 34, 1869 (2001); Zhang et al., Eur. Phys. J. D 15, 301 (2001)Yb III

Biémont et al., J. Phys. B 31, 3321 (1998); Li et al., J. Phys. B 32, 1731 (1999); Biémont et al., J. Phys. B 35, 4743 (2002)Yb II70

Li et al., J. Phys. B 34, 1349 (2001)Tm III

Quinet et al., JQSRT 62, 625 (1999)Tm II69

Biémont et al., MNRAS 321, 481 (2001)Er III

Xu et al., J. Phys. B 36, 1771 (2003)Er II68

Biémont et al., MNRAS 328, 1085 (2001); Zhang et al., A&A 384, 364 (2002)Ho III67

Zhang et al., MNRAS 334, 1 (2002)Dy III66

Biémont et al., Phys. Rev. A 65, 052502 (2002)Tb III65

Biémont et al., A&A 393, 717 (2002)Gd III64

Quinet & Biémont, MNRAS 340, 463 (2003)Eu III63

Biémont et al., A&A 399, 343 (2003)Sm III

Xu et al., J. Phys. B 36, 4773 (2003)Sm II62

Fivet et al., MNRAS 380, 771 (2007)Pm II61

Zhang et al., A&A 385, 724 (2002)Nd III

Xu et al., MNRAS 346, 433 (2003)Nd II

Biémont et al., J. Phys. B 37, 1381 (2004)Nd I60

Palmeri et al., ApJS 129, 367 (2000); Biémont et al., Phys. Rev. A 64, 022503 (2001)Pr III

Biémont et al., Eur. Phys. J. D 27, 33 (2003)Pr II

Biémont et al., J. Phys. B 37, 1381 (2004)Pr I59

Zhang et al., Phys. Rev. Lett. 87, 273001 (2001)Ce IV

Biémont et al., MNRAS 336, 1155 (2002)Ce III

Palmeri et al., Phys. Scr. 61, 323 (2000); Zhang et al., Phys. Scr. 63, 122 (2001)Ce II58

ReferencesIonZ

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Radiative lifetimes, transition rates (fifth row)

19

Hartman et al., Phys. Rev. A 82, 052512 (2010)Sb I51

Zhang et al., Astron. Astrophys. 551, A136 (2013)Te II-III52

Zhang et al., Phys. Scr. 88, 065302 (2013)Ag III

Zhang et al., Phys. Scr. 88, 065302 (2013)Pd III

Zhang et al., Phys. Scr. 88, 065302 (2013)Rh III

Quinet, Phys. Scr., in press (2014)Mo III

Zhang et al., Eur. Phys. J. D 68, 104 (2014)Rb III37

Biémont et al., Phys. Rev. A 62, 032512 (2000)Sn III

Zhang et al., Phys. Rev. A 78, 022505 (2008); Zhang et al., Eur. Phys. J. D 55, 1 (2009)Sn I50

Biémont et al., Phys. Rev. A 62, 032512 (2000)In II49

Xu et al. Phys. Rev. 70, 042508 (2004)Cd II

Biémont et al., Phys. Rev. A 62, 032512 (2000), Xu et al. Phys. Rev. 70, 042508 (2004)Cd I48

Biémont et al., J. Elec. Spectr. Rel. Phen. 144-147, 27 (2005); Campos et al., MNRAS 363, 905 (2005)Ag II47

Quinet, Phys. Src. 54, 483 (1996)Pd II

Xu et al., A&A 452, 357 (2006)Pd I46

Quinet et al., J. Elec. Spectrosc. Rel. Phen. 184, 174 (2011); Quinet et al., A&A 537, A74 (2012)Rh II45

Palmeri et al., J. Phys. B 42, 165005 (2009)Ru III

Palmeri et al., J. Phys. B 42, 165005 (2009)Ru II

Fivet et al., MNRAS 396, 2124 (2009)Ru I44

Palmeri et al., MNRAS 374, 63 (2007)Tc II

Palmeri et al., MNRAS 363, 452 (2005)Tc I43

Quinet, J. Phys. B 35, 19 (2002); Lundberg et al., J. Phys. B 43, 085004 (2010)Mo II42

Nilsson et al., A&A 511, A16 (2010)Nb III

Nilsson et al., A&A 511, A16 (2010)Nb II

Malcheva et al., MNRAS 412, 1823 (2011)Nb I41

Malcheva et al., MNRAS 367, 754 (2006)Zr II

Malcheva et al., MNRAS 395, 1523 (2009)Zr I40

Biémont et al., MNRAS 414, 3350 (2011)Y III

Biémont et al., MNRAS 414, 3350 (2011)Y II39

ReferencesIonZ

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Radiative lifetimes, transition rates (sixth row)

20

Enzonga Yoca et al., J. Phys. B 45, 035001 (2012)W IV

Enzonga Yoca et al., J. Phys. B 45, 065001 (2012)W V

Enzonga Yoca et al., J. Phys. B 45, 035002 (2012)W VI

Blagoev et al., Phys. Rev. A 66, 032509 (2002)Hg I80

Li et al., Phys. Rev. A 57, 3443 (1998); Biémont et al., MNRAS 312, 116 (2000)Pb I82

Palmeri et al., Phys. Scr. 63, 468 (2001)Bi II83

Quinet et al., J. Phys. B 40, 1705 (2007)Pb II

Quinet et al., J. Phys. B 40, 1705 (2007)Bi III

Biémont et al., J. Phys. B 38, 3547 (2005)Tl I81

Enzonga Yoca et al., Phys. Scr. 78, 025303 (2008)Au III

Fivet et al., J. Phys. B 39, 3587 (2006); Biémont et al., MNRAS 380, 1581 (2007)Au II

Fivet et al., J. Phys. B 39, 3587 (2006)Au I79

Quinet et al., Phys. Rev. A 77, 022501 (2008)Pt II78

Xu et al., JQSRT 104, 52 (2007)Ir I - II77

Quinet et al., A&A 448, 1207 (2006)Os I - II76

Palmeri et al., MNRAS 362 1348 (2005)Re II

Palmeri et al., Phys. Scr. 74, 297 (2006)Re I75

Palmeri et al., Phys. Scr. 78, 015304 (2008)W III

Nilsson et al., Eur. Phys. J. D 49, 13 (2008)W II

Quinet et al., J. Phys. B 44, 145005 (2011)W I74

Fivet et al., J. Phys. B 41, 015702 (2008)Ta III

Quinet et al., A&A 493, 711 (2009)Ta II

Fivet et al., Eur. Phys. J. D 37, 29 (2006)Ta I73

Malcheva et al., MNRAS 396, 2289 (2009)Hf III

Malcheva et al., MNRAS 396, 2289 (2009)Hf I72

Biémont et al., J. Phys. B 32, 3409 (1999)La III

Biémont et al., Eur. Phys. J. D 30, 157 (2004)La I57

Zhang et al., Phys. Rev. A 82, 042507 (2010)Ba I56

ReferencesIonZ

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Some recent results : Nb II, Mo II, Rh II

21

7.0 ± 0.57.544285.944d3(4P)5p 3P0

6.2 ± 0.36.644924.604d3(2P)5p 3D2

5.2 ± 0.55.844970.714d3(4P)5p 5D4

4.6 ± 0.34.645802.474d3(2P)5p 3D3

5.3 ± 0.3b6.4 ± 0.56.744066.674d3(4P)5p 5D1

5.7 ± 0.56.343887.084d3(4P)5p 5D3

12.8 ± 0.3b7.2 ± 0.48.143649.194d3(2P)5p 3D1

6.7 ± 0.36.743618.394d3(4F)5p 1D2

7.5 ± 0.47.343290.344d3(4F)5p 5D2

7.5 ± 0.77.242596.554d3(4F)5p 5D0

7.2 ± 0.57.242132.654d3(4F)5p 3P1

8.5 ± 0.78.441710.144d3(4F)5p 3P2

5.2 ± 0.3b5.1 ± 0.35.040103.614d3(4F)5p 3G5

3.2 ± 0.3b2.7 ± 0.22.837797.324d3(4F)5p 5D2

3.1 ± 0.3b2.6 ± 0.22.737298.244d3(4F)5p 5D0

5.7 ± 0.3b

5.7 ± 0.3a5.5 ± 0.35.735520.824d3(4F)5p 3D2

5.7 ± 0.3b

5.5 ± 0.3a5.6 ± 0.35.934886.354d3(4F)5p 3D1

PreviousThis workThis work

τ (ns) [Experiment]τ (ns) [Theory]E (cm-1)Level

Nb II : lifetimes measured for 17 energy levels belonging to 4d35p

a Salih & Lawer (1983); b Hannaford et al. (1985) Mean ratio (Th/Exp) = 1.035 ± 0.048

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

Some recent results : Nb II, Mo II, Rh II

22

4.6 ± 0.34.759492.1574d4(3H)5p z 4H13/2

7.6 ± 1.08.559841.0604d4(3F)5p z 2D3/2

6.6 ± 0.57.560992.7644d4(3F)5p z 2D5/2

4.8 ± 0.35.058761.2584d4(3H)5p z 4H11/2

4.9 ± 0.35.258196.9284d4(3H)5p z 4H9/2

4.9 ± 0.35.257892.2894d4(3H)5p z 4H7/2

4.5 ± 0.34.755706.9374d4(5D)5p z 4D7/2

4.6 ± 0.34.955216.2034d4(5D)5p z 4D5/2

5.0 ± 0.35.254687.0024d4(5D)5p z 4D3/2

5.1 ± 0.35.554238.9494d4(5D)5p z 4D1/2

4.0 ± 0.34.352843.2964d4(5D)5p z 4F9/2

4.0 ± 0.34.452217.5874d4(5D)5p z 4F7/2

4.2 ± 0.34.651732.6904d4(5D)5p z 4F5/2

4.2 ± 0.34.751373.1704d4(5D)5p z 4F3/2

4.0 ± 0.3b

4.3 ± 0.3a4.0 ± 0.34.250302.9134d4(5D)5p z 6D7/2

4.9 ± 0.3b

4.8 ± 0.4a4.9 ± 0.24.848022.8154d4(5D)5p z 4P3/2

PreviousThis workThis work

τ (ns) [Experiment]τ (ns) [Theory]E (cm-1)Level

Mo II : lifetimes measured for 16 energy levels belonging to 4d45p

a Hannaford & Lowe (1983); b Sikström et al. (2001) Mean ratio (Th/Exp) = 1.068 ± 0.039

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

Some recent results : Nb II, Mo II, Rh II

23

2.4 ± 0.22.862326.14d7(4F)5p 3F4

2.3 ± 0.32.563454.94d7(4F)5p 3F3

3.4 ± 0.23.763959.54d7(4F)5p 3G4

2.0 ± 0.22.465321.24d7(4F)5p 3G3

3.3 ± 0.33.662288.34d7(4F)5p 5G2

3.2 ± 0.23.562194.44d7(4F)5p 3G5

3.3 ± 0.33.661939.84d7(4F)5p 5G3

3.7 ± 0.54.061355.94d7(4F)5p 5D2

3.3 ± 0.23.561173.14d7(4F)5p 5G4

3.4 ± 0.43.960448.44d7(4F)5p 5D3

3.5 ± 0.24.059729.44d7(4F)5p 5G5

3.0 ± 0.23.159702.44d7(4F)5p 5G6

3.8 ± 0.34.259698.64d7(4F)5p 5F2

3.3 ± 0.23.959161.54d7(4F)5p 5D4

3.8 ± 0.34.258358.54d7(4F)5p 5F3

3.9 ± 0.34.057020.84d7(4F)5p 5F5

3.9 ± 0.54.456547.34d7(4F)5p 5F4

PreviousThis workThis work

τ (ns) [Experiment]τ (ns) [Theory]E (cm-1)Level

Rh II : lifetimes measured for 17 energy levels belonging to 4d75p

Mean ratio (Th/Exp) = 1.107 ± 0.047

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

The specific case of tungsten

24

Great interest in plasma physics

Fusion reactors

ITERInternational

Thermonuclear

Experimental

Reactor

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Page 4: Atomic structure and radiative data calculations for …...2014/12/16  · Atomic structure and radiative data calculations for heavy elements of interest in fusion plasma research

Université de Mons

The specific case of tungsten (W I, W II, W III)

25

Transition rates in W I, W II and W III

W II : 263 experimentally known energy levels within the

5d5, 5d46s, 5d36s2, 5d46p, 5d36s6p and 5d26s26p configurations

(Kramida & Shirai, J. Phys. Chem. Ref. Data 35, 423, 2006)

W III : 235 experimentally known energy levels within the

5d4, 5d36s, 5d26s2, 5d36p and 5d26s6p configurations

(Iglesias et al., J. Res. Natl Inst. Stand. Tech. 94, 221, 1989)

Transition probabilities and oscillator strengths calculated for :

2525 W I lines in the range 223 – 1010 nm (Quinet et al., J. Phys. B. 44, 145005, 2011)

6086 W II lines in the range 143 – 990 nm (Nilsson et al., Eur. Phys. J. D 49, 13, 2008)

4822 W III lines in the range 83 – 1494 nm (Palmeri et al., Phys. Scr. 78, 015304, 2008)

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

W I : 508 experimentally known energy levels within the

5d46s2, 5d56s, 5d46s7s, 5d56p, 5d46s6p and 5d36s26p configurations

(Kramida & Shirai, J. Phys. Chem. Ref. Data 35, 423, 2006; Wyart, J. Phys. B 43, 074018, 2010)

Université de Mons

The specific case of tungsten (W I, W II, W III)

26

Transition rates in W I

Comparison between theoretical transition probabilities and available

experimental results

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

[Den Hartog et al., J.O.S.A. B 4, 48 (1987)] [Kling & Kock, J.Q.S.R.T. 62, 129 (1999)]

Université de Mons

The specific case of tungsten (W I, W II, W III)

27

Transition rates in W I

Wavefunction purities (in LS coupling) for W I odd-levels below 45000 cm-1

(bold lines represent purities smaller than 15%)

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

The specific case of tungsten (W I, W II, W III)

28

Transition rates in W II and W III

2.5 ± 0.32.3361488.36

2.9 ± 0.32.9257231.04

W III

2.3 ± 0.22.49/255392.446

2.1 ± 0.22.97/254498.608

4.6 ± 0.44.75/251438.064

2.1 ± 0.22.23/251254.429

4.7 ± 0.44.37/251045.292

6.6 ± 0.45.33/250430.999

21.5 ± 1.020.49/248181.034

5.9 ± 0.37.65/248284.498

5.8 ± 0.36.83/247179.941

W II

ExperimentTheoryJE (cm-1)

Comparison between theoretical and

experimental lifetimes obtained in our work

Comparison between theoretical oscillator

strengths and available experimental results(W II : Kling et al., JQSRT 67, 227, 2000)

(W III : Schultz-Johanning et al., Phys. Scr. 63, 367, 2001)

W II

W III

~ 25%

~ 10%

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Université de Mons

The specific case of tungsten (W I, W II, W III)

29

Critical evaluation of available data

Recommended A-values

for the most intense W I,

W II and W III E1 lines

+ new decay rates

for forbidden lines

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons

The specific case of tungsten (W IV, W V, W VI)

30

Transition rates in W IV, W V and W VI

W IV : 105 experimentally known energy levels within the

5d3, 5d26s, 5d6s2, 5d26p and 5d6s6p configurations

(Kramida & Shirai, At. Data Nucl. Data Tables 95, 305, 2009)

W V : 59 experimentally known energy levels within the

5d2, 5d6s, 5d6p, 6s6p, 5d5f and 5d7p configurations

(Kramida & Shirai, At. Data Nucl. Data Tables 95, 305, 2009)

Transition probabilities and oscillator strengths calculated for :

W IV lines in the range 143 – 990 nm (Enzonga Yoca et al., J. Phys. B 45, 035001, 2012)

W V lines in the range 83 – 1494 nm (Enzonga Yoca et al., J. Phys. B 45, 065001, 2012)

W VI lines in the range 38 - 1148 nm (Enzonga Yoca et al., J. Phys. B 45, 035002, 2012)

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

W VI : 14 experimentally known energy levels within the

5d, 6s, 6p, 6d, 7s, 5f, 5g and 6g configurations

(Kramida & Shirai, At. Data Nucl. Data Tables 95, 305, 2009)

Université de Mons

The specific case of tungsten (W IV, W V, W VI)

31

Transition rates in W IV, W V and W VI

No experimental radiative

data to compare with !

§ Use of different and

independent theoretical

methods

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

§ HFR + CPOL compared with

- HFR including core-valence

(HFR(CV))

- Flexible Atomic Code (FAC)

- Multiconfiguration

Dirac-Fock (MCDF)

- Relativistic Many-Body

Perturbation Theory (RMBPT)

Université de Mons

Conclusions

32

New radiative data (lifetimes, transition probabilities, oscillator

strengths) obtained for a large number of lines belonging to heavy

neutral and lowly ionized atoms (fifth row, sixth row, lanthanides)[~ 90 ions considered, ~ 700 lifetimes measured, ~ 100000 A-values calculated]

Semi-empirical model based on the relativisitic Hartree-Fock method

including core-polarization effects

Good agreement between theoretical approach and experimental results

New data very useful in astrophysics, plasma physics, …

Level structure still too poorly known for many ions to perform semi-

empirical calculations (à new term analyses needed)

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014

Page 5: Atomic structure and radiative data calculations for …...2014/12/16  · Atomic structure and radiative data calculations for heavy elements of interest in fusion plasma research

Université de Mons

Atomic structure calculations

Astrophysics & Spectroscopy, UMONS, Belgium (* also ULg, Liège, Belgium)

(E. Biémont*, V. Fivet, P. Palmeri, P. Quinet*)

Department of Physics, University of Brazzaville, Congo

(S. Enzonga Yoca)

Experimental measurements

Department of Physics, Lund University, Lund, Sweden

(L. Engström, H. Hartman, Z. Li, H. Lundberg, H. Nilsson, S. Svanberg, H. Xu, Z. Zhang)

Department of Physics, Jilin University, Changchun, China

(Z. Dai, L. Han, Z. Jiang, P. Li, Z. Ma, G. Sun, S. You, J. Xu, W. Zhang, Y. Zhang)

Also collaboration with

Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria

(K. Blagoev, G. Malcheva)

Faculty of Physics, Universidad Complutense de Madrid, Spain

(R. Mayo, M. Ortiz)

Collaborations

33P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014 Université de Mons 34

Thank youfor your

attention !

P. Quinet ([email protected]) | IAEA AMPMI14 – December 2014