atp is the cell’s “energy” but –cells also have….reducing power! processes (such as...

73
ATP is the cell’s “energy” BUT Cells also have….REDUCING POWER! Processes (such as photosynthesis) require NADPH as well as ATP NADH and NADPH are NOT interchangable Pentose Phosphate Pathway Hexose monophosphate (HMP) shunt / Phosphogluconate pathway.

Upload: nathanial-mitcham

Post on 14-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

• ATP is the cell’s “energy” BUT– Cells also have….REDUCING POWER!

• Processes (such as photosynthesis) require NADPH as well as ATP

• NADH and NADPH are NOT interchangable

Pentose Phosphate Pathway

Hexose monophosphate (HMP) shunt / Phosphogluconate pathway.

NADH and NADPH are NOT interchangable

• NAD+ participates in synthesis of ATP • glycoloysis, oxidative phosphorylation

• NADPH is a reducing agent • produced in light reactions and consumed in Calvin

cycle of photosynthesis

NADP+ + 2H ---> NADPH + H+

In the cell…

[NAD+] ~ 1000 [NADP+]

~ 0.01[NADH] [NADPH]

1C5 to 1C5

2C5 to 2C5

2C5 to1C7 + 1C3

3C6 3C53C1

1C7 + 1C3 to1C6 + 1C4

1C4 + 1C5 to1C6 + 1C3

C

O

OH

OH

OH

CH2OPO32-

OC

O

OH

OH

OH

CH2OPO32-

O

H

H

B

N+

O

NH2

R

N

O

NH2

R

C

O

OH

OH

OH

CH2OPO32-

O

H

O HB

H

A

C

OH

OH

OH

OH

CH2OPO32-

O

OH

-O O

OHH

O

OH

OH

CH2OPO32-

H

H

OC

O

OHH

O-

OH

OH

CH2OPO32-

H

H

H

CH2OH

O

OH

OH

CH2OPO32-

H

H

A

Summary of carbon skeleton rearrangements in the pentose phosphate

pathway.

3C6 ---> 3C5 + 3C1

2

3

2

3 ribulose-5-P ---> 2 xylulose-5-P + 1 ribose-5-P

CH2OH

O

H

OH

CH2OPO32-

OH

H

H O

H OH

OHH

CH2OPO32-

OHH

CH2OH

O

HO

OH

CH2OPO32-

H

H

O

H

OH

CH2OPO32-

OH

H

H O

H OH

OHH

CH2OPO32-

OHH

H

H

OH

B

OH

H

OH

CH2OPO32-

OH

H

H O

H A

HB

HA

O

H

OH

CH2OPO32-

OH

H

H

H

OH

B O-

OH

CH2OPO32-

H

H

H

OH

HO H A

O

HO

OH

CH2OPO32-

H

H

H

H

OH

Transketolase: catalyzes the transfer of C2 units

CH2OH

O

HO

OH

CH2OPO32-

H

H

S

C-

N+H3C

R

R

CH2OH

OH

O

OH

CH2OPO32-

H

H

H A

S

C

N+H3C

R

R

H

B

CH2OH

OH

O

OH

CH2OPO32-

H

H

S

C

NH3C

R

R

CH2OH

OH

S

C

NH3C

R

R

H O

H OH

OHH

H

A

CH2OH

O

S

C

N+H3C

R

R

H OH

OHH

HO H

H

B

CH2OH

O

H OH

OHH

HO H

S

C-

N+X

R

R

CH2OPO32-

OHH

CH2OPO32-

CH2OPO32-

OHH

OHHC3

C7

CH3

Transaldolase: catalyzes the transfer of C3 units

CH2OH

O

H OH

OHH

HO H

CH2OPO32-

OHH

+H3NEnzyme

Schiff Base Formation

CH2OH

H O

OHH

HO H

CH2OPO32-

OHH

NH+

Enzyme

H B

CH2OH

H O

OHH

HO H

CH2OPO32-

OHH

NEnzyme

OH

CH2OPO32-

OHH

H A

CH2OH

HO H

NH+

Enzyme

OH

CH2OPO32-

OHH

H

Schiff BaseHydrolysis

CH2OH

HO H

O

OH

CH2OPO32-

OHH

H

C7

C4

C6C3

CH2OH

O

HO

OH

CH2OPO32-

H

H

S

C-

N+H3C

R

R

CH2OH

OH

O

OH

CH2OPO32-

H

H

H A

S

C

N+H3C

R

R

H

B

CH2OH

OH

O

OH

CH2OPO32-

H

H

S

C

NH3C

R

R

CH2OH

OH

S

C

NH3C

R

R

H O

H OH

OHH

CH2OPO32-

H

A

CH2OH

O

S

C

N+H3C

R

R

H OH

OHH

CH2OPO32-

HO H

H

B

CH2OH

O

H OH

OHH

CH2OPO32-

HO H

S

C-

N+H3C

R

R

C5

C3

C4

C6

Summary of the pentose phosphate pathway

3G6P + 6NADP+ + 3H2O

6NADPH + 6H+ + 3CO2 + 2F6P + GAP

Important intermediates

Ribose-5-phosphate (nucleic acids, histidine)Erythrose-4-phosphate (aromatic amino acids)

What is the purpose of the pentose phosphate pathway?

1) Biosynthetic precursors2) NADPH for biosynthesis3) NADPH to keep cell reduced

O2 + 2e- + 2H+ ----> H2O2

H2O2 + 2e- + 2H+ ----> 2H2O

O2 + 4H+ + 4e- ----> 2H2O

Eº (V) vs. NHE+0.28+1.35

+0.82

Oxygen Biochemistry

Reduction of O2 or H2O2 can be used as a thermodynamic driving force to drive oxidation

of various molecules

O2 + 2e- + 2H+ ----> H2O2

S ----> S2+ + 2e-

O2 + 4e- + 2H+ ----> 2H2O2S ----> 2S2+ + 4e-

H2O2 + 2e- + 2H+ ----> 2H2OS ----> S2+ + 2e-

Oxidative Damage

OHHO OH

OH

OH OH

HN

NH

O

S

CH3

O

SO32- S S

NH

NNH

HN

O

NH2

O

meta-tyrosine ortho tyrosine DOPA

dityrosine

2-oxohistidine

methionine sulfoxide cysteine sulfinatedisulfides

8-oxoguanosine

O

OH

lipid hydroperoxides

Peptide CleavagePhosphodiester cleavage

Peptide and phosphodiester cleavage

Iron-sulfur cluster disassembly

Oxygen Diradical

O O

1s

2s

2px 2py 2pz

1s

2s

2px 2py 2pz

2s

2s*

1s

1s*

2px

2px 2px

2px 2px

2px*

3O2(up/up) + 1X (paired) ---> 1XO2(paired)

1O2(paired) + 1X (paired) ---> 1XO2(paired)

3O2(up/up) + 3X (up/up) ---> 1XO2(paired)

Need to alleviate spin restriction

••O2 + e- ----> •O2-

•O2- + e- + 2H+ ----> H2O2

H2O2 + e- + H+ ----> H2O + •OH•OH + e- + H+ ----> H2O

••O2 + 2e- + 2H+ ----> H2O2

H2O2 + 2e- + 2H+ ----> 2H2O

••O2 + 4H+ + 4e- ----> 2H2O

Eº (V) vs. NHE-0.33+0.89+0.38+2.31

+0.28+1.35

+0.82

O O

HH

2HO•

Homolytic peroxide cleavage

Heterolytic peroxide cleavage: The Fenton Reaction

O O

HH

e-

HO•  + HO-

Eº = +0.38 V

Catalyzed by metals like iron and copper

•OH + RH ----> H2O + R•

R• + ••O2 ----> ROO•

RH + ROO• ----> R• + ROOH

O

O

R•

H

O

ORH

O

O

Antioxidants

OO

OHHO

-O O

OO-

OHHO

O O

Ascorbic Acid

OO

OHHO

HO OH

AH2

Ascorbate

AH-

H

R•

OO

OHHO

-O O

- H+

OO

OHHO

O O

Monodehydroascorbate

•A-

OO

OHHO

-O O

R•

OO

OHHO

O O RH

RH

+ H+

Dehydroascorbic acid

A

+H3N COO-

H

O

NH

H S

O

HN COO-

HH

H•R

+H3N COO-

H

O

NH

H S

O

HN COO-

HH

+H3N COO-

O

HN

S

O

NH

COO-

HH

H

H

+H3N COO-

H

O

NH

H S

O

HN COO-

HH

+H3N COO-

O

HN

S

O

NH

COO-

HH

H

H

GSH

GSSG

GS•

InitiationX2 ----> 2X•X• + RH ----> XH + R•PropagationR• + ••O2 ----> ROO•ROO• + RH ----> ROOH + R•TerminationR• + ROO• ----> ROOR R• + R• ----> R2

ROO• + ROO• ----> ROOOOR ----> O2 + ROOR

Free Radical Chain Reactions

X = •OH, •O2-, ••O2

If R = lipid The E/C couple

TerminationR• + EH ----> RH + E•ROO• + EH ----> ROOH + E•RecoveryAH- + E• ----> A•- + EHA•- + E• ----> A + EH

A + NADPH ----> AH- + NADP+

1/6Glucose + NADP+ ----> 1/3CO2 + NADPH

DHAR

DHAR = dehydroascorbate reductasePPP = pentose phosphate pathway

PPP orPhotosynthesis

If R = soluble, C or GSH

TerminationR• + AH- ----> RH + A•-

ROO• + AH- ----> ROOH + A•-

2A•- + H+ ----> AH- + ARecoveryA + NADPH ----> AH- + NADP+

1/6Glucose + NADP+ ----> 1/3CO2 + NADPH

TerminationR• + GSH ----> RH + GS•ROO• + GSH ----> ROOH + GS•2GS• ----> GSSGRecoveryGSSG + NADPH + H+ ----> 2GSH + NADP+

1/6Glucose + NADP+ ----> 1/3CO2 + NADPH

Peroxide reduction

O O

HH

2HO-

H-

Eº = +1.35 V Can be used to extracthydrides from substrates

Oxygen reduction

Eº = +0.82 V Can be used to extracthydrides from substrates

O O

H-

H+

O O

H

H

H-

H+

2H2O

Acetyl-CoA

Some Bacteria/Plants

CO2 fixation

Fungi/plants

Extant ways of fixing CO2

Reductive TCA cycle

Calvin Cycle

Acetyl-CoA Synthase

Reversing the TCA Cycle

Pyruvate

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G <<< 0

∆G <<< 0

∆G <<< 0

∆G <<< 0

How do you reverse KGDH?

Ketoglutarate synthase

2-oxoglutarate:ferredoxin oxidoreductase

Photosynthetic bacteria

Anaerobic bacteria

What about isocitrate dehydrogenase?

This step can be made reversible if you use a different source of electrons. Use NADPH instead of NADH.

Citrate lyase

C

CH2

C

CH2

COO-

COO-HO

EN

-O P

O

O-

O ADP

N P

O

O-

O-E

O-O

C

CH2

C

CH2

COO-

COO-O

OCoAS

H

B

C

CH2

C

CH2

COO-

COO-O

O2-O3PO

H

CoA S

H

B

C

CH2

COO-

COO-

O H3C C

O

SCoA

Pyruvate synthase

Acetyl-CoA + CO2 ---> pyruvate

Pyruvate:ferredoxin oxidoreductase

Photosynthetic bacteria

Anaerobic bacteria

Furdui, C. et al. J. Biol. Chem. 2000;275:28494-28499

Other bacteria

The Calvin cycle.

3CO2 -----> GAP

9 ATP and 6 NADPH

3C53C1

6C3

6C3

1C3

C6

C3+C3

C3+C4

C6+C3

C5

C4

C7+C3

C7

C5

Most important enzyme is Ribulose-5-phosphate carboxylase (Rubisco)

C

2-O3PO O

CH2OPO32-

OHH

E S

H

B

CS O

CH2OPO32-

OHH

E

N

C

O

NH2

HH

CH O

CH2OPO32-

OHH

N+

C

O

NH2

Transketolase: catalyzes the transfer of C2 units

Aldolase: catalyzes the condensation of C3 ketoses with aldoses

C3 + C3 ---> C6C3 + C6 ---> C4 + C5

C3 + C4 ---> C7C3 + C7 ---> C5 + C5

Overal reaction = 5C3 ---> 3C5

1 GAP molecule is made from 3CO2

3CO2 + 9ATP + 6NADPH ---> GAP + 9ADP + 8Pi + 6NADP+

GAP is converted to glucose by gluconeogenesis

C3 + C3 = C6

Aldolase

Reverse of the step in glycolysis

C

C

H O

CH2OPO32-

OHH

CH2OPO32-

C O

CH OH

H

B

CH2OPO32-

C O-

C OH

H

H A

CH2OPO32-

C O

CHO H

C OH

C

H

OHH

CH2OPO32-

C3 + C6 = C4 + C5

Transketolase

CH2OH

C O

CHO H

C OH

C

H

OHH

CH2OPO32-

S

C-

N+X

Y

RCH2OH

C O-

CO H

C OH

C

H

OHH

CH2OPO32-

S

C

N+X

Y

R

H

B

CH2OH

C O-

S

C

NX

Y

R

H

C

O

C OHH

C OHH

CH2OH

CH2OH

C O-

S

C

NX

Y

R

H

C

O

C OH

CH2OH

H

HA

CH2OH

C O-

S

C

N+X

Y

R

C OH

CH2OH

H

CHO H

CH2OH

C O

C OH

CH2OH

H

CHO H

S

C-

N+X

Y

R

Acetyl-CoA synthase

The Wood-Ljungdahl Pathway

2 CO2 ----> Acetyl-CoA

WesternBranch

EasternBranch

CH3, CH2OH, and CHO transfer

CorrinoidCH3 transfer

N

HN

H N

H

W4+S S

S S

OHSeE

C

O

O

W5+S S

S S

OH

SeE

C

-O

O

H-

W4+S S

S S

OHSeE

C

O

H O-

C

O

H O-

-O P

O

O-

O ADP

C

O

H O P

O

O-

O-

B N

HN

H N

C

O

H

Formate dehydrogenase

Can also use Mo

H- from NADPH

N

HN

H N

C

O

H

BN

HN

NHC

OH

HA

N

HN

N+HC

H-

N

HN

NH2CH-

HA

N

HN

HNCH3

Co+NN

N N

HA

Co+NN

N N

CH3

Nin+1S S

SSFe

SFe

FeS

Fe

OC

O

Nin+3S S

SSFe

SFe

FeS

Fe

C

O OHH A

Nin+3S S

SSFe

SFe

FeS

Fe

-CO+

Nin+1S S

SSFe

SFe

FeS

Fe

C

+O

2 e-

H A

CODH: carbon monoxide dehydrogenase

Acetyl-CoA synthase

Co3+NN

N N

CH3

Fe

S

S

S

FeFe

Fe

SS

Nin+

-C

O+

L S

SNi+

N

NCys

Cys

Cys

Cys

Cys

Cys

Nin+S

SNi+

N

N

L

+[S4Fe4]

C-

O+

Co+NN

N N

Nin+S

SNi2+

N

N

L

2+[S4Fe4]

C-

O+

CH3

Nin+S

SNi2+

N

N

L

2+[S4Fe4]

C-

O

CH3

H

SCoA

B

Nin+S

SNi+

N

N

L

+[S4Fe4]

H3CC

S

O

CoA

Assimilating Acetyl-CoA:The glyoxalate cycle

S C

O

CH2CoA

H

B-

S C

O-

CH2CoA S C

O

C-CoA

H

H

S C

O

C-CoA

H

H

-OOC

C

O

H2C COO-

H A -OOC

CH2

OH

CH2

-OOCC

O

SCoA

H

O

H

B-

-OOC

CH2

OH

CH2

-OOCCOO-

Citrate

AcetylCoA

Citrate Synthase

Oxaloacetate

Claisen condensation

Ligase

Aconitase: lyase

C

CH2

C

C

H

CH

O-O

OH

O

O-

B

C

CH2

C

CH

COO-

C

O-O

O

O-

O-

H Mg2+

COO-H

A

C

CH2

C C

O-O

O

O-

H

H

Isocitrate lyase

CoA

S

O

CH2

H

-OO

O

H

B

H+

H

HO

O

S

CH2

COO-

CoA

-O

H

H+

B

CHO

H

COO-

H2C COO-

Malate synthase

COO-

CO H

CH2

H

C

O O-

B

N+

C

O

NH2

R

COO-

CO

CH2

C

O O-

N

C

O

NH2

R

Malate Dehydrogenase

Acetyl-CoA

Some Bacteria/Plants

CO2 fixation

Fungi/plants

Pyruvate

AA’s

AA’s

AA’s,Acetyl-CoA

AA’s

AA’s

FA’s, AA’s

Malate

Pyruvate

Malate dehydrogenase/cytosolic

Oxaloacetate

Glycolytic intermediates

Pyruvate carboxylase

PEP Carboxykinase

∆G ~ 0

∆G <<< 0

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G ~ 0

∆G <<< 0

∆G <<< 0

Pyruvate Carboxylase

Fructose-1,6-bisphosphate + H2O --->fructose-6-phosphate + Pi

∆G’º = -16.3 kJ/mol

Glucose-6-phosphate + H2O --->glucose + Pi

∆G’º = -13.8 kJ/mol

OH

OH

H

OH

H

OHH

OH

H2C

H

H

H2C

H

CH2OPO32-

OH H

H OH

O

O P

O

O-

O-

O P

O

O-

O-

H

O H

B

HA

H

O H

B

HA

OH

OH

H

OH

H

OHH

OH

H2C

H

OH

H

H2C

H

CH2OPO32-

OH H

H OH

O

OH