auirgb4062d auirgp4062d auirgp4062d-e · auirgb4062d auirgp4062d auirgp4062d-e 1 02/10 ... thermal...

16
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 www.irf.com 02/10/11 E G n-channel C V CES = 600V I C = 24A, T C = 100°C t SC 5μs, T J(max) = 175°C V CE(on) typ. = 1.60V G C E Gate Collector Emitter TO-247AC AUIRGP4062D TO-220AB AUIRGB4062D Features Low V CE (on) Trench IGBT Technology Low Switching Losses 5μs SCSOA Square RBSOA 100% of The Parts Tested for I LM Positive V CE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free, RoHS Compliant Automotive Qualified * Benefits High Efficiency in a Wide Range of Applications Suitable for a Wide Range of Switching Frequencies due to Low V CE (ON) and Low Switching Losses Rugged Transient Performance for Increased Reliability Excellent Current Sharing in Parallel Operation Low EMI Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute- maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T A ) is 25°C, unless otherwise specified *Qualification standards can be found at http://www.irf.com/ G C E C G C E C C TO-247AD AUIRGP4062D-E G C E PD - 96353 Parameter Max. Units V CES Collector-to-Emitter Voltage 600 V I C @ T C = 25°C Continuous Collector Current 48 I C @ T C = 100°C Continuous Collector Current 24 I CM Pulse Collector Current, V GE = 15V 72 I LM Clamped Inductive Load Current, V GE = 20V 96 A I F @ T C = 25°C Diode Continous Forward Current 48 I F @ T C = 100°C Diode Continous Forward Current 24 I FM Diode Maximum Forward Current 96 V GE Continuous Gate-to-Emitter Voltage ±20 V Transient Gate-to-Emitter Voltage ±30 P D @ T C = 25°C Maximum Power Dissipation 250 W P D @ T C = 100°C Maximum Power Dissipation 125 T J Operating Junction and -55 to +175 T STG Storage Temperature Range °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. Units R θJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R θJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) TO-220 ––– ––– 1.53 R θJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-247 ––– ––– 0.65 °C/W R θJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) TO-247 ––– ––– 1.62 R θCS Thermal Resistance, Case-to-Sink (flat, greased surface)-TO-220 ––– 0.50 ––– R θCS Thermal Resistance, Case-to-Sink (flat, greased surface)-TO-247 0.24 R θJA Thermal Resistance, Junction-to-Ambient (typical socket mount)-TO-220 ––– 62 R θJA Thermal Resistance, Junction-to-Ambient (typical socket mount)- TO-247 ––– 40 –––

Upload: nguyenquynh

Post on 22-Jun-2018

255 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

INSULATED GATE BIPOLAR TRANSISTOR WITHULTRAFAST SOFT RECOVERY DIODE

AUIRGB4062DAUIRGP4062D

AUIRGP4062D-E

1 www.irf.com02/10/11

E

G

n-channel

C VCES = 600V

IC = 24A, TC = 100°C

tSC ≥ 5µs, TJ(max) = 175°C

VCE(on) typ. = 1.60V

G C EGate Collector Emitter

TO-247ACAUIRGP4062D

TO-220ABAUIRGB4062D

Features• Low VCE (on) Trench IGBT Technology• Low Switching Losses• 5µs SCSOA• Square RBSOA• 100% of The Parts Tested for ILM• Positive VCE (on) Temperature Coefficient.• Ultra Fast Soft Recovery Co-pak Diode• Tighter Distribution of Parameters•Lead-Free, RoHS Compliant•Automotive Qualified *

Benefits• High Efficiency in a Wide Range of Applications• Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses• Rugged Transient Performance for Increased Reliability• Excellent Current Sharing in Parallel Operation• Low EMI

Absolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; andfunctional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured underboard mountedand still air conditions. Ambient temperature (TA) is 25C, unless otherwise specified

*Qualification standards can be found at http://www.irf.com/

GC

E

C

GC

E

CC

TO-247ADAUIRGP4062D-E

GCE

Parameter Max. Units

VCES Collector-to-Emitter Voltage 600 V

IC @ TC = 25°C Continuous Collector Current 48

IC @ TC = 100°C Continuous Collector Current 24

ICM Pulse Collector Current, VGE = 15V 72

ILM Clamped Inductive Load Current, VGE = 20V 96 A

IF @ TC = 25°C Diode Continous Forward Current 48

IF @ TC = 100°C Diode Continous Forward Current 24

IFM Diode Maximum Forward Current 96

VGE Continuous Gate-to-Emitter Voltage ±20 V

Transient Gate-to-Emitter Voltage ±30

PD @ TC = 25°C Maximum Power Dissipation 250 W

PD @ TC = 100°C Maximum Power Dissipation 125

TJ Operating Junction and -55 to +175

TSTG Storage Temperature Range °C

Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)

Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)

Thermal ResistanceParameter Min. Typ. Max. Units

RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60

RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) TO-220 ––– ––– 1.53

RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) TO-247 ––– ––– 0.65 °C/W

RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) TO-247 ––– ––– 1.62

RθCS Thermal Resistance, Case-to-Sink (flat, greased surface)-TO-220 ––– 0.50 –––

RθCS Thermal Resistance, Case-to-Sink (flat, greased surface)-TO-247 0.24

RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount)-TO-220 ––– 62

RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount)- TO-247 ––– 40 –––

Page 2: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

2 www.irf.com

Notes: VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω. This is only applied to TO-220AB package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely.

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)Parameter Min. Typ. Max. Units Conditions Ref.Fig

V(BR)CES Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 100µA CT6

∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.30 — V/°C VGE = 0V, IC = 1mA (25°C-175°C) CT6

— 1.60 1.95 IC = 24A, VGE = 15V, TJ = 25°C 5,6,7

VCE(on) Collector-to-Emitter Saturation Voltage — 2.03 — V IC = 24A, VGE = 15V, TJ = 150°C 9,10,11

— 2.04 — IC = 24A, VGE = 15V, TJ = 175°C

VGE(th) Gate Threshold Voltage 4.0 — 6.5 V VCE = VGE, IC = 700µA 9, 10,

∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -18 — mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 11, 12

gfe Forward Transconductance — 17 — S VCE = 50V, IC = 24A, PW = 80µs

ICES Collector-to-Emitter Leakage Current — 2.0 25 µA VGE = 0V, VCE = 600V

— 775 — VGE = 0V, VCE = 600V, TJ = 175°C

VFM Diode Forward Voltage Drop — 1.80 2.6 V IF = 24A 8

— 1.28 — IF = 24A, TJ = 175°C

IGES Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V

Switching Characteristics @ TJ = 25°C (unless otherwise specified)Parameter Min. Typ. Max. Units Ref.Fig

Qg Total Gate Charge (turn-on) — 50 75 IC = 24A 24

Qge Gate-to-Emitter Charge (turn-on) — 13 20 nC VGE = 15V CT1

Qgc Gate-to-Collector Charge (turn-on) — 21 31 VCC = 400V

Eon Turn-On Switching Loss — 115 201 IC = 24A, VCC = 400V, VGE = 15V CT4

Eoff Turn-Off Switching Loss — 600 700 µJ RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C

Etotal Total Switching Loss — 715 901 Energy losses include tail & diode reverse recovery

td(on) Turn-On delay time — 41 53 IC = 24A, VCC = 400V, VGE = 15V CT4

tr Rise time — 22 31 ns RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C

td(off) Turn-Off delay time — 104 115

tf Fall time — 29 41

Eon Turn-On Switching Loss — 420 — IC = 24A, VCC = 400V, VGE=15V 13, 15

Eoff Turn-Off Switching Loss — 840 — µJ RG=10Ω, L= 200µH, LS=150nH, TJ = 175°C CT4

Etotal Total Switching Loss — 1260 — Energy losses include tail & diode reverse recovery WF1, WF2

td(on) Turn-On delay time — 40 — IC = 24A, VCC = 400V, VGE = 15V 14, 16

tr Rise time — 24 — ns RG = 10Ω, L = 200µH, LS = 150nH CT4

td(off) Turn-Off delay time — 125 — TJ = 175°C WF1

tf Fall time — 39 — WF2

Cies Input Capacitance — 1490 — pF VGE = 0V 23

Coes Output Capacitance — 129 — VCC = 30V

Cres Reverse Transfer Capacitance — 45 — f = 1.0Mhz

TJ = 175°C, IC = 96A 4

RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2

Rg = 10Ω, VGE = +20V to 0V

SCSOA Short Circuit Safe Operating Area 5 — — µs VCC = 400V, Vp =600V 22, CT3

Rg = 10Ω, VGE = +15V to 0V WF4

Erec Reverse Recovery Energy of the Diode — 621 — µJ TJ = 175°C 17, 18, 19

trr Diode Reverse Recovery Time — 89 — ns VCC = 400V, IF = 24A 20, 21

Irr Peak Reverse Recovery Current — 37 — A VGE = 15V, Rg = 10Ω, L =200µH, Ls = 150nH WF3

Conditions

Page 3: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 3

† Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/

†† Exceptions to AEC-Q101 requirements are noted in the qualification report.

††† Highest passing voltage

Qualification Information†

3L-TO-220

3L-TO-247AC

3L-TO-247AD

RoHS Compliant Yes

ESD

Machine ModelClass M4(+/- 400V )†††

(per AEC-Q101-002)

Human Body ModelClass H1C(+/- 2000V )†††

(per AEC-Q101-001)

Charged Device ModelClass C5(+/- 1000V )†††

(per AEC-Q101-005)

Moisture Sensitivity Level N/A

Qualification Level

Automotive

(per AEC-Q101) ††

Comments: This part number(s) passed Automotive qualification.IR’s Industrial and Consumer qualification level is granted byextension of the higher Automotive level.

Page 4: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

4 www.irf.com

Fig. 1 - Maximum DC Collector Current vs.Case Temperature

Fig. 2 - Power Dissipation vs. CaseTemperature

Fig. 3 - Forward SOATC = 25°C, TJ ≤ 175°C; VGE =15V

Fig. 4 - Reverse Bias SOATJ = 175°C; VGE =20V

Fig. 5 - Typ. IGBT Output CharacteristicsTJ = -40°C; tp = 80µs

Fig. 6 - Typ. IGBT Output CharacteristicsTJ = 25°C; tp = 80µs

0 20 40 60 80 100 120 140 160 180

TC (°C)

0

5

10

15

20

25

30

35

40

45

50I C

(A

)

0 20 40 60 80 100 120 140 160 180

TC (°C)

0

50

100

150

200

250

300

Pto

t (W

)

10 100 1000

VCE (V)

1

10

100

1000

I C (

A)

0 1 2 3 4 5 6 7 8

VCE (V)

0

10

20

30

40

50

60

70

80

90

I CE

(A

)

VGE = 18V

VGE = 15VVGE = 12VVGE = 10VVGE = 8.0V

0 1 2 3 4 5 6 7 8

VCE (V)

0

10

20

30

40

50

60

70

80

90

I CE

(A

)

VGE = 18V

VGE = 15VVGE = 12VVGE = 10VVGE = 8.0V

1 10 100 1000 10000

VCE (V)

0.1

1

10

100

1000

I C (

A)

1msec

10µsec

100µsec

Tc = 25°CTj = 175°CSingle Pulse

DC

Page 5: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 5

Fig. 7 - Typ. IGBT Output CharacteristicsTJ = 175°C; tp = 80µs

Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs

Fig. 10 - Typical VCE vs. VGETJ = 25°C

Fig. 11 - Typical VCE vs. VGETJ = 175°C

Fig. 12 - Typ. Transfer CharacteristicsVCE = 50V; tp = 10µs

Fig. 9 - Typical VCE vs. VGETJ = -40°C

0 1 2 3 4 5 6 7 8

VCE (V)

0

10

20

30

40

50

60

70

80

90I C

E (

A)

VGE = 18V

VGE = 15VVGE = 12VVGE = 10VVGE = 8.0V

0.0 1.0 2.0 3.0

VF (V)

0

20

40

60

80

100

120

I F (

A)

-40°c25°C

175°C

5 10 15 20

VGE (V)

0

2

4

6

8

10

12

14

16

18

20

VC

E (

V) ICE = 12A

ICE = 24A

ICE = 48A

0 5 10 15

VGE (V)

0

20

40

60

80

100

120

I CE

(A

)

TJ = 25°C

TJ = 175°C

5 10 15 20

VGE (V)

0

2

4

6

8

10

12

14

16

18

20

VC

E (

V) ICE = 12A

ICE = 24A

ICE = 48A

5 10 15 20

VGE (V)

0

2

4

6

8

10

12

14

16

18

20

VC

E (

V) ICE = 12A

ICE = 24A

ICE = 48A

Page 6: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

6 www.irf.com

Fig. 13 - Typ. Energy Loss vs. ICTJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V

Fig. 14 - Typ. Switching Time vs. ICTJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V

Fig. 15 - Typ. Energy Loss vs. RGTJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V

Fig. 16 - Typ. Switching Time vs. RGTJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V

Fig. 17 - Typ. Diode IRR vs. IFTJ = 175°C

Fig. 18 - Typ. Diode IRR vs. RGTJ = 175°C

0 10 20 30 40 50 60

IC (A)

0

200

400

600

800

1000

1200

1400

1600

1800E

nerg

y (µ

J) EOFF

EON

10 20 30 40 50

IC (A)

1

10

100

1000

Sw

ichi

ng T

ime

(ns)

tR

tdOFF

tF

tdON

0 25 50 75 100 125

RG (Ω)

10

100

1000

Sw

ichi

ng T

ime

(ns)

tR

tdOFF

tF

tdON

0 10 20 30 40 50 60

IF (A)

10

15

20

25

30

35

40

I RR

(A

)

RG = 10Ω

RG = 22Ω

RG = 47Ω

RG = 100Ω

0 25 50 75 100 125

RG (Ω)

5

10

15

20

25

30

35

40

45

I RR

(A

)

0 25 50 75 100 125

Rg (Ω)

0

200

400

600

800

1000

1200

1400

1600

Ene

rgy

(µJ)

EOFF

EON

Page 7: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 7

Fig. 19 - Typ. Diode IRR vs. diF/dtVCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C

Fig. 20 - Typ. Diode QRR vs. diF/dtVCC = 400V; VGE = 15V; TJ = 175°C

Fig. 23 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz

Fig. 24 - Typical Gate Charge vs. VGE ICE = 24A; L = 600µH

Fig. 21 - Typ. Diode ERR vs. IFTJ = 175°C

Fig. 22 - VGE vs. Short Circuit TimeVCC = 400V; TC = 25°C

0 500 1000 1500

diF /dt (A/µs)

5

10

15

20

25

30

35

40

45I R

R (

A)

0 10 20 30 40 50 60

IF (A)

0

200

400

600

800

1000

Ene

rgy

(µJ)

RG = 10Ω

RG = 22Ω

RG = 47Ω

RG = 100Ω

8 10 12 14 16 18

VGE (V)

4

6

8

10

12

14

16

Tim

e (

µs)

40

80

120

160

200

240

280

Current (A

)

0 20 40 60 80 100

VCE (V)

10

100

1000

10000

Cap

acita

nce

(pF

) Cies

Coes

Cres

0 5 10 15 20 25 30 35 40 45 50 55

Q G, Total Gate Charge (nC)

0

2

4

6

8

10

12

14

16

VG

E, G

ate-

to-E

mitt

er V

olta

ge (

V) VCES = 300V

VCES = 400V

0 500 1000 1500

diF /dt (A/µs)

500

1000

1500

2000

2500

3000

3500

4000

QR

R (

nC)

10Ω

22Ω

100Ω 47Ω

24A

48A

12A

Page 8: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

8 www.irf.com

Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-220AB

Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-220AB

1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1T

herm

al R

espo

nse

( Z

thJC

) 0.20

0.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) τi (sec)0.2329 0.000234

0.3631 0.007009

τJ

τJ

τ1

τ1τ2

τ2

R1

R1R2

R2

ττC

Ci i/RiCi= τi/Ri

1E-006 1E-005 0.0001 0.001 0.01 0.1 1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

10

The

rmal

Res

pons

e (

Z th

JC )

0.200.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) τi (sec)0.476 0.000763

0.647 0.003028

0.406 0.023686

τJ

τJ

τ1

τ1τ2

τ2 τ3

τ3

R1

R1 R2

R2 R3

R3

ττC

Ci i/RiCi= τi/Ri

Page 9: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 9

Fig. 28. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) TO-247AC

Fig 27. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC

1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

The

rmal

Res

pons

e (

Z th

JC )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) τi (sec)0.2782 0.000311

0.3715 0.006347

τJ

τJ

τ1

τ1τ2

τ2

R1

R1 R2

R2

ττC

Ci i/RiCi= τi/Ri

1E-006 1E-005 0.0001 0.001 0.01 0.1 1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

10

The

rmal

Res

pons

e (

Z th

JC )

0.200.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE( THERMAL RESPONSE ) Notes:

1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) τi (sec)0.693 0.001222

0.621 0.005254

0.307 0.038140

τJ

τJ

τ1

τ1τ2

τ2 τ3

τ3

R1

R1 R2

R2 R3

R3

ττC

Ci i/RiCi= τi/Ri

Page 10: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

10 www.irf.com

1K

VC CD UT

0

L

L

Rg

80 V DUT480V

L

Rg

VCC

diode clamp /DU T

DU T /D RIVER

- 5V

Rg

VCCDUT

R =VCCICM

Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit

Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.5 - Resistive Load Circuit Fig.C.T.6 - BVCES Filter Circuit

DC

4x

DUT

360V

Page 11: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 11

Fig. WF3 - Typ. Diode Recovery Waveform@ TJ = 175°C using Fig. CT.4

Fig. WF1 - Typ. Turn-off Loss Waveform@ TJ = 175°C using Fig. CT.4

Fig. WF2 - Typ. Turn-on Loss Waveform@ TJ = 175°C using Fig. CT.4

Fig. WF4 - Typ. S.C. Waveform@ TJ = 25°C using Fig. CT.3

-50

-40

-30

-20

-10

0

10

20

30

-0.15 -0.05 0.05 0.15 0.25

time (µS)

IRR

(A)

Peak

IRR

QRR

tRR

10%PeakIRR

-100

0

100

200

300

400

500

600

-5.00 0.00 5.00 10.00

time (µS)

VC

E (V

)

-50

0

50

100

150

200

250

300

I CE

(A)

VCE

ICE

-100

0

100

200

300

400

500

600

-0.40 0.10 0.60

Time(µs)

VC

E (

V)

-5

0

5

10

15

20

25

30

EOFF Loss

5% VCE

5% ICE

90% ICE

tf

VCE

C

ICE

-100

0

100

200

300

400

500

600

11.70 11.90 12.10 12.30

Time (µs)

VC

E (

V)

-10

0

10

20

30

40

50

60

EON

ICE

C90% test

10% ICE

5% VCE

trVCE

C

Page 12: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

12 www.irf.com

Page 13: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 13

!

!

Page 14: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

14 www.irf.com

"

Page 15: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

www.irf.com 15

Ordering InformationBase part number Package Type Standard Pack Complete Part Number

Form QuantityAUIRGB4062D TO-220 Tube 50 AUIRGB4062DAUIRGP4062D TO-247AC Tube 25 AUIRGP4062D

AUIRGP4062D-E TO-247AD Tube 25 AUIRGP4062D-E

Page 16: AUIRGB4062D AUIRGP4062D AUIRGP4062D-E · AUIRGB4062D AUIRGP4062D AUIRGP4062D-E 1 02/10 ... Thermal Resistance Junction-to-Case-(each IGBT) TO-220 ––– ––– 0.60 R ... Rg

AUIRGB/P4062D/P4062D-E

16 www.irf.com

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve theright to make corrections, modifications, enhancements, improvements, and other changes to its products and services at anytime and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotiveindustry and / or customer specific requirements with regards to product discontinuance and process change notification. Allproducts are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’sstandard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support thiswarranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarilyperformed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products andapplications using IR components. To minimize the risks with customer products and applications, customers should provideadequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and isaccompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations isan unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of thirdparties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or servicevoids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive businesspractice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into thebody, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR productcould create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any suchunintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries,affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claimalleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products arespecifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meetmilitary specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements inconnection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR productsare designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyersacknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for anyfailure to meet such requirements

For technical support, please contact IR’s Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245

Tel: (310) 252-7105