author's personal copy - home.gwu.eduhome.gwu.edu/~rpyron/publications/pyron_wiens_2011.pdf ·...

42
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright

Upload: ledan

Post on 18-Dec-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

This article appeared in a journal published by Elsevier. The attachedcopy is furnished to the author for internal non-commercial researchand education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling orlicensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of thearticle (e.g. in Word or Tex form) to their personal website orinstitutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies areencouraged to visit:

http://www.elsevier.com/copyright

Author's personal copy

A large-scale phylogeny of Amphibia including over 2800 species, and a revisedclassification of extant frogs, salamanders, and caecilians

R. Alexander Pyron a,⇑, John J. Wiens b

a Dept. of Biological Sciences, The George Washington University, 2023 G St. NW, Washington, DC 20052, United Statesb Dept. of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States

a r t i c l e i n f o

Article history:Received 7 May 2011Revised 10 June 2011Accepted 12 June 2011Available online 23 June 2011

Keywords:AmphibiaAnuraApodaCaudataLissamphibiaGymnophionaPhylogenySupermatrixSystematics

a b s t r a c t

The extant amphibians are one of the most diverse radiations of terrestrial vertebrates (>6800 species).Despite much recent focus on their conservation, diversification, and systematics, no previous phylogenyfor the group has contained more than 522 species. However, numerous studies with limited taxon sam-pling have generated large amounts of partially overlapping sequence data for many species. Here, wecombine these data and produce a novel estimate of extant amphibian phylogeny, containing 2871 spe-cies (�40% of the known extant species) from 432 genera (�85% of the �500 currently recognized extantgenera). Each sampled species contains up to 12,712 bp from 12 genes (three mitochondrial, ninenuclear), with an average of 2563 bp per species. This data set provides strong support for many groupsrecognized in previous studies, but it also suggests non-monophyly for several currently recognized fam-ilies, particularly in hyloid frogs (e.g., Ceratophryidae, Cycloramphidae, Leptodactylidae, Strabomanti-dae). To correct these and other problems, we provide a revised classification of extant amphibians fortaxa traditionally delimited at the family and subfamily levels. This new taxonomy includes several fam-ilies not recognized in current classifications (e.g., Alsodidae, Batrachylidae, Rhinodermatidae, Odontoph-rynidae, Telmatobiidae), but which are strongly supported and important for avoiding non-monophyly ofcurrent families. Finally, this study provides further evidence that the supermatrix approach provides aneffective strategy for inferring large-scale phylogenies using the combined results of previous studies,despite many taxa having extensive missing data.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

With over 6800 known species (AmphibiaWeb; http://www.amphibiaweb.org/, accessed April, 2011; hereafter ‘‘AW’’) the extantamphibians (frogs, salamanders, and caecilians) are one of the mostdiverse radiations of terrestrial vertebrates. The number of knownextant amphibians has increased rapidly in recent years, with over2700 species (�40%) described in the last 26 years (Duellman,1999; Lannoo, 2005). This newly discovered diversity includes doz-ens of new species from known genera in poorly studied tropical re-gions such as Madagascar (Vieites et al., 2009), but also new generain relatively well-explored regions such as the southeastern UnitedStates (Camp et al., 2009), and even new families such as Nasikabatr-achidae (Biju and Bossuyt, 2003). Unfortunately, much extantamphibian diversity is currently under extreme threat from pres-sures such as habitat loss, global climate change, and infectious dis-ease, and many species have gone extinct in the last few decades(Blaustein and Wake, 1990; Stuart et al., 2004).

A phylogenetic framework is critical for discovering, under-standing, and preserving extant amphibian diversity, but a large-scale phylogeny for extant amphibians is presently lacking. How-ever, recent molecular and combined-data studies have madeimportant contributions to higher-level phylogeny (Frost et al.,2006; Roelants et al., 2007; Wiens, 2007a, 2011) and to the phylog-eny of many major groups, such as caecilians (San Mauro et al.,2009; Zhang and Wake, 2009b), hyloid frogs (Darst and Cannatella,2004), ranoid frogs (e.g., Bossuyt et al., 2006; Wiens et al., 2009),microhylid frogs (van der Meijden et al., 2007), bufonid frogs(Pauly et al., 2004; Pramuk et al., 2008; Van Bocxlaer et al.,2009), centrolenid frogs (Guayasamin et al., 2009), dendrobatidfrogs (Grant et al., 2006; Santos et al., 2009), hemiphractid frogs(Wiens et al., 2007a), hylid frogs (Faivovich et al., 2005, 2010;Wiens et al., 2005b, 2010), terraranan frogs (Hedges et al., 2008;Heinicke et al., 2009), and salamanders (Kozak et al., 2009; Vieiteset al., 2011; Wiens et al., 2005a, 2007b; Zhang and Wake, 2009a).

The largest estimate of extant amphibian phylogeny to date isthat of Frost et al. (2006). Those authors reconstructed amphibianphylogeny based on relatively intensive sampling of species (522)and characters (up to 4.9 kb of sequence data from 2 mitochondrialand 5 nuclear genes [mean = 3.5 kb], and 152 morphological

1055-7903/$ - see front matter � 2011 Elsevier Inc. All rights reserved.doi:10.1016/j.ympev.2011.06.012

⇑ Corresponding author.E-mail addresses: [email protected] (R. Alexander Pyron), [email protected].

sunysb.edu (John J. Wiens).

Molecular Phylogenetics and Evolution 61 (2011) 543–583

Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier .com/ locate /ympev

Author's personal copy

characters). Those authors also proposed extensive changes in tax-onomy, especially for taxa delimited at the family and genus level.However, that study has also been criticized on numerous grounds,including concerns about taxon sampling and methodologicalstrategies (Marjanovic and Laurin, 2007; Pauly et al., 2009; Wiens,2007b, 2008). For example, those authors collected up to �4900characters per species, but their analysis is apparently based on15,320 characters, suggesting that their controversial approach tosequence alignment (POY) dominates their results (Wiens, 2008).Although some of the changes made by Frost et al. (2006) havebeen widely adopted, others are more controversial, such as thepartitioning of Bufo and Rana (Marjanovic and Laurin, 2007; Paulyet al., 2009; AW). Indeed, many of these changes are no longer sup-ported, even in Frost’s (2011) taxonomic database of extantamphibians (e.g., the families Amphignathodontidae, Batrachoph-rynidae, Cryptobatrachidae, and Thoropidae recognized by Frostet al. (2006)). Much of the most unstable taxonomy involves thefamily-level assignment of many of the genera of hyloid frogs, par-ticularly those traditionally assigned to the family Leptodactylidae.

Clearly, extant amphibian phylogeny and classification is still inneed of additional study. Fortunately, the numerous studies refer-enced above (and many others) have produced a massive amountof data that are potentially suitable for a combined, supermatrixapproach (e.g., de Queiroz and Gatesy, 2007; Driskell et al., 2004;Pyron et al., 2011; Thomson and Shaffer, 2010; Wiens et al.,2005b). This includes thousands of species represented in GenBankfor numerous nuclear and mitochondrial genes, often with sub-stantial overlap of genes among species.

Here, we present a large-scale estimate of amphibian phylog-eny, including 2871 species (42% of the 6807 known, extantamphibian species) from 432 of the 504 currently recognized gen-era (86%), and representatives from every currently delimited, ex-tant family and subfamily. This is 5.5 times more species andnearly twice as many genes as the largest previous study (Frostet al., 2006). The data matrix includes up to 12,712 bp for each spe-cies from 12 genes (three mitochondrial, nine nuclear). Impor-tantly, rather than simply reanalyzing published data forrelatively well-studied families (e.g., dendrobatids, hylids), we ad-dress the monophyly and relationships of many smaller groupsthat have not been the subject of focused studies (e.g., Ceratophryi-dae, Cylcoramphidae), as well as relationships among families. Weproduce a revised classification of extant amphibians, focusing ontaxa traditionally ranked as families and subfamilies. This studyalso provides additional support for the value of the supermatrixapproach to large-scale phylogenetic inference (e.g., de Queirozand Gatesy, 2007; Driskell et al., 2004; Pyron et al., 2011; Thomsonand Shaffer, 2010; Wiens et al., 2005b).

2. Materials and methods

2.1. Taxonomic reference

This analysis has been several years in the making. Our initialtaxonomy was based on the September 2009 update of theAmphibiaWeb (AW) database. However, when we refer to currentnumbers, these are taken from the April, 2011 update. The AW listis fairly current in terms of recently described species, but moreconservative than the Amphibian Species of the World (Frost,2011; hereafter ‘‘ASW’’) regarding some of the more controversialof the recent taxonomic changes (e.g., Bufo and Rana maintain sim-ilar composition as they did prior to Frost et al., 2006). We notesome instances where recent updates have modified our originalclassification. Note that even when not made explicit, we refer inall instances to the known extant diversity of Lissamphibia, giventhat the clade Amphibia includes numerous extinct stem-group

members that are not lissamphibians. The gymnophionans, cau-dates, and anurans also contain numerous extinct taxa, many ofwhich are grouped in separate genera, subfamilies, and familiesthat are not addressed in our analyses or included in our discussionof phylogeny. See Marjanovic and Laurin (2007), Carroll (2009),and Pyron (2011) for an overview of these taxa, their phylogeneticaffinities, and the origins of Amphibia and Lissamphibia.

2.2. Molecular data

We identified 12 candidate loci that have been broadly sampledand successfully used in amphibian phylogenetics at both lowerand higher taxonomic levels. These 12 genes included nine nucleargenes: C-X-C chemokine receptor type 4 (CXCR4), histone 3a(H3A), sodium–calcium exchanger (NCX1), pro-opiomelanocortin(POMC), recombination-activating gene 1 (RAG1), rhodopsin(RHOD), seventh-in-absentia (SIA), solute-carrier family 8(SLC8A3), and tyrosinase (TYR). Three mitochondrial genes werealso included: cytochrome b (cyt-b), and the large and small sub-units of the mitochondrial ribosome genes (12S/16S; omittingthe adjacent tRNAs as they were difficult to align and representedonly a small amount of data). This selection of genes includes al-most all of those genes used in the higher-level analyses by Frostet al. (2006) and Roelants et al. (2007), and most of those used inother large-scale studies (Faivovich et al., 2005; Grant et al.,2006; Wiens et al., 2009, 2010). However, we did not include thenuclear gene 28S (used by Frost et al. (2006)), as previous analysesof this gene region alone suggest that it contains relatively fewinformative characters and supports some relationships that aregrossly inconsistent with other studies (see Wiens et al., 2006).We conducted GenBank searches by family and subfamily to gath-er all available sequences, using a minimum-length threshold of200 bp (a somewhat arbitrary threshold of 1.5% of the total matrixlength, to avoid including very short [e.g., <50 bp] fragments), andstopping in August of 2010. Only species in the taxonomic data-base were included in the sequence matrix, which excludednumerous named taxa of ambiguous status, and many sequenceslabeled ‘sp.’ We removed a few (<10) taxa with identical sequencedata for all genes (arbitrarily retaining the first in alphabetical or-der), to avoid potentially misidentified or otherwise confoundedspecimens or sequences.

For the protein-coding genes, alignment was relatively straight-forward. Conceptual translations were used to ensure an openreading frame, and sequences were aligned using the translation-alignment algorithm in the program Geneious v4.8.4 (GeneMattersCorp.), with the default cost matrix (Blosum62) and gap penalties(open = 12, extension = 3). For the ribosomal RNA sequences (12Sand 16S sequences), alignment was more challenging. Preliminaryglobal alignments using the MUSCLE (Edgar, 2004) and CLUSTAL(Larkin et al., 2007) algorithms under a variety of gap-cost param-eters yielded low-quality results (i.e., alignments with large num-bers of gaps and little overlap of potentially homologouscharacters).

We subsequently employed a two-step strategy for these data.First, we identified sequence clusters of similar length and cover-age from the global alignment. These were subsequently alignedseparately using the MUSCLE algorithm with the default high-accuracy parameters, which have been shown to outperform CLUS-TAL in a variety of settings (Edgar, 2004). These alignments weresubsequently refined using the MUSCLE refinement algorithm,and then adjusted manually and trimmed for quality and maxi-mum coverage (i.e., end sequences with low overlap and poorapparent alignment were deleted using the alignment editor inGeneious). These length and position-based sequence groups werethen aligned to each other using the profile-profile alignmentalgorithm in MUSCLE. The resulting final global alignment was

544 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

manually adjusted and trimmed again for maximum quality andcoverage, and refined a second time. Final adjustments were madeby eye for a small number of sequences. This process was repeatedfor 12S and 16S separately. For 12S, four clusters were producedand combined using profile alignment, with five clusters for 16S.

The final concatenated alignment consists of 12,712 bp for 2871species. These species included 42% of the currently recognizedamphibian species (6807; this and subsequent numbers from AW2011), representing 41 caecilian species in 23 genera (22% of 189known extant species and 70% of 33 genera), 436 salamander spe-cies in 68 genera (72% of 608 species and 99% of 69 genera), and2394 frog species from 341 genera (40% of 6010 species and 85%of 402 genera). We selected Homo as an outgroup because datawere available for Homo from all 12 genes, and the sister groupto Amphibia is Amniota (e.g., Alfaro et al., 2009; Hugall et al.,2007; Pyron, 2010). The matrix contains data from 2572 speciesfor 16S (90%, 1986 bp), 2312 species for 12S (81%, 1357 bp), 1241for cyt-b (43%, 1140 bp), 1049 for RAG-1 (37%, 2700 bp), 606 forTYR (21%, 1132 bp), 589 for RHOD1 (21%, 315 bp), 478 for SIA(17%, 397 bp), 445 for POMC (16%, 666 bp), 352 for H3A (12%,328 bp), 284 for CXCR4 (10%, 753 bp), 220 for NCX1 (8%,1338 bp), and 175 for SLC8A3 (6%, 1132 bp). The mean length perspecies is 2563 bp (20% of the total length of the matrix,12,712 bp), with a range from 249 to 11,462 bp (2–90%), and isavailable in Dryad repository doi:10.5061/dryad.vd0m7. GenBanknumbers are listed in Appendix S1.

Clearly, many taxa had large amounts of missing data (some>97%), and on average each species had 80% missing cells. How-ever, several lines of evidence suggest that these missing dataare not problematic. First, two genes (12S/16S) were shared bythe vast majority of taxa (90% and 81%, respectively), providinga ‘‘backbone’’ for the placement of most taxa based on overlap-ping sequence data. Simulations suggest that this sampling designcan be critically important for allowing the accurate placement oftaxa with extensive missing data, as opposed to having all genesbe randomly sampled across species with limited overlap (Wiens,2003). Second, a large body of empirical and theoretical studiessuggests that highly incomplete taxa can be accurately placedin model-based phylogenetic analyses (and with high levels ofbranch support), especially if a large number of characters havebeen sampled (recent review in Wiens and Morrill, 2011). Finally,several recent empirical studies have shown that the supermatrixapproach (with extensive missing data in some taxa) yieldsgenerally well-supported large-scale trees that are in generalhighly congruent with both existing taxonomies and previousphylogenetic estimates (e.g., Driskell et al., 2004; McMahon andSanderson, 2006; Pyron et al., 2011; Thomson and Shaffer,2010; Wiens et al., 2005b).

2.3. Phylogenetic analyses

We performed phylogenetic inference using maximum likeli-hood (ML) and assessed support using non-parametric bootstrap-ping (BS). We assume that Bayesian analysis would yield verysimilar results (but would be very difficult to implement for so manytaxa), and we strongly prefer model-based methods to parsimony(for reasons described in Felsenstein (2004)). We performed ML treeinference and non-parametric bootstrapping using the programRAxMLv7.0.4 (Stamatakis, 2006) with the 12-gene concatenatedmatrix (species-tree methods were not practical given the largenumber of taxa). We used the GTRGAMMA model for all genes andpartitions because GTR is the only substitution model implementedin RAxML, and all other substitution models are encompassed with-in the GTR model (Felsenstein, 2004). The GTRGAMMA model inRAxML is recommended over the GTR + C + I because the largenumber of rate categories for C (25, as opposed to the usual 4)

should adequately account for potentially invariant sites withoutthe need for an extra parameter (Stamatakis, 2006). Even thoughthe GTR + C + I model is implemented in some versions of RAxML,its use is explicitly not recommended (Stamatakis, 2006).

Previous phylogenetic analyses of these data show thatGTR + C + I is generally the best-fitting model for these genes(e.g., Roelants et al., 2007; Wiens et al., 2005a,b, 2009, 2010). Theseprevious analyses also suggest that the protein-coding genesshould be partitioned by codon position, whereas the ribosomalgenes (12S, 16S) should be partitioned by stems and loops, withseparate partitions within and between genes. These secondarystructures were identified and coded following the protocol usedby Wiens et al. (2005b), based on predicted features from Pseuda-cris regilla (12S; AY819376) and Rana temporaria (16S; AY326063)from the European Ribosomal RNA database (http://bioinformat-ics.psb.ugent.be/webtools/rRNA/). The placement of stems andloops appears to be conserved across most sites, at least withinfrogs (Wiens et al., 2005b). Our final analysis was partitioned bygene, codon position (for protein-coding genes), and stems andloops (for ribosomal genes).

To find the optimal ML tree, we used a searching strategy thatcombined the rapid bootstrapping algorithm (100 non-parametricbootstrap replicates) with the thorough ML search option (20 inde-pendent searches, starting from every fifth bootstrap replicate).Similar analyses were performed numerous (>10) times as newtaxa and sequences were added to the near-final matrix. Theseanalyses collectively represent hundreds of independent searchesfrom random starting points. All of these preliminary analysesshowed high congruence with the final ML topology. This concor-dance strongly suggests that our final ML estimate represents theoptimal topology for these data (or close to it). Given that BS valuesgenerally appear to be conservative (Felsenstein, 2004), we consid-ered clades with values of 70% or greater to be well-supported.These analyses were performed on a 240-core Dell PowerEdgesupercomputing system at the High Performance Computing Cen-ter at the City University of New York, and were completed in16 days using 24 nodes of the CUNY cluster.

2.4. Taxonomic revision

A major goal of this study was to revise the higher-level taxon-omy of extant amphibians to correspond with the new phylogeny,given several major problems that were discovered. In the Resultssection below, we compare our results with existing phylogeniesand classifications, and describe our proposed solutions to taxo-nomic problems as we describe them (rather than having a separatesection discussing taxonomy). In general, we attempt to alter exist-ing classifications (e.g., AW, ASW) as little as possible, and only whenexisting groups are not monophyletic. Furthermore, we recognizenew groups only if they are strongly supported. Given the size ofthese phylogenies, we do not detail every congruence and discor-dance between our phylogeny and all previous studies (especiallywithin families). Instead, we emphasize necessary taxonomicchanges revealed by our study. We also focus our phylogenetic com-parisons on the largest of the previous analyses (in terms of taxo-nomic scope and number of species sampled), those of Frost et al.(2006), Roelants et al. (2007), and Wiens (2007a, 2011). The genericcomposition of all families and subfamilies in our revised classifica-tion is provided in Appendix B. Genus names follow our original tax-onomic database from the 2009 AW update.

In some cases, our analyses show that higher taxa (i.e., familiesand subfamilies) are not monophyletic, but not all genera havebeen included in our tree. Some of these genera are effectively‘‘orphaned’’ because it is no longer clear to which higher taxon theybelong. We generally denote these as incertae sedis within thehigher taxon in which they were embedded in previous

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 545

Author's personal copy

classifications. Resolving the placement of these taxa in the treeand classification will require additional data and analyses. Weconsider this a more conservative strategy than simply placingthem in the nominate group without data. While in theory thisstrategy creates more ‘‘instability’’ by removing taxa from namedgroups, it highlights the need for their study in future analyses,and does not promote the taxonomic burden of heritage (Pyronand Burbrink, 2009) in further propagating classifications withhigh probability of error based solely on the status quo.

3. Results

A summary of the ML tree based on the rapid-bootstrapping anal-ysis from RAxMLv7.0.4 (lnL = �1704992.20) is shown in Fig. 1. Thisphylogeny is generally well-supported, with 64% of nodes having BSproportions >70. Our analyses support the monophyly of frogs, cae-cilians, and salamanders, respectively, and weakly support a sister-group relationship between frogs and salamanders, as found in mostother studies of extant lissamphibian phylogeny (Frost et al., 2006;Pyron, 2011; Roelants et al., 2007; San Mauro, 2010; Wiens, 2011;Zhang et al., 2005). An alternative grouping of Gymnophiona andCaudata (i.e., Procera) has been supported by some studies (e.g.,Feller and Hedges, 1998), and in re-analyses of others (e.g., Zhanget al., 2005; San Mauro et al., 2005; see Marjanovic and Laurin,2007; Pyron, 2011). Many of the family-level relationships withinthese three groups remain unchanged from recent estimates (Frostet al., 2006; Pyron, 2011; Roelants et al., 2007; San Mauro, 2010;Wiens, 2007a, 2011). However, we find some significant deviationsfrom previous phylogenies and taxonomies, which we describe be-low along with proposed solutions.

Within caecilians (Fig. 2A), our results agree with other recentstudies in supporting clades corresponding to Rhinatrematidae,Ichthyophiidae, and Caeciliidae (Frost et al., 2006; Roelants et al.,2007; San Mauro et al., 2009; Zhang and Wake, 2009b). The tradi-tional family-level classification of caecilians (still used by AW,2011) is not supported, given that Uraeotyphlidae renders Ichthy-ophiidae paraphyletic and that Scolecomorphidae and Typhlonect-idae render Caeciliidae paraphyletic. Furthermore, we find (Fig. 2A)the caeciliid subfamily Typhlonectinae (recognized by ASW) to beparaphyletic with respect to Caeciliinae (Cthonerpeton and Typhlo-nectes are not sister taxa, although this is weakly supported), andalso makes Caeciliinae non-monophyletic (i.e., the caeciliines Cae-cilia and Oscaecilia are in a strongly supported clade with Cthonerp-eton and Typhlonectes, which excludes all other caeciliine generasuch as Dermophis, Gegeneophis, and Siphonops). Typhlonectinaeis synonymized with Caeciliinae in our classification. Within Cae-ciliidae, we concur with ASW in recognizing the strongly supportedsubfamily Scolecomorphinae for Crotaphatrema and Scolecomor-phus, which is the sister group to all other caeciliids. Althoughwe could recognize Caeciliinae as the sister group to Scolecomor-phinae, this clade is only weakly supported, despite strong supportfor each subfamily-level clade. Thus, we recognize these two cladesas separate subfamilies. We restore the subfamily Herpelinae (Lau-rent, 1984) for the clade comprising Herpele and Boulengerula. Werecognize the other strongly supported clade as Caeciliinae (Figs. 1,2A; Appendix B). This arrangement accommodates all taxa in-cluded in our tree, though many other genera have not yet beensampled. The following genera are thus considered Caeciliidaeincertae sedis: Atretochoana, Brasilotyphlus, Idiocranium, Indotyphlus,Microcaecilia, Mimosiphonops, Nectocaecilia, Parvicaecilia, Potomo-typhlus, and Sylvacaecilia.

Within salamanders, the family and subfamily-level relation-ships are mostly consistent with most recent model-based molec-ular analyses (Roelants et al., 2007; Wiens, 2011; Wiens et al.,2005a; Zhang and Wake, 2009a) and current classifications (AW,

ASW). However, our results differ strongly from Frost et al.(2006) with respect to relationships among the salamander fami-lies. Frost et al. (2006) recover a clade comprising Sirenidae, Dica-mptodontidae, Ambystomatidae, and Salamandridae. In contrast,we find strong support for a sister-group relationship betweenSirenidae and all salamanders exclusive of Cryptobranchidae andHynobiidae (Figs. 1 and 2B and C), as do Wiens et al. (2005a), Roe-lants et al. (2007), and Wiens (2007a, 2011). While some classifica-tions recognize only two subfamilies in Plethodontidae(Hemidactylinae and Plethodontinae; AW), we follow most recentauthors (Chippindale et al., 2004; Kozak et al., 2009; Vieites et al.,2011; Wiens, 2007a) and ASW in recognizing four subfamilies inPlethodontidae (Bolitoglossinae, Hemidactylinae, Plethodontinae,and Spelerpinae; Figs. 1 and 2D–F). We do not recognize a separatesubfamily for Protohynobius (contra AW), given that it is likelynested in Hynobiinae (Peng et al., 2010).

Within frogs, strongly-supported higher-level groups and rela-tionships (e.g., among the non-neobatrachian frogs, Neobatrachia,Hyloidea, and Ranoidea) are consistent with most recent studies(Frost et al., 2006; Roelants et al., 2007; Wiens, 2007a, 2011), withsome notable exceptions. We find (Fig. 2G) strong support for plac-ing Discoglossoidea (Alytidae + Bombinatoridae + Discoglossidae)as the sister group to all other frogs exclusive of Ascaphidae + Leio-pelmatidae (see also Roelants et al., 2007), whereas Frost et al.(2006) and Wiens (2007a, 2011) placed Pipoidea (Pipidae + Rhin-ophrynidae) in this position. Within Neobatrachia (Fig. 1), we cor-roborate the placement of Heleophrynidae as the sister taxon to allother neobatrachian frogs (Frost et al., 2006; Roelants et al., 2007;Wiens, 2007a, 2011). We find a weakly supported sister-group rela-tionship between the clade Sooglossidae + Nasikabatrachidae andall neobatrachian frogs to the exclusion of Heleophrynidae (Fig. 1).In contrast, both Roelants et al. (2007) and Wiens (2007a, 2011; Soo-glossidae only) placed this clade as the sister-taxon to Ranoidea,whereas Frost et al. (2006) found it to be the sister-group of Hyloidea(including Myobatrachidae + Calyptocephalellidae).

Within Hyloidea, our results suggest that several families cur-rently recognized by both AW and ASW are not monophyletic.All of these problematic taxa were previously placed in the familyLeptodactylidae (subdivided extensively by Frost et al., 2006), andinclude Ceratophryidae, Cycloramphidae, Leptodactylidae, andStrabomantidae. Below we describe the specific problems andour proposed taxonomic solutions. These solutions include recog-nizing several additional families relative to current classifications(Alsodidae, Batrachylidae, Odontophrynidae, Rhinodermatidae,Telmatobiidae) and synonymizing one (Strabomantidae withCraugastoridae). These newly recognized families are either re-def-initions of previously recognized families (Rhinodermatidae,Telmatobiidae), or elevation of existing taxa presently below fam-ily rank (Alsodinae, Batrachylinae, Odontophrynini) to the rank offamilies.

Most of these problematic taxa are contained in a weakly sup-ported clade (Fig. 2Z) that includes the currently recognized familiesCeratophryidae, Cycloramphidae, and Hylodidae (note that thecontent of these families and their subfamilies are the same in bothAW and ASW). Under these classifications, Ceratophryidae ispresently divided into the subfamilies Batrachylinae (Atelognathus,Batrachyla), Ceratophryinae (Ceratophrys, Chacophrys, Lepidobatra-chus), and Telmatobiinae (Telmatobius, including Batrachophrynusin AW). Cycloramphidae comprises Alsodinae (Alsodes, Eupsophus,Hylorina, Insuetophrynus, Limnomedusa, Macrogenioglottus, Odon-tophrynus, Proceratophrys, Thoropa) and Cycloramphinae (Crossodac-tylodes, Cycloramphus, Rhinoderma, Zachaenus), and one genus ofuncertain placement (Rupirana). Hylodidae contains Crossodactylus,Hylodes, and Megaelosia. With respect to this classification, we findstrong support for monophyly of Hylodidae (Fig. 2Z), but the familiesCeratophryidae and Cycloramphidae are non-monophyletic, with

546 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Scaphiopodidae

Heleophrynidae

RhinodermatidaeBrevicipitidae

Gastrophryninae

Salamandrininae

Pipidae

Leptopelinae

Ranixalidae

Ptychadenidae

Buergeriinae

Brachycephalidae

Scolecomorphinae

Hynobiidae

Otophryninae

Microhylinae

Eleutherodactylinae

Dyscophinae

Bufonidae

Cryptobranchidae

Hemiphractidae

Hyperoliidae

Cycloramphidae

Pleurodelinae

Phrynomerinae

Scaphiophryninae

Dicroglossinae

Sirenidae

Limnodynastinae

Cophylinae

Sooglossidae

Ceuthomantidae

Ceratobatrachidae

Alytidae

Hyalinobatrachinae

Rhinatrematidae

Kalophryninae

OdontophrynidaeAlsodidae

Conrauidae

Nasikabatrachidae

BolitoglossinaeLeiopelmatidae

Rhacophorinae

Pelobatidae

Hylinae

Discoglossidae

Phyllomedusinae

Leuiperinae

Batrachylidae

Rhyacotritonidae

Phyzelaphryninae

Ascaphidae

Hylodidae

Phrynobatrachidae

Salamandrinae

Arthroleptinae

Ambystomatidae

Mantellinae

Hemidactylinae

Petropedetidae

Telmatobiidae

Boophinae

Ichthyophiidae

Rhinophrynidae

Nyctibatrachidae

Asterophryninae

Ranidae

Cacosterninae

Melanobatrachinae

Dicamptodontidae

Astylosterninae

Craugastorinae

Hoplophryninae

Micrixalidae

Pelodytidae

Laliostominae

Calyptocephalellidae

Pelodryadinae

AllophrynidaeCentroleninae

Spelerpinae

Paratelmatobiinae

Caeciliinae

Dendrobatidae

Holoadeninae

Megophryidae

Pyxicephalinae

Leptodactylinae

Herpelinae

Plethodontinae

Ceratophryidae

Pristimantinae

AmphiumidaeProteidae

Hemisotidae

Bombinatoridae

Occidozyginae

Strabomantinae

Myobatrachinae

97

100

100

96

92

99

93

97

63

99

91

92 99

98

56

99

98

71

98

100

98

88

54

86

85

100

76

77

100

100

71

100

100

83

100

96

87

100

100

54

98

79

98

57

96

74

98

99

100

60

50

97

98

100

54

98

100

100

97

98100

88

100

97

59

53

100

0.2 subst./site

Ranoidea

Hyloidea

Caeciliidae

Salamandridae

Plethodontidae

Myobatrachidae

Eleutherodactylidae

Craugastoridae

Hylidae

Centrolenidae

Leptodactylidae

Arthroleptidae

Microhylidae

Pyxicephalidae

Dicroglossidae

Rhacophoridae

Mantellidae

Gymnophiona

Caudata

Anura

Neobatrachia

Fig. 1. Skeletal representation of the 2871-species tree from maximum likelihood analysis, with tips representing families and subfamilies based on our taxonomic revision.Numbers at nodes are BS proportions greater than 50%. The full version of this tree is presented in Fig. 2, with multiple panels indicated by bold italic letters.

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 547

Author's personal copy

Dermophis mexicanus

Dermophis oaxacae

Dermophis parviceps

Gymnopis multiplicata

Schistometopum thomense

Schistometopum gregorii

Geotrypetes seraphini

Siphonops annulatus

Siphonops paulensis

Siphonops hardyi

Luetkenotyphlus brasiliensis

Grandisonia sechellensis

Grandisonia larvata

Grandisonia brevis

Grandisonia alternans

Praslinia cooperi

Hypogeophis rostratus

Gegeneophis seshachari

Gegeneophis ramaswamii

Oscaecilia ochrocephala

Caecilia volcani

Caecilia tentaculata

Typhlonectes natans

Chthonerpeton indistinctum

Boulengerula taitana

Boulengerula uluguruensis

Boulengerula boulengeri

Herpele squalostoma

Scolecomorphus vittatus

Scolecomorphus uluguruensis

Crotaphatrema tchabalmbaboensis

Ichthyophis bannanicus

Caudacaecilia asplenia

Ichthyophis glutinosus

Ichthyophis orthoplicatus

Ichthyophis tricolor

Ichthyophis bombayensis

Uraeotyphlus narayani

Rhinatrema bivittatum

Epicrionops niger

Epicrionops marmoratus

100

98

100

59

98

97

52

62

99

100

69

100

51

99

56

62

94

92

55

99

100

100

70

98

88100

95100

100

100

100

100

54

73Rhinatrematidae

Ichthyophiidae

Scolecomorphinae

Herpelinae

Caeciliidae

Gymnophiona

Caeciliinae

A

Fig. 2. Large-scale maximum likelihood estimate of amphibian phylogeny, containing 2871 species represented by up to 12,871 bp of sequence data from 12 genes (threemitochondrial, nine nuclear). Numbers at nodes are maximum likelihood BS proportions greater than 50%. A skeletal version of this tree at the subfamily level is presented inFig. 1. Bold italic letters indicate figure panels.

548 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Hynobius takedaiHynobius nigrescens

Hynobius tokyoensisHynobius abeiHynobius lichenatus

Hynobius stejnegeriHynobius nebulosus

Hynobius tsuensisHynobius okiensis

Hynobius dunniHynobius quelpaertensis

Hynobius yangiHynobius leechii

Hynobius maoershanensisHynobius chinensisHynobius guabangshanensisHynobius yiwuensis

Hynobius hidamontanusHynobius katoi

Hynobius amjiensisHynobius naeviusHynobius sonaniHynobius arisanensisHynobius formosanus

Hynobius glacialisHynobius fuca

Hynobius kimuraeHynobius boulengeri

Hynobius retardatusBatrachuperus karlschmidti

Batrachuperus tibetanusBatrachuperus londongensis

Batrachuperus pinchoniiBatrachuperus yenyuanensis

Liua shihiLiua tsinpaensis

Pseudohynobius shuichengensisPseudohynobius flavomaculatus

Paradactylodon persicusParadactylodon gorganensis

Paradactylodon mustersiRanodon sibiricus

Salamandrella keyserlingiiPachyhynobius shangchengensis

Onychodactylus japonicusOnychodactylus fischeri

Andrias davidianusAndrias japonicus

Cryptobranchus alleganiensis

100

100

100

58

99

95

86

54

95

6198

59

10061

50

9399

74

100

75

97

93100

98

54

100

100

79

100

74

100

100100

Cryptobranchidae

Hynobiidae

99 Caudata

BC-F

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 549

Author's personal copy

Paramesotriton fuzhongensisParamesotriton deloustali

Paramesotriton hongkongensisParamesotriton chinensis

Paramesotriton zhijinensisParamesotriton caudopunctatusCynops orientalis

Cynops orphicusCynops cyanurusCynops ensicauda

Cynops pyrrhogasterPachytriton brevipesPachytriton labiatusLaotriton laoensis

Ichthyosaura alpestrisEuproctus montanus

Euproctus platycephalusTriturus cristatus

Triturus kareliniiTriturus carn ifex

Triturus dobrogicusTriturus pygmaeus

Triturus marmoratusCalotriton asper

Calotriton arnoldiNeurergus microspilotusNeurergus crocatusNeurergus kaiseriNeurergus strauchiiOmmatotriton ophryticus

Ommatotriton vittatusLissotriton montandoniLissotriton vulgaris

Lissotriton helveticusLissotriton italicus

Lissotriton boscaiNotophthalmus viridescens

Notophthalmus perstriatusNotophthalmus meridionalisTaricha granulosa

Taricha torosaTaricha rivularis

Tylototriton kweichowensisTylototriton verrucosusTylototriton shanjingTylototriton taliangensis

Tylototriton wenxianensisTylototriton asperrimusEchinotriton chinhaiensisEchinotriton andersoniPleurodeles nebulosusPleurodeles poiretiPleurodeles waltlLyciasalamandra billae

Lyciasalamandra antalyanaLyciasalamandra atifiLyciasalamandra flavimembris

Lyciasalamandra helverseniLyciasalamandra fazilae

Lyciasalamandra luschaniSalamandra algira

Salamandra salamandraSalamandra infraimmaculataSalamandra lanzai

Salamandra corsicaSalamandra atra

Mertensiella caucasicaChioglossa lusitanica

Salamandrina perspicillataSalamandrina terdigitata

Ambystoma jeffersonianumAmbystoma laterale

Ambystoma maculatumAmbystoma talpoideum

Ambystoma macrodactylumAmbystoma barbouriAmbystoma texanum

Ambystoma mabeeiAmbystoma ordinarium

Ambystoma andersoniAmbystoma mexicanumAmbystoma dumeriliiAmbystoma tigrinumAmbystoma californiense

Ambystoma opacumAmbystoma gracile

Ambystoma cingulatumDicamptodon copeiDicamptodon aterrimus

Dicamptodon ensatusDicamptodon tenebrosus

Siren lacertinaSiren intermedia

Pseudobranchus axanthusPseudobranchus striatus

7198

100

85

98

97

95

8688

65

68826582

59

65 5797

9193

100

74

85100

1009166

100100

97

9988100

100

100

100

99100

82

100100

99

99816464

91

100100

91

100

10064

74100

92

6790

100

100

100

58

62100

93686370

100

8775

100

100

100

97

Sirenidae

Dicamptodontidae

Ambystomatidae

Salamandridae

SalamandrininaeSalamandrinae

Pleurodelinae

Paramesotriton guangxiensis98

B

D-F

C

Fig. 2 (continued)

550 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Plethodon savannahPlethodon ocmulgeePlethodon grobmaniPlethodon kisatchiePlethodon albagulaPlethodon sequoyah

Plethodon kiamichiPlethodon mississippi

Plethodon shermaniPlethodon yonahlossee

Plethodon jordaniPlethodon kentucki

Plethodon fourchensisPlethodon ouachitaePlethodon caddoensis

Plethodon cheoahPlethodon aureolus

Plethodon teyahaleePlethodon cylindraceus

Plethodon glutinosusPlethodon variolatusPlethodon chlorobryonis

Plethodon chattahoocheePlethodon meridianusPlethodon amplusPlethodon montanusPlethodon metcalfi

Plethodon petraeusPlethodon ventralisPlethodon dorsalis

Plethodon angusticlaviusPlethodon welleri

Plethodon wehrleiPlethodon punctatus

Plethodon websteriPlethodon richmondi

Plethodon electromorphusPlethodon hubrichti

Plethodon nettingiPlethodon hoffmani

Plethodon cinereusPlethodon shenandoah

Plethodon virginiaPlethodon serratus

Plethodon elongatusPlethodon stormi

Plethodon asupakPlethodon dunni

Plethodon vehiculumPlethodon neomexicanus

Plethodon idahoensisPlethodon vandykei

Plethodon larselliDesmognathus santeetlah

Desmognathus conantiDesmognathus apalachicolaeDesmognathus orestesDesmognathus ochrophaeusDesmognathus ocoee

Desmognathus auriculatusDesmognathus fuscus

Desmognathus welteriDesmognathus planiceps

Desmognathus brimleyorumDesmognathus carolinensisDesmognathus monticola

Desmognathus imitatorDesmognathus aeneus

Desmognathus marmoratusDesmognathus quadramaculatus

Desmognathus folkertsiDesmognathus wrighti

Phaeognathus hubrichtiKarsenia koreana

Aneides ferreusAneides vagransAneides flavipunctatusAneides lugubris

Aneides hardiiAneides aeneus

Ensatina eschscholtziiHydromantes ambrosiiHydromantes italicus

Hydromantes strinatiiHydromantes supramontis

Hydromantes flavusHydromantes imperialis

Hydromantes geneiHydromantes platycephalusHydromantes brunus

Hydromantes shastaeAmphiuma means

Amphiuma pholeterAmphiuma tridactylum

Rhyacotriton variegatusRhyacotriton olympicusRhyacotriton cascadae

Rhyacotriton kezeriNecturus maculosusNecturus alabamensisNecturus beyeri

Necturus punctatusNecturus lewis i

Proteus anguinus

92

97

88

99

97

99

66

99

9568

74927093

74

94

7257

63

77

57

5498

98 98100

7762

987358

100

100

9652

5595

96

77

96

70100

50

98

99

100

94

52

8499

94

88

100

555161

50

100

9999

99 100

100

100

10076

100

72

10098

10099

100100

52

9999

6468

80

Proteidae

Rhyacotritonidae

Amphiumidae

Plethodontidae87

Plethodontinae

D

C

E-F

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 551

Author's personal copy

Oedipina uniformisOedipina pacificensis

Oedipina gracilisOedipina leptopoda

Oedipina poelziOedipina cyclocauda

Oedipina pseudouniformisOedipina collaris

Oedipina grandisOedipina stenopodia

Oedipina alleniOedipina savagei

Oedipina complexOedipina parvipes

Oedipina maritimaOedipina elongataOedipina carablanca

Oedipina gephyraOedipina kasiosOedipina quadra

Bradytriton silusNototriton abscondensNototriton gameziNototriton picadoiNototriton guanacaste

Nototriton richardiNototriton lignicolaNototriton limnospectator

Nototriton barbouriNototriton brodiei

Cryptotriton veraepacisCryptotriton nasalis

Cryptotriton alvarezdeltoroiNyctanolis pernix

Dendrotriton rabbiChiropterotriton chondrostega

Chiropterotriton terrestrisChiropterotriton priscus

Chiropterotriton magnipesChiropterotriton cracensChiropterotriton multid entatus

Chiropterotriton arboreusChiropterotriton lavae

Chiropterotriton orculusChiropterotriton dimidiatus

Thorius dubitusThorius troglodytes

Thorius minutissimusBatrachoseps nigriventris

Batrachoseps simatusBatrachoseps gregariusBatrachoseps attenuatusBatrachoseps pacificus

Batrachoseps majorBatrachoseps gavilanensisBatrachoseps gabrieli

Batrachoseps relictusBatrachoseps kawia

Batrachoseps regiusBatrachoseps diabolicus

Batrachoseps campiBatrachoseps wrighti

Eurycea latitansEurycea tridentiferaEurycea pterophilaEurycea neotenesEurycea nana

Eurycea sosorumEurycea troglodytesEurycea rathbuniEurycea waterlooensis

Eurycea chisholmensisEurycea tonkawaeEurycea naufragia

Eurycea quadridigitataEurycea aquatica

Eurycea junaluskaEurycea bislineata

Eurycea wilderaeEurycea cirrigera

Eurycea longicaudaEurycea lucifuga

Haideotriton wallaceiEurycea tynerensisEurycea spelaea

Eurycea multiplicataUrspelerpes brucei

Pseudotriton montanusPseudotriton ruber

Stereochilus marginatusGyrinophilus palleucusGyrinophilus gulolineatus

Gyrinophilus porphyriticusHemidactylium scutatum

87

83

98

93

62

77

5250

72

7467

100

6699

8698

100

967765

6153

95

94

58

61

9164 98

6777

10094

92

100

5310084

53

6299

96

100

100

98

97

99

69

86100

9985100

53886576

100

100

61

93

100

10068

100

71 100

100

100

Hemidactylinae

Spelerpinae

Bolitoglossinae

Plethodontidae cont.

Bolitoglossinae cont.

E

Fig. 2 (continued)

552 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Bolitoglossa carriBolitoglossa conantiBolitoglossa diaphora

Bolitoglossa dunniBolitoglossa flavimembris

Bolitoglossa morioBolitoglossa synoria

Bolitoglossa celaqueBolitoglossa longissima

Bolitoglossa porrasorumBolitoglossa decoraBolitoglossa lincolni

Bolitoglossa frankliniBolitoglossa riletti

Bolitoglossa hermosaBolitoglossa zapoteca

Bolitoglossa macriniiBolitoglossa oaxacensis

Bolitoglossa helmrichiBolitoglossa rostrata

Bolitoglossa engelhardtiBolitoglossa dofleini

Bolitoglossa alvaradoiBolitoglossa palmata

Bolitoglossa equatorianaBolitoglossa peruviana

Bolitoglossa altamazonicaBolitoglossa medemi

Bolitoglossa adspersaBolitoglossa simaBolitoglossa biseriata

Bolitoglossa paraensisBolitoglossa colonnea

Bolitoglossa schizodactylaBolitoglossa robusta

Bolitoglossa minutulaBolitoglossa sooyorumBolitoglossa mar morea

Bolitoglossa epimelaBolitoglossa cerroensis

Bolitoglossa pesrubraBolitoglossa gracilis

Bolitoglossa subpalmataBolitoglossa mombachoensisBolitoglossa striatula

Bolitoglossa yucatanaBolitoglossa lignicolor

Bolitoglossa mexicanaBolitoglossa odonnelli

Bolitoglossa flaviventrisBolitoglossa platydactyla

Bolitoglossa occidentalisBolitoglossa rufescens

Bolitoglossa hartwegiPseudoeurycea brunnataPseudoeurycea goebeli

Pseudoeurycea exspectataPseudoeurycea anitae

Pseudoeurycea cochranaePseudoeurycea melanomolga

Pseudoeurycea gadoviiPseudoeurycea robertsi

Pseudoeurycea altamontanaPseudoeurycea longicauda

Pseudoeurycea tenchalliPseudoeurycea smithiPseudoeurycea papenfussi

Ixalotriton parvusIxalotriton niger

Pseudoeurycea rexPseudoeurycea conanti

Pseudoeurycea obesaPseudoeurycea werleri

Pseudoeurycea mystaxPseudoeurycea nigromaculata

Pseudoeurycea saltatorPseudoeurycea juarezi

Pseudoeurycea ruficaudaPseudoeurycea unguidentis

Pseudoeurycea leprosaPseudoeurycea firscheini

Pseudoeurycea lynchiLineatriton lineolus

Lineatriton orchileucosPseudoeurycea gigantea

Pseudoeurycea naucampatepetlPseudoeurycea belliiPseudoeurycea maxima

Pseudoeurycea bonetiPseudoeurycea scandensPseudoeurycea galeanae

Pseudoeurycea cephalicaParvimolge townsendi

88

99

52

96

90

8452

100

100

58

100

99

52 100

100

100

92

90

99

94

93

80

68

100

80

9558

100

59

92

8669

88 94

100

96

70

57

88

69

886097

94 100

59

87

71 100

70

8974 86

74

9065 87

96

91

68

Bolitoglossinae cont.

F

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 553

Author's personal copy

Oreolalax nanjiangensisOreolalax popeiOreolalax omeimontisOreolalax chuanbeiensisOreolalax multipunctatus

Oreolalax liangbeiensisOreolalax majorOreolalax xiangchengensis

Oreolalax jingdongensisOreolalax rugosus

Oreolalax schmidtiOreolalax pingiiOreolalax lichuanensisOreolalax rhodostigmatusScutiger tuberculatusScutiger muliensisScutiger mammatus

Scutiger boulengeriScutiger glandulatusScutiger chintingensis

Leptobrachium chapaenseLeptobrachium huashen

Leptobrachium ailaonicumVibrissaphora echinataLeptobrachium leishanense

Leptobrachium liuiLeptobrachium boringii

Leptobrachium promustacheLeptobrachium mouhotiLeptobrachium ngoclinhense

Leptobrachium hainanenseLeptobrachium xanthospilum

Leptobrachium banaeLeptobrachium montanum

Leptobrachium gunungenseLeptobrachium smithiLeptobrachium hasseltii

Leptolalax bourretiLeptolalax pelodytoidesLeptolalax liuiLeptolalax oshanensis

Leptolalax arayaiLeptolalax pictus

Brachytarsophrys platyparietusBrachytarsophrys feae

Xenophrys shapingensisXenophrys nankiangensisXenophrys omeimontis

Xenophrys spinataXenophrys minorXenophrys majorMegophrys lekaguli

Megophrys nasutaXenophrys baluensis

Ophryophryne hansiOphryophryne microstoma

Pelobates varaldiiPelobates cultripes

Pelobates fuscusPelobates syriacus

Pelodytes punctatusPelodytes ibericus

Pelodytes caucasicusSpea intermontana

Spea bombifronsSpea hammondii

Spea multiplicataScaphiopus holbrookiiScaphiopus hurterii

Scaphiopus couchiiXenopus amietiXenopus longipesXenopus ruwenzoriensis

Xenopus largeniXenopus wittei

Xenopus fraseriXenopus pygmaeusXenopus andreiXenopus boumbaensisXenopus victorianusXenopus petersii

Xenopus laevisXenopus gilli

Xenopus vestitusXenopus clivii

Xenopus muelleriXenopus borealis

Silurana tropicalisSilurana epitropicalis

Hymenochirus boettgeriPipa parva

Pipa pipaPipa carvalhoi

Rhinophrynus dorsalisDiscoglossus jeanneae

Discoglossus galganoiDiscoglossus pictus

Discoglossus sardusDiscoglossus montalentii

Alytes muletensisAlytes dickhilleni

Alytes maurusAlytes obstetricans

Alytes cisternasiiBombina variegataBombina pachypus

Bombina bombinaBombina orientalis

Bombina fortinuptialisBombina microdeladigitoraBombina lichuanensisBombina maxima

Barbourula busuangensisBarbourula kalimantanensis

Leiopelma pakekaLeiopelma hamiltoniLeiopelma archeyi

Leiopelma hochstetteriAscaphus trueiAscaphus montanus

99

98

92

100

96

99

100

100

100

90

100

80

66

100100100

97

9985

57

100

95

100

7859100

93

99100

79

100

100

90

100

675899

100100 100

10097

99

81 100

100

94100

99100

95

100

100

10059100

100 100

100 100

8677

100

99

100100

100100

100

61

50

100

58

69

9597

100

77

100

100

100

100

100

100 958486

100100

7264

100

100

60100

9962

86

100

9899

99

99

100

98

Ascaphidae

LeiopelmatidaeBombinatoridae

Alytidae

DiscoglossidaeRhinophrynidae

Pipidae

Scaphiopodidae

Pelodytidae

Pelobatidae

Megophryidae

Anura

H-AE

G

Fig. 2 (continued)

554 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Hyperolius puncticulatusHyperolius montanusHyperolius zonatusHyperolius concolorHyperolius molleriHyperolius thomensisHyperolius cinnamomeoventris

Hyperolius torrentisHyperolius chlorosteusHyperolius baumanniHyperolius picturatusHyperolius cystocandicansHyperolius frontalis

Hyperolius castaneusHyperolius lateralis

Hyperolius alticolaHyperolius ocellatusHyperolius mosaicus

Hyperolius kivuensisAlexteroon obstetricans

Hyperolius tuberilinguisHyperolius marmoratusHyperolius viridiflavusHyperolius angolensisHyperolius tuberculatus

Hyperolius phantasticusHyperolius glandicolorHyperolius argus

Hyperolius fusciventrisHyperolius guttulatus

Hyperolius pardalisHyperolius nasutusHyperolius acuticeps

Hyperolius pusillusHyperolius horstockii

Hyperolius semidiscusHeterixalus variabilisHeterixalus tricolorHeterixalus andrakata

Heterixalus carboneiHeterixalus betsileoHeterixalus rutenbergi

Heterixalus luteostriatusHeterixalus punctatusHeterixalus alboguttatusHeterixalus boettgeriHeterixalus madagascariensis

Tachycnemis seychellensisAfrixalus paradorsalisAfrixalus dorsalis

Afrixalus laevisAfrixalus fornasini

Afrixalus stuhlmanniAfrixalus delicatus

Afrixalus knysnaeMorerella cyanophthalmaOpisthothylax immaculatusAcanthixalus spinosusAcanthixalus sonjae

Kassina maculataPhlyctimantis verrucosusPhlyctimantis leonardiSemnodactylus wealiiKassina senegalensisCryptothylax greshoffii

Arthroleptis poecilonotusArthroleptis adelphus

Arthroleptis krokosuaArthroleptis variabilis

Arthroleptis stenodactylusArthroleptis affinisArthroleptis nikeaeArthroleptis reichei

Arthroleptis tanneriArthroleptis francei

Arthroleptis wahlbergiiArthroleptis aureoli

Arthroleptis sylvaticusArthroleptis taeniatusArthroleptis schubotzi

Arthroleptis xenodactyloidesArthroleptis xenodactylus

Cardioglossa gracilisCardioglossa schioetzi

Cardioglossa manengoubaCardioglossa oreasCardioglossa pulchraCardioglossa occidentalis

Cardioglossa leucomystaxCardioglossa gratiosa

Cardioglossa elegansLeptopelis concolorLeptopelis bocagiiLeptopelis palmatusLeptopelis kivuensis

Leptopelis natalensisLeptopelis vermiculatus

Leptopelis modestusLeptopelis argenteus

Leptopelis brevirostrisAstylosternus batesiAstylosternus schioetziAstylosternus diadematusTrichobatrachus robustusNyctibates corrugatus

Scotobleps gabonicusLeptodactylodon bicolor

Probreviceps macrodactylusProbreviceps uluguruensis

Probreviceps durirostrisSpelaeophryne methneri

Callulina krefftiCallulina kisiwamsitu

Breviceps fichusBreviceps mossambicusBreviceps fuscus

Hemisus marmoratusSooglossus thomassetiSooglossus sechellensis

Sechellophryne pipilodryasSechellophryne gardineri

Nasikabatrachus sahyadrensisHeleophryne purcelliHeleophryne regis

Hadromophryne natalensis

98

56

97

98

99

97

82

84

100

6171

100100

5064

92

72

868054

100

99

7794848897

98

56

97

56

96

10098

67

10093

55

100100

99 99 100

100

100

100

100

8263

63

99

100

100

85

69

75100

68

10099

55

86

100

100

51100

100

100

71

99

5673

87

94

80

68

5998100

98

100

100

10060

9897

100

100

98

100

10099

100

100

99Heleophrynidae

Nasikabatrachidae

Sooglossidae

Hemisotidae

Brevicipitidae

Astylosterninae

Leptopelinae

Arthroleptinae

Arthroleptidae

Hyperoliidae

G

HIJ-OP-AE

100

77

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 555

Author's personal copy

Callulops pulliferCallulops eurydactylus

Callulops slateriAsterophrys turpicola

Xenorhina oxycephalaXenorhina varia

Xenorhina bouwensiXenorhina lanthanites

Barygenys flavigularisHylophorbus picoidesHylophorbus tetraphonusHylophorbus wondiwoi

Hylophorbus nigrinusCallulops robustusHylophorbus rufescens

Sphenophryne cornutaLiophryne dentata

Xenorhina obesaOxydactyla crassa

Liophryne rhododactylaOreophryne atrigularisOreophryne wapoga

Oreophryne brachypusOreophryne unicolor

Oreophryne pseudasplenicolaOreophryne asplenicola

Cophixalus balbusOreophryne sibilans

Oreophryne wairaOreophryne clamata

Cophixalus tridactylusCophixalus humicola

Aphantophryne pansaAlbericus laurini

Choerophryne rostelliferBarygenys exsul

Cophixalus sphagnicolaCopiula obsti

Copiula pipiensAustrochaperina derongo

Copiula majorLiophryne schlaginhaufeni

Genyophryne thomsoniMelanobatrachus indicus

Kalophrynus pleurostigmaKalophrynus intermedius

Kalophrynus baluensisMicrohyla ornata

Microhyla fissipesMicrohyla okinavensis

Microhyla borneensisMicrohyla heymonsiMicrohyla rubraMicrohyla pulchraMicrohyla butleri

Calluella guttulataGlyphoglossus molossus

Chaperina fuscaMicryletta inornata

Ramanella obscuraRamanella variegata

Uperodon systomaKaloula taprobanica

Kaloula conjunctaKaloula pulchra

Metaphrynella sundanaDyscophus antongiliiDyscophus guineti

Dyscophus insularisScaphiophryne menabensisScaphiophryne madagascariensisScaphiophryne boribory

Scaphiophryne marmorataScaphiophryne gottlebei

Scaphiophryne calcarataScaphiophryne spinosaScaphiophryne brevis

Paradoxophyla tiaranoParadoxophyla palmata

Rhombophryne laevipesRhombophryne alluaudi

Rhombophryne testudoRhombophryne minuta

Rhombophryne serratopalpebrosaRhombophryne coronata

Rhombophryne coudreauiStumpffia helenae

Plethodontohyla notostictaPlethodontohyla guentheriPlethodontohyla fonetana

Plethodontohyla mihanikaCophyla berara

Cophyla phyllodactylaStumpffia roseifemoralis

Stumpffia grandisStumpffia tetradactyla

Stumpffia psologlossaStumpffia gimmeli

Stumpffia pygmaeaStumpffia tridactyla

Platypelis barbouriPlatypelis pollicaris

Platypelis tuberiferaPlatypelis mavomavo

Platypelis millotiPlatypelis grandis

Plethodontohyla ocellataPlethodontohyla brevipes

Plethodontohyla bipunctataPlethodontohyla tuberata

Plethodontohyla inguinalisAnodonthyla hutchisoniAnodonthyla boulengerii

Anodonthyla nigrigularisAnodonthyla moramora

Anodonthyla montanaAnodonthyla rouxae

Hoplophryne uluguruensisHoplophryne rogersi

Gastrophryne olivaceaGastrophryne carolinensis

Gastrophryne elegansHypopachus variolosus

Elachistocleis ovalisDermatonotus muelleri

Hamptophryne bolivianaDasypops schirchi

Ctenophryne geayiNelsonophryne aequatorialis

Chiasmocleis shudikarensisChiasmocleis hudsoni

Synapturanus mirandaribeiroiOtophryne pyburni

Phrynomantis micropsPhrynomantis bifasciatus

Phrynomantis annectens

97

99

6693

7898 100

90

68

97 74 67

100100100

100100

58

6794 100

100

76

78

100100

7388 99

87

100

100

92 95 100

81100 100

80

9985 98

65100

7263

95

100

90

51 95

6080

78

100

9876

9964

100

100

847154 82

61

85100

100

9595 90 100

88100

96

100100

729485 100

9910071

99100

Microhylidae

Asterophryninae

Melanobatrachinae

Kalophryninae

Dyscophinae

Microhylinae

Scaphiophryninae

Cophylinae

Hoplophryninae

Gastrophryninae

Phrynomerinae

Otophryninae

I

Fig. 2 (continued)

556 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Platymantis cryptotisPlatymantis pelewensis

Platymantis papuensisPlatymantis weberi

Platymantis wuenscheorumPlatymantis bimaculatus

Platymantis vitiensisDiscodeles guppyi

Platymantis punctatusCeratobatrachus guentheri

Batrachylodes vertebralisPlatymantis naomiiPlatymantis mimulusPlatymantis dorsalis

Platymantis corrugatusPlatymantis hazelaePlatymantis montanus

Ingerana baluensisNyctibatrachus majorNyctibatrachus aliciae

Lankanectes corrugatusArthroleptella subvoceArthroleptella bicolorArthroleptella landdrosiaArthroleptella drewesiiArthroleptella villiersiArthroleptella lightfootiNatalobatrachus bonebergi

Amietia vertebralisAmietia angolensisStrongylopus grayiiAmietia fuscigula

Cacosternum boettgeriCacosternum capense

Cacosternum nanumCacosternum platysMicrobatrachella capensisPoyntonia paludicola

Strongylopus fasciatusStrongylopus bonaespeiTomopterna tandyi

Tomopterna cryptotisTomopterna damarensis

Tomopterna marmorataTomopterna lugangaTomopterna tuberculosa

Tomopterna delalandiiTomopterna krugerensisTomopterna natalensis

Anhydrophryne rattrayiPyxicephalus edulisPyxicephalus adspersus

Aubria subsigillataPetropedetes newtoniPetropedetes parkeri

Petropedetes cameronensisPetropedetes palmipes

Petropedetes martiensseniPetropedetes yakusini

Conraua crassipesConraua goliathConraua robusta

Phrynobatrachus africanusPhrynobatrachus cricogaster

Phrynobatrachus acridoidesPhrynobatrachus auritus

Phrynobatrachus natalensisPhrynobatrachus disparPhrynobatrachus levelevePhrynobatrachus calcaratusPhrynobatrachus mababiensis

Phrynobatrachus dendrobatesPhrynobatrachus krefftii

Phrynobatrachus sandersoniMicrixalus fuscus

Micrixalus kottigeharensisPtychadena mahnerti

Ptychadena porosissimaPtychadena bibroni

Ptychadena aequiplicataPtychadena cooperiPtychadena oxyrhynchus

Ptychadena telliniiPtychadena anchietae

Ptychadena longirostrisPtychadena subpunctataPtychadena taenioscelisPtychadena pumilioPtychadena newtoniPtychadena mascareniensis

Hildebrandtia ornata

99

50

54

100

100

97

99100

94

69

5769

76

95

9791

89

100

7498

91

74

61

94

100

59

100

9183

55

8088

9978

100

100

96

92

83

5696

95

66

100

76

100

94100

100

100

100

100

99

99

98

62

94

100

100

9999

100

99

82

75

8098

88

9398

10093

Ptychadenidae

Micrixalidae

Phrynobatrachidae

Conrauidae

Petropedetidae

Cacosterninae

Pyxicephalinae

Nyctibatrachidae

Ceratobatrachidae

Pyxicephalidae

JK-O

H

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 557

Author's personal copy

Limnonectes finchiLimnonectes ingeri

Limnonectes malesianusLimnonectes shompenorum

Limnonectes macrodonLimnonectes paramacrodon

Limnonectes poilaniLimnonectes blythii

Limnonectes grunniensLimnonectes ibanorum

Limnonectes palavanensisLimnonectes parvus

Limnonectes leporinusLimnonectes visayanusLimnonectes macrocephalus

Limnonectes woodworthiLimnonectes modestus

Limnonectes heinrichiLimnonectes magnusLimnonectes arathooniLimnonectes microtympanumLimnonectes acanthi

Limnonectes leytensisLimnonectes kuhliiLimnonectes bannaensis

Limnonectes fujianensisLimnonectes fragilis

Limnonectes asperatusLimnonectes gyldenstolpei

Limnonectes dabanusLimnonectes hascheanus

Limnonectes limborgiLimnonectes laticeps

Limnonectes kadarsaniLimnonectes microdiscus

Paa arnoldiPaa chayuensisPaa maculosa

Paa medogensisPaa conaensis

Nanorana parkeriNanorana pleskei

Nanorana ventripunctataPaa liui

Paa yunnanensisPaa bourreti

Chaparana fansipaniChaparana aenea

Chaparana unculuanusChaparana quadranus

Paa taihangnicusPaa liebigii

Paa spinosaPaa exilispinosa

Paa jiulongensisPaa yei

Paa boulengeriPaa verrucospinosa

Paa shiniPaa robertingeri

Paa fasciculispinaChaparana delacouri

Fejervarya granosaFejervarya syhadrensis

Fejervarya caperataFejervarya rufescens

Fejervarya kudremukhensisFejervarya kirtisinghei

Fejervarya greeniiFejervarya pierrei

Fejervarya muddurajaFejervarya limnocharis

Fejervarya sakishimensisFejervarya orissaensis

Fejervarya iskandariFejervarya triora

Fejervarya vittigeraFejervarya cancrivora

Sphaerotheca brevicepsSphaerotheca dobsonii

Hoplobatrachus rugulosusHoplobatrachus tigerinus

Hoplobatrachus crassusHoplobatrachus occipitali s

Euphlyctis ehrenbergiiEuphlyctis cyanophlyctis

Euphlyctis hexadactylusNannophrys marmorata

Nannophrys ceylonensisOccidozyga magnapustulosa

Occidozyga martensiiOccidozyga laevis

Occidozyga baluensisOccidozyga lima

Occidozyga borealisIngerana tenasserimensis

Indirana semipalmataIndirana beddomii

88

99

99

100

100

63

6791

71100 100

100

100

56 100

10078

10069

5765

80100 63

86

6674 100 100

100

100

100

89908099

100

91

8051

57 88100

72100

93

99

99100

100

82

100

100

95

10097

51 58 59

56100

88

54100

8598

100100

100

9797

100 93

87 100

100

100

78

100

100

99Ranixalidae

Occidozyginae

Dicroglossinae

Dicroglossidae

K

Fig. 2 (continued)

558 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Gephyromantis striatusGephyromantis malagasius

Gephyromantis ventrimaculatusGephyromantis horridus

Gephyromantis klemmeriGephyromantis ambohitra

Gephyromantis rivicolaGephyromantis silvanus

Gephyromantis webbiGephyromantis decaryi

Gephyromantis leucocephalusGephyromantis eiselti

Gephyromantis enkiGephyromantis blanci

Gephyromantis asperGephyromantis boulengeri

Gephyromantis leucomaculatusGephyromantis zavona

Gephyromantis salegyGephyromantis tandroka

Gephyromantis moseriGephyromantis redimitus

Gephyromantis cornutusGephyromantis tschenki

Gephyromantis granulatusGephyromantis pseudoasper

Gephyromantis luteusGephyromantis pliciferGephyromantis sculpturatus

Gephyromantis azzurraeGephyromantis corvus

Mantidactylus femoralisMantidactylus mocquardi

Mantidactylus ambreensisMantidactylus ulcerosus

Mantidactylus op iparisMantidactylus charlotteae

Mantidactylus biporusMantidactylus lugubris

Mantidactylus argenteusMantidactylus grandidieri

Boehmantis microtympanumSpinomantis peraccae

Spinomantis elegansSpinomantis aglavei

Mantella betsileoMantella viridis

Mantella expectataMantella ebenaui

Mantella maneryMantella laevigata

Mantella milotympanumMantella crocea

Mantella aurantiacaMantella pulchra

Mantella madagascariensisMantella nigricans

Mantella haraldmeieriMantella baroni

Mantella cowaniiMantella bernhardi

Wakea madinikaBlommersia kely

Blommersia sarotraBlommersia grandisonae

Blommersia domergueiBlommersia blommersae

Blommersia witteiGuibemantis liberGuibemantis bicalcaratus

Guibemantis albolineatusGuibemantis depressiceps

Guibemantis tornieriBoophis viridis

Boophis rappiodesBoophis sibilans

Boophis microtympanumBoophis occidentalisBoophis albilabris

Boophis vittatusBoophis marojezensisBoophis boehmei

Boophis goudotiiBoophis madagascariensis

Boophis luteusBoophis douliotiBoophis tephraeomystax

Boophis xerophilusBoophis idae

Boophis paulianiAglyptodactylus laticeps

Aglyptodactylus madagascariensisLaliostoma labrosum

100

60

100

52

86

73

5885 100

64

5595

5264

97

99

57

99

62

88

7664

519461 96

9090

10094

99

100

96

91

1009473

74100

93

1009997

100

9392

99

95

99100

96

99100

100

100

100

55 100

100

100

9387

82

87

7894

100

9999

Mantellidae

Laliostominae

Boophinae

Mantellinae

L

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 559

Author's personal copy

Philautus schmardaPhilautus cavirostris

Philautus lunatusPhilautus stuarti

Philautus popularisPhilautus femoralisPhilautus poppiaePhilautus mooreorum

Philautus steineriPhilautus microtympanumPhilautus papillosus

Philautus hoffmanniPhilautus asankai

Philautus pleurotaeniaPhilautus ocularisPhilautus tanu

Philautus mittermeieriPhilautus decoris

Philautus simbaPhilautus leucorhinus

Philautus wynaadensisPhilautus zorro

Philautus tuberohumerusPhilautus bombayensis

Philautus menglaensisPhilautus gryllus

Philautus longchuanensisPhilautus ponmudi

Philautus tinniensPhilautus signatus

Philautus chariusPhilautus griet

Philautus travancoricusPhilautus neelanethrus

Philautus nerostagonaPhilautus graminirupes

Philautus bobingeriPhilautus anili

Philautus glandulosusPhilautus beddomii

Kurixalus hainanusKurixalus odontotarsu sPhilautus carinensis

Kurixalus idiootocusKurixalus eiffingeriPhilautus banaensis

Theloderma molochPhilautus petersi

Philautus mjobergiPhilautus surdusPhilautus acutirostris

Philautus aurifasciatusPhilautus abditus

Philautus ingeriPhilautus quyetiGracixalus gracilipes

Kurixalus jinxiuensisRhacophorus puerensisRhacophorus dugriteiRhacophorus hungfuensis

Rhacophorus minimusRhacophorus huiRhacophorus omeimontis

Rhacophorus taronensisRhacophorus moltrechti

Rhacophorus arboreusRhacophorus schlegeliiRhacophorus nigropunctatus

Rhacophorus chenfuiRhacophorus maximus

Rhacophorus dennysiRhacophorus feae

Rhacophorus lateralisRhacophorus reinwardtii

Rhacophorus kioRhacophorus bipunctatusRhacophorus rhodopus

Rhacophorus calcaneusRhacophorus malabaricusRhacophorus orlovi

Rhacophorus annamensisPolypedates megacephalus

Polypedates mutusPolypedates leucomystaxPolypedates crucigerPolypedates maculatus

Polypedates collettiPolypedates fastigo

Polypedates equesFeihyla palpebralis

Chiromantis xerampelinaChiromantis rufescens

Chiromantis doriaeChiromantis vittatus

Ghatixalus variabilisTheloderma asperum

Theloderma bicolorTheloderma rhododiscus

Theloderma corticaleNyctixalus pictus

Nyctixalus spinosusLiuixalus romeriPhilautus ocellatusPhilautus hainanus

Buergeria robustaBuergeria buergeri

Buergeria japonicaBuergeria oxycephlus

100

100

78

73

62

67

100

98

55

89

99

53

5491 100

100

100

89

5992

7352 100

70100 100

98

9610080

52

8868

86 68

100

98

96

69

62

92

100

5561

6053

89

77

92

7493

9998

5287 99

99

66

94100

8899

5899

7698

85

99

99

96100

58

100

83 98

Buergeriinae

Rhacophoridae

Rhacophorinae

M

Fig. 2 (continued)

560 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Rana laterimaculataRana baramica

Rana glandulosaRana banjarana

Rana signataRana picturata

Rana siberuAmnirana lepus

Amnirana albolabrisAmnirana galamensisHylarana nicobariensis

Rana eschatiaRana parvaccola

Rana labialisRana raniceps

Rana megalonesaRana chalconota

Rana mocquardiiRana spinulosa

Rana maosonensisRana latouchii

Rana cubitalisRana nigrovittataRana faberRana daemeli

Rana jimiensisRana arfaki

Rana milletiRana gracilis

Rana malabaricaRana temporalis

Rana aurantiacaRana miopus

Rana lateralisRana guentheri

Rana macrodactylaRana taipehensis

Rana erythraeaRana luctuosa

Rana rugosaRana emeljanovi

Rana tientaiensisRana minima

Rana luzonensisRana igorota

Rana sanguineaRana bergeri

Rana shqipericaRana cerigensis

Rana bedriagaeRana ridibundaRana kurtmuelleriRana epeiroticaRana cretensis

Rana lessonaeRana esculenta

Rana pereziRana saharica

Rana nigromaculataRana plancyiRana hubeiensis

Rana porosaRana fukienensis

Amolops liangshanensisAmolops loloensisAmolops jinjiangensis

Amolops mantzorumAmolops kangtingensis

Amolops granulosusAmolops lifanensisAmolops viridimaculatus

Amolops chunganensisAmolops bellulus

Amolops marmoratusAmolops panhai

Amolops larutensisAmolops cremnobatus

Amolops rickettiAmolops wuyiensis

Amolops daiyunensisAmolops hongkongensis

Amolops torrentisAmolops hainanensis

Amolops spinapectoralisMeristogenys phaeomerus

Meristogenys jerboaMeristogenys poecilusMeristogenys orphnocnemis

Meristogenys whiteheadiMeristogenys kinabaluensis

Huia cavitympanumHuia sumatrana

Huia masoniiRana alticola

Rana curtipesHuia melasma

Staurois tuberilinguisStaurois parvusStaurois natator

Staurois latopalmatus

100

96

56

71

59

100

67

60

76

60 99

95

10099 98

56

9599

98

97

100

96

100 82

10095

94

100 98

100 100

97

100

807653

8570

71

100

100

1009565

90

9490

9892

93 9891100

71100

97100

96

9399

97100

100100

67

82 969661

53

58

58 100100

100

100 100

Ranidae

Ranidae cont.N

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 561

Author's personal copy

Rana macroglossaRana taylori

Rana brownorumRana spectabilis

Rana forreriRana omiltemana

Rana tlalociRana neovolcanica

Rana berlandieriRana blairi

Rana sphenocephalaRana onca

Rana yavapaiensisRana magnaocularis

Rana montezumaeRana dunni

Rana chiricahuensisRana pipiens

Rana capitoRana sevosa

Rana areolataRana palustris

Rana vaillantiRana juliani

Rana bwanaRana palmipes

Rana warszewitschiiRana vibicaria

Rana maculataRana psilonota

Rana zweifeliRana tarahumarae

Rana pustulosaRana sierramadrensis

Rana clamitansRana okaloosaeRana heckscheri

Rana virgatipesRana grylio

Rana septentrionalisRana catesbeiana

Rana sylvaticaRana longicrus

Rana zhenhaiensisRana omeimontis

Rana chaochiaoensisRana japonica

Rana arvalisRana chensinensis

Rana kukunorisRana huanrensis

Rana piricaRana dybowskii

Rana ornativentrisRana amurensis

Rana kunyuensisRana iberica

Rana italicaRana temporaria

Rana pyrenaicaRana tsushimensis

Rana okinavanaRana holsti

Rana macrocnemisRana graecaRana dalmatina

Rana latasteiRana asiaticaPseudoamolops sauteri

Rana zhengiRana johnsi

Rana tagoiRana cascadaeRana muscosaRana aurora

Rana boyliiRana pretiosaRana luteiventris

Rana shuchinaeRana weiningensis

Odorrana aureolaRana livida

Rana chloronotaRana hosii

Rana morafkaiRana banaorum

Rana tiannanensisRana megatympanum

Rana narinaRana amamiensisRana supranarina

Rana utsunomiyaorumRana swinhoana

Rana versabilisOdorrana nasica

Odorrana tormotaOdorrana schmackeri

Rana hejiangensisRana bacboensisRana ishikawaeRana cucae

Rana compotrixRana vitrea

Rana archotaphusRana daorumRana iriodes

Odorrana jingdongensisRana margaretae

Rana grahamiOdorrana junlianensis

Rana andersoniiRana hmongorum

Odorrana chapaensisRana khalam

Odorrana absitaRana adenopleura

Rana chapaensisRana pleuraden

76

67

98

100

100

99

66

54

7772

9099

9588

9899

79

100100 100

100100

63

72

97100

100

99

95100

10098

73

67

10084

100100

52

92

78

85

8177

9384

9786

57

5599

63

917081

73

99

92

818892

100

100

73

99

8863

5193 99

52

100

97

10086

10051

97

93

94100

98 98

94

8866

90

68

94

100100

Ranidae cont.

O

Fig. 2 (continued)

562 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Ischnocnema hoehneiIschnocnema guentheriIschnocnema parva

Ischnocnema holtiIschnocnema juipocaBrachycephalus ephippiumCeuthomantis smaragdinus

Crinia tinnulaCrinia parinsignifera

Crinia deserticolaCrinia signiferaCrinia ripariaCrinia nimbusAssa darlingtoni

Geocrinia victorianaParacrinia haswelliMetacrinia nichollsiMyobatrachus gouldii

Pseudophryne bibroniiPseudophryne coriaceaUperoleia laevigataUperoleia littlejohni

Spicospina flammocaeruleaTaudactylus acutirostris

Mixophyes fasciolatusMixophyes schevilliMixophyes coggeri

Mixophyes carbinensisMixophyes balbus

Rheobatrachus silusLimnodynastes dumeriliiLimnodynastes interiorisLimnodynastes dorsalis

Limnodynastes terraereginaeLimnodynastes fletcheri

Limnodynastes depressusLimnodynastes tasmaniensisLimnodynastes peronii

Limnodynastes convexiusculusLimnodynastes lignarius

Limnodynastes salminiPhiloria sphagnicolus

Adelotus brevisHeleioporus australiacusLechriodus fletcheriPlatyplectrum ornatum

Platyplectrum spenceriNeobatrachus sudelliNeobatrachus pictusNeobatrachus pelobatoidesNotaden bennettii

Notaden melanoscaphusTelmatobufo bullockiTelmatobufo venustusCalyptocephallela gayi

57

97 97

10093 66

100

98

74

71

99

100

81

100

100

67

89

100

100

100

100

100

100

76

100

100

6864

100

93

1006597

78

54

10065

10098

100

99

100

100

94

98

Calyptocephallelidae

Ceuthomantidae

Brachycephalidae

Limnodynastinae

Myobatrachinae

Myobatrachidae

A-O

Q-ST-AEP

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 563

Author's personal copy

Eleutherodactylus pantoniEleutherodactylus pentasyringos

Eleutherodactylus cundalliEleutherodactylus glaucoreius

Eleutherodactylus griphusEleutherodactylus gossei

Eleutherodactylus junoriEleutherodactylus fuscus

Eleutherodactylus alticolaEleutherodactylus orcutti

Eleutherodactylus andrewsiEleutherodactylus nubicolaEleutherodactylus jamaicensis

Eleutherodactylus cavernicolaEleutherodactylus grabhami

Eleutherodactylus sisyphodemusEleutherodactylus luteolusEleutherodactylus toa

Eleutherodactylus rivularisEleutherodactylus riparius

Eleutherodactylus cuneatusEleutherodactylus turquinensis

Eleutherodactylus weinlandiEleutherodactylus rhodesiEleutherodactylus lentus

Eleutherodactylus grahamiEleutherodactylus pictissimusEleutherodactylus monensis

Eleutherodactylus probolaeusEleutherodactylus acmonis

Eleutherodactylus ricordiiEleutherodactylus bresslerae

Eleutherodactylus darlingtoniEleutherodactylus leoncei

Eleutherodactylus armstrongiEleutherodactylus alcoae

Eleutherodactylus limbatusEleutherodactylus jaumeiEleutherodactylus iberia

Eleutherodactylus etheridgeiEleutherodactylus orientalis

Eleutherodactylus cubanusEleutherodactylus varleyiEleutherodactylus intermedius

Eleutherodactylus gundlachiEleutherodactylus atkinsi

Eleutherodactylus thomasiEleutherodactylus blairhedgesi

Eleutherodactylus pinarensisEleutherodactylus pezopetrus

Eleutherodactylus rogersiEleutherodactylus tonyi

Eleutherodactylus goiniEleutherodactylus casparii

Eleutherodactylus planirostrisEleutherodactylus guanahacabibes

Eleutherodactylus greyiEleutherodactylus emiliaeEleutherodactylus dimidiatusEleutherodactylus maestrensis

Eleutherodactylus albipesEleutherodactylus schmidti

Eleutherodactylus caribeEleutherodactylus eunaster

Eleutherodactylus amadeusEleutherodactylus corona

Eleutherodactylus heminotaEleutherodactylus glaphycompus

Eleutherodactylus dolomedesEleutherodactylus bakeri

Eleutherodactylus thorectesEleutherodactylus glanduliferoides

Eleutherodactylus jugansEleutherodactylus oxyrhyncus

Eleutherodactylus apostatesEleutherodactylus rufifemoralis

Eleutherodactylus furcyensisEleutherodactylus paulsoni

Eleutherodactylus glanduliferEleutherodactylus sciagraphus

Eleutherodactylus brevirostrisEleutherodactylus ventrilineatus

Eleutherodactylus zugiEleutherodactylus klinikowskii

Eleutherodactylus pipilansEleutherodactylus nitidus

Eleutherodactylus marnockiiEleutherodactylus symingtoni

Eleutherodactylus zeusEleutherodactylus schwartziEleutherodactylus coquiEleutherodactylus portoricensis

Eleutherodactylus wightmanaeEleutherodactylus gryllusEleutherodactylus cochranaeEleutherodactylus hedrickiEleutherodactylus brittoni

Eleutherodactylus antillensisEleutherodactylus locustus

Eleutherodactylus eneidaeEleutherodactylus cooki

Eleutherodactylus flavescensEleutherodactylus martinicensis

Eleutherodactylus amplinymphaEleutherodactylus johnstoneiEleutherodactylus barlagnei

Eleutherodactylus pinchoniEleutherodactylus principalis

Eleutherodactylus auriculatusEleutherodactylus bartonsmithi

Eleutherodactylus mariposaEleutherodactylus ronaldi

Eleutherodactylus glamyrusEleutherodactylus eileenae

Eleutherodactylus audantiEleutherodactylus haitianus

Eleutherodactylus abbottiEleutherodactylus parabates

Eleutherodactylus pituinusEleutherodactylus minutus

Eleutherodactylus pooleiEleutherodactylus guantanamera

Eleutherodactylus ionthusEleutherodactylus varians

Eleutherodactylus leberiEleutherodactylus melacara

Eleutherodactylus lamprotesEleutherodactylus fowleri

Eleutherodactylus wetmoreiEleutherodactylus sommeri

Eleutherodactylus auriculatoidesEleutherodactylus patriciae

Eleutherodactylus unicolorEleutherodactylus richmondi

Eleutherodactylus hypostenorEleutherodactylus parapelatesEleutherodactylus ruthae

Eleutherodactylus bothroboansEleutherodactylus chlorophenaxEleutherodactylus nortoni

Eleutherodactylus inoptatusEleutherodactylus counouspeus

Diasporus diastemaPhyzelaphryne miriamae

Adelophryne gutturosa

89

90

85

100

97

65

95

100

64

8692

60

72

90

100 1007774

83

100

98

100

97

61

718010098

60 100

70

50

98 100

100 100

100

10099

86

1006455

7159

70

6251

100

97100

98100

90 100

99

100 100

100

79

59

90

55

81

100

92

6684

92 8964

93

97 89

10093

10097

100

100

98

83 93

8199

100

64

54

51

90

8299

100100

100

60

100100

92100

52

93 10082

100

100100

100

Eleutherodactylinae

Phyzelaphryninae

Eleutherodactylidae

Q

Fig. 2 (continued)

564 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Oreobates madidiOreobates heterodactylus

Oreobates cruralisOreobates ibischi

Oreobates discoidalisOreobates sanderiOreobates granulosus

Oreobates sanctaecrucisOreobates choristolemma

Oreobates saxatilisOreobates quixensis

Oreobates lehriLynchius nebulanastes

Lynchius parkeriLynchius flavomaculatus

Phrynopus juninensisPhrynopus kauneorum

Phrynopus tautzorumPhrynopus barthlenaePhrynopus horstpauli

Phrynopus pesantesiPhrynopus bufoides

Phrynopus brackiBarycholos pulcher

Barycholos ternetziNoblella lochites

Holoaden luederwaldtiHoloaden bradeiBryophryne cophites

Psychrophrynella iatamasiPsychrophrynella wettsteini

Noblella peruvianaCraugastor talamancae

Craugastor crassidigitusCraugastor fitzingeri

Craugastor raniformisCraugastor tabasarae

Craugastor longirostrisCraugastor cuaquero

Craugastor andiCraugastor melanostictus

Craugastor emcelaeCraugastor ranoidesCraugastor rugulosusCraugastor fleischmanni

Craugastor rupiniusCraugastor megacephalus

Craugastor angelicusCraugastor punctariolusCraugastor obesus

Craugastor sandersoniCraugastor rhodopis

Craugastor lokiCraugastor mexicanus

Craugastor bransfordiiCraugastor podiciferusCraugastor lineatus

Craugastor laticepsCraugastor sartori

Craugastor pygmaeusCraugastor montanus

Craugastor spatulatusCraugastor bocourti

Craugastor stuartiCraugastor uno

Craugastor alfrediCraugastor tarahumaraensisCraugastor augusti

Craugastor daryiHaddadus binotatus

Strabomantis anomalusStrabomantis bufoniformisStrabomantis necerus

Strabomantis biporcatusStrabomantis sulcatus

Hypodactylus brunneusHypodactylus elassodiscus

Hypodactylus peraccaiHypodactylus dolops

86

85

72

100

76

87

65

100

100100

98

100

100

100

100

5859

95

7688

93

77

100 100

100

100100

77

89

81

85

52

98

100

7698 80

90

77

89

77100

98

85

100

100

69

99

10069

99100

8497

100

10067

100

100100

98

100

61 100

Strabomantinae

Craugastorinae

Holoadeninae

81

Pristimantinae

Pristimantinae cont.

Craugastoridae

R

incertae sedis

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 565

Author's personal copy

Pristimantis llojsintutaPristimantis croceoinguinisPristimantis imitatrix

Pristimantis lirellusPristimantis marmoratus

Pristimantis inguinalisPristimantis pulvinatus

Pristimantis altamazonicusPristimantis platydactylus

Pristimantis diadematusPristimantis ockendeni

Pristimantis unistrigatusPristimantis ardalonychus

Pristimantis cajamarcensisPristimantis ceuthospilus

Pristimantis walkeriPristimantis luteolateralis

Pristimantis parvillusPristimantis chalceus

Pristimantis simonbolivariPristimantis orestes

Pristimantis rivetiPristimantis versicolor

Pristimantis phoxocephalusPristimantis spinosus

Pristimantis cryophiliusPristimantis wiensiPristimantis petrobardus

Pristimantis quaquaversusPristimantis rhabdocnemus

Pristimantis melanogasterPristimantis simonsiiPristimantis rhodoplichusPristimantis dissimulatus

Pristimantis calcarulatusPristimantis appendiculatus

Pristimantis pycnodermisPristimantis orcesi

Pristimantis glandulosusPristimantis inusitatusPristimantis acerus

Pristimantis acuminatusPristimantis schultei

Pristimantis bromeliaceusPristimantis zeuctotylus

Pristimantis galdiPristimantis subsigillatusPristimantis nyctophylax

Pristimantis cruciferPristimantis truebaePristimantis gentryi

Pristimantis curtipesPristimantis buckleyi

Pristimantis vertebralisPristimantis devillei

Pristimantis surdusPristimantis quinquagesimus

Pristimantis duellmaniPristimantis thymalopsoides

Pristimantis ocreatusPristimantis thymelensis

Pristimantis pyrrhomerusPristimantis leoni

Pristimantis celatorPristimantis verecundusPristimantis supernatis

Pristimantis chloronotusPristimantis eriphus

Pristimantis rozeiPristimantis urichi

Pristimantis prolatusPristimantis buccinator

Pristimantis citriogasterPristimantis malkini

Pristimantis condorPristimantis conspicillatus

Pristimantis achatinusPristimantis lymani

Pristimantis bipunctatusPristimantis skydmainos

Pristimantis fenestratusPristimantis koehleri

Pristimantis chiastonotusPristimantis samaipatae

Pristimantis terraebolivarisPristimantis toftae

Pristimantis rhabdolaemusPristimantis pluvicanorus

Pristimantis danaePristimantis sagittulus

Pristimantis stictogasterPristimantis aniptopalmatus

Pristimantis reichleiPristimantis peruvianus

Pristimantis euphronidesPristimantis shrevei

Pristimantis capriferPristimantis latidiscus

Pristimantis colomaiPristimantis cruentus

Pristimantis cremnobatesPristimantis caryophyllaceus

Pristimantis ridensPristimantis actitesPristimantis w-nigrum

Pristimantis lanthanitesPristimantis labiosus

Pristimantis crenunguisPristimantis bisignatus

Pristimantis fraudatorPristimantis mercedesae

Pristimantis ashkapara

75

98

75

90

99

78

98

100

100

98

77100

96

87

9598

100

57

68

79

93

100 100

100

100

81100

86

63

9981

71

88

86

94

8695

8455 88

100

82

56

8576

58

84100

60

100

1009965

100100

88

94

90

100

100 85100

100

100100

64

99

66

99100

9990

70

9999

9950 80

99

8883

8994

83

100

100

100

100

9367

62 100

93

100 100

100

10092

Pristimantinae cont.

S

Fig. 2 (continued)

566 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

genera interdigitating amongst each other and with Hylodidae. Be-cause relationships amongst these groups are weakly supported,we split these clades into multiple, strongly supported families,rather than recognizing larger, weakly supported families thatwould possibly be found non-monophyletic in future studies.

The subfamily Ceratophryinae is the sister group to all othermembers of this clade (Fig. 2Z). Although this placement of thegroup is weakly supported, monophyly of Ceratophryinae is wellsupported. We restrict the family Ceratophryidae to include onlythis subfamily. Within the sister group to ceratophryids is astrongly supported clade (BS = 100%) that includes the cyclor-hamphid alsodine genera Macrogenioglottus, Odontophrynus, andProceratophrys. This clade is here named Odontophrynidae,corresponding to the former telmatobiine leptodactylid tribe

Odontophrynini (Lynch, 1971). Within the larger sister-group ofOdontophrynidae is a weakly supported clade comprising the gen-era Insuetophrynus, Rhinoderma, Batrachyla (B. leptopus), Atelogna-thus, and Telmatobius. Within this clade, the cycloramphid generaInsuetophrynus and Rhinoderma are strongly supported as sistertaxa, for which we resurrect the family Rhinodermatidae (Günther,1858). This family was widely recognized prior to revision by Frostet al. (2006), but containing only Rhinoderma (e.g., Duellman andTrueb, 1994).

The sister group to Rhinodermatidae (Fig. 2Z) is a strongly sup-ported clade consisting of Atelognathus and Batrachyla leptopus(type species of the genus; ASW), a clade corresponding primarilyto the ceratophryid subfamily Batrachylinae. We recognize thisclade as a distinct family (Batrachylidae). The other two Batrachyla

Gastrotheca chrysostictaGastrotheca christianiGastrotheca gracilis

Gastrotheca griswoldiGastrotheca marsupiata

Gastrotheca pseustesGastrotheca peruana

Gastrotheca stictopleuraGastrotheca atympana

Gastrotheca ochoaiGastrotheca excubitorGastrotheca psychrophila

Gastrotheca argenteovirensGastrotheca trachycepsGastrotheca aureomaculataGastrotheca ruizi

Gastrotheca dunniGastrotheca nicefori

Gastrotheca riobambaeGastrotheca plumbea

Gastrotheca orophylaxGastrotheca litonedis

Gastrotheca monticolaGastrotheca galeata

Gastrotheca zeugocystisGastrotheca helenae

Gastrotheca longipesGastrotheca cornutaGastrotheca dendronastesGastrotheca weinlandii

Gastrotheca guentheriGastrotheca walkeri

Gastrotheca fissipesStefania evansi

Stefania scalaeStefania coxi

Stefania schubertiStefania ginesi

Hemiphractus bubalusHemiphractus proboscideusHemiphractus helioi

Hemiphractus scutatusFlectonotus pygmaeus

Flectonotus fitzgeraldi

100

65

64

100

99

100

64

9085

100

98

99

93

65

52

90

100

97

93

89100

100

98

66

100

100

100

100

10081

100

100

100

61

100

Hemiphractidae

T

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 567

Author's personal copy

Phyllomedusa oreadesPhyllomedusa araguariPhyllomedusa centralisPhyllomedusa ayeayePhyllomedusa itacolomi

Phyllomedusa rohdeiPhyllomedusa megacephala

Phyllomedusa azureaPhyllomedusa hypochondrialis

Phyllomedusa nordestinaPhyllomedusa palliata

Phyllomedusa duellmaniPhyllomedusa baltea

Phyllomedusa perinesosPhyllomedusa atelopoides

Phyllomedusa tomopternaPhyllomedusa distincta

Phyllomedusa tetraploideaPhyllomedusa iheringii

Phyllomedusa burmeisteriPhyllomedusa bahiana

Phyllomedusa sauvagiiPhyllomedusa boliviana

Phyllomedusa neildiPhyllomedusa trinitatisPhyllomedusa tarsius

Phyllomedusa cambaPhyllomedusa vaillantii

Phyllomedusa bicolorPhasmahyla cruzi

Phasmahyla cochranaePhasmahyla guttata

Phasmahyla exilisPhasmahyla jandaia

Agalychnis moreletiiAgalychnis annae

Agalychnis saltatorAgalychnis callidryas

Agalychnis spurrelliAgalychnis litodryas

Pachymedusa dacnicolorHylomantis hulliHylomantis lemur

Hylomantis granulosaHylomantis aspera

Cruziohyla calcariferPhrynomedusa marginata

100

62

73

100

100

100

100

63

100

9989

100

70100

100

86

9059 100

100

92

99100

89

9971

100100

100

100

100

71

100

78100

99

7473

82

100

100Hylidae:Phyllomedusinae

U

Hylidae cont.

Fig. 2 (continued)

568 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Litoria mainiLitoria maculosa

Litoria longipesLitoria vagitusLitoria cultripes

Litoria manyaLitoria cryptotis

Litoria alboguttataLitoria brevipes

Litoria verrucosaLitoria platycephala

Litoria novaehollandiaeLitoria australis

Litoria dahliiLitoria mooreiLitoria cyclorhyncha

Litoria aureaLitoria raniformis

Litoria xanthomeraLitoria chlorisLitoria gracilenta

Litoria kumaeLitoria gilleniLitoria caerulea

Litoria splendidaLitoria cavernicolaLitoria wilcoxii

Litoria jungguyLitoria booroolongensis

Litoria lesueuriiLitoria andiirrmalin

Litoria genimaculataLitoria eucnemis

Litoria exophthalmiaLitoria pearsonianaLitoria barringtonensis

Litoria nudidigitaLitoria phyllochroa

Litoria citropaLitoria daviesaeLitoria subglandulosa

Litoria spenceriLitoria rheocola

Litoria nyakalensisLitoria nannotis

Litoria dayiLitoria impura

Litoria thesaurensisLitoria pulcher

Litoria papuaLitoria cheesmani

Litoria foriculaLitoria semipalmatus

Litoria humeralisLitoria zweifeli

Litoria narinosusLitoria kubori

Litoria brevipalmataLitoria infrafrenata

Litoria duxLitoria paraewingi

Litoria verreauxiiLitoria revelata

Litoria littlejohniLitoria ewingii

Litoria jervisiensisLitoria electrica

Litoria rubellaLitoria dentata

Litoria congenitaLitoria amboinensisLitoria darlingtoni

Litoria peroniiLitoria tyleri

Litoria rothiiLitoria adelaidensis

Litoria burrowsiLitoria inermis

Litoria pallidaLitoria tornieri

Litoria freycinetiLitoria latopalmata

Litoria coplandiLitoria watjulumensis

Litoria nasutaLitoria nigrofrenata

Litoria personataLitoria microbelos

Litoria dorsalisLitoria longirostris

Litoria meirianaLitoria arfakiana

Litoria wollastoniLitoria spartacus

Litoria angianaLitoria micromembrana

Litoria modicaLitoria leucova

Litoria proraLitoria nigropunctata

Litoria majikthiseLitoria iris

Litoria havinaLitoria multiplica

Litoria pronimiaLitoria bicolorLitoria fallaxLitoria olongburensis

100

76

95

79

9274

9474

7953

100

100

86

80 100

96100

100

98

10075

87

5482

55

100100

100

97

54

91100 93

100

100

89100

9556

9994

100

100

100

98

93

53

58

10081

9155

56

100

72

58

10092

99

72

10093

93

100

100

69 86

94

76

78

87

67 98

79

91

65

83 100

100

Hylidae:Pelodryadinae

Hylidae cont.

V

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 569

Author's personal copy

species included in our analysis are placed in a clade with Alsodes,Eupsophus, and Hylorina (see below). The sister group to the cladeof Rhinodermatidae + Batrachylidae is the ceratophryid genus Tel-matobius (Fig. 2Z). We resurrect the family Telmatobiidae (Miran-da-Ribeiro, 1920) for this strongly supported clade (containingonly Telmatobius, which likely contains Batrachophrynus; ASW),

which was previously recognized as a ceratophryid subfamily(Telmatobiinae) by ASW and AW. Next up the tree is a moderatelywell supported clade (BS = 79%) consisting of two cycloramphidgenera, the cycloramphine genus Cycloramphus and the alsodinegenus Thoropa. We recognize this clade as the family Cycloramphi-dae (a greatly restricted version relative to current classifications).

Hypsiboas pulchellusHypsiboas cordobaeHypsiboas prasinus

Hypsiboas cainguaHypsiboas bischoffiHypsiboas marginatusHypsiboas guentheri

Hypsiboas andinusHypsiboas riojanusHypsiboas marianitae

Hypsiboas balzaniHypsiboas latistriatusHypsiboas polytaeniusHypsiboas leptolineatus

Hypsiboas joaquiniHypsiboas semiguttatusHypsiboas ericae

Hypsiboas lundiiHypsiboas pardalis

Hypsiboas faberHypsiboas crepitans

Hypsiboas rosenbergiHypsiboas albomarginatusHypsiboas rufitelusHypsiboas pellucens

Hypsiboas albopunctatusHypsiboas multifasciatusHypsiboas lanciformis

Hypsiboas calcaratusHypsiboas dentei

Hypsiboas fasciatusHypsiboas raniceps

Hypsiboas heilpriniHypsiboas picturatus

Hypsiboas lemaiHypsiboas benitezi

Hypsiboas ornatissimusHypsiboas nympha

Hypsiboas microdermaHypsiboas roraima

Hypsiboas siblesziHypsiboas geographicus

Hypsiboas semilineatusHypsiboas boans

Hypsiboas cinerascensAplastodiscus leucopygius

Aplastodiscus cavicolaAplastodiscus callipygius

Aplastodiscus albosignatusAplastodiscus cochranae

Aplastodiscus perviridisAplastodiscus weygoldtiAplastodiscus arildaeAplastodiscus eugenioi

Aplastodiscus albofrenatusBokermannohyla circumdataBokermannohyla hylax

Bokermannohyla astarteaBokermannohyla martinsi

Hyloscirtus pachaHyloscirtus pantostictusHyloscirtus lindae

Hyloscirtus tapichalacaHyloscirtus charazaniHyloscirtus armatus

Hyloscirtus lasciniusHyloscirtus palmeri

Hyloscirtus phyllognathusHyloscirtus colymba

Hyloscirtus simmonsiMyersiohyla kanaima

Myersiohyla inparquesi

98

63

97

97

76

51

55

66

94

100

100

100

87

70100

100

7999

100

100

100

91 100

100

94

6590

100

99

100

84

100

57 83100

72

93

99100

91100

100100

82

909050

100

99

100

100

80

8192

100

94

79 100100

100

100

65

71Hylidae:Hylinae

Hylinae cont.

W

Fig. 2 (continued)

570 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Osteocephalus oophagusOsteocephalus taurinus

Osteocephalus leprieuriiOsteocephalus planiceps

Osteocephalus alboguttatusOsteocephalus verrucigerOsteocephalus buckleyi

Osteocephalus cabreraiOsteocephalus mutabor

Tepuihyla edelcaeOsteopilus wilderi

Osteopilus marianaeOsteopilus crucialis

Osteopilus brunneusOsteopilus pulchrilineatus

Osteopilus dominicensisOsteopilus septentrionalis

Osteopilus vastusPhyllodytes luteolus

Trachycephalus hadrocepsTrachycephalus venulosusTrachycephalus resinifictrixTrachycephalus nigromaculatus

Trachycephalus imitatrixTrachycephalus mesophaeusTrachycephalus coriaceus

Trachycephalus jordaniArgenteohyla siemersi

Nyctimantis rugicepsAparasphenodon brunoi

Corythomantis greeningiPhyllodytes auratus

Itapotihyla langsdorffiiDendropsophus rubicundulus

Dendropsophus sanborniDendropsophus minusculus

Dendropsophus branneriDendropsophus berthalutzae

Dendropsophus bipunctatusDendropsophus nanus

Dendropsophus walfordiDendropsophus riveroi

Dendropsophus sartoriDendropsophus robertmertensi

Dendropsophus microcephalusDendropsophus rhodopeplus

Dendropsophus lealiDendropsophus minutus

Dendropsophus bifurcusDendropsophus sarayacuensis

Dendropsophus leucophyllatusDendropsophus triangulum

Dendropsophus ebraccatusDendropsophus elegans

Dendropsophus miyataiDendropsophus schubarti

Dendropsophus aperomeusDendropsophus anceps

Dendropsophus pelidnaDendropsophus labialis

Dendropsophus carnifexDendropsophus giesleri

Dendropsophus brevifronsDendropsophus parviceps

Dendropsophus koechliniDendropsophus seniculus

Dendropsophus marmoratusDendropsophus allenorum

Xenohyla truncataPseudis paradoxaPseudis bolbodactyla

Pseudis tocantinsPseudis fusca

Pseudis minutaPseudis cardosoi

Pseudis carayaPseudis limellum

Pseudis laevisScarthyla goinorum

Scinax ruberScinax x-signatus

Scinax nasicusScinax fuscovarius

Scinax cruentommusScinax boesemani

Scinax staufferiScinax elaeochroa

Scinax squalirostrisScinax crospedospilus

Scinax garbeiScinax jolyi

Scinax proboscideusScinax nebulosus

Scinax rostratusScinax sugillatus

Scinax boulengeriScinax acuminatus

Scinax uruguayusScinax catharinae

Scinax berthaeSphaenorhynchus dorisae

Sphaenorhynchus lacteusSphaenorhynchus orophilus

56

100

65

69

90

100

8587

100

97

95

99

100

5753

86 90

94

66

1008451

10076

81100

91

53

54

97

89

55

66

7393

94

100

85

9081 100

8897

8283

100

59

100

100

100

75

100

99

99

87 94

80

99

100

76

100

97

95

97

95

96

8796 100

100

80

5188

100

9660

65

52

100

100

10097

Hylinae cont.

Hylinae cont.X

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 571

Author's personal copy

The sister group to Cycloramphidae consists of Hylodidae(strongly supported as monophyletic), and a clade consisting ofsome of the former alsodine cycloramphid genera (Alsodes, Eupso-phus, Hylorina, Limnomedusa) and two species of the ceratophryidgenus Batrachyla. Support for the monophyly of this group isrelatively weak (54%) including Limnomedusa but is strong (91%)

without it. We tentatively recognize this clade as a distinct family(Alsodidae), comprising Alsodes, Eupsophus, Hylorina, and Limnome-dusa. This is the only family that we recognize (that was not in-cluded in previous classifications) that is not strongly supported,but we prefer this taxonomy as opposed to recognizing a mono-typic family containing only Limnomedusa. While we generally

Hyla plicataHyla euphorbiacea

Hyla eximiaHyla walkeri

Hyla wrightorumHyla arenicolor

Hyla immaculataHyla japonicaHyla avivocaHyla chrysoscelis

Hyla versicolorHyla femoralis

Hyla andersoniiHyla cinerea

Hyla gratiosaHyla squirella

Hyla molleriHyla intermedia

Hyla orientalisHyla arborea

Hyla savignyiHyla sarda

Hyla meridionalisHyla annectans

Hyla tsinlingensisHyla chinensis

Smilisca phaeotaSmilisca puma

Smilisca cyanostictaSmilisca fodiens

Smilisca sordidaSmilisca sila

Smilisca baudiniiAnotheca spinosa

Triprion petasatusTriprion spatulatusIsthmohyla rivularis

Isthmohyla ticaIsthmohyla zeteki

Isthmohyla pseudopumaTlalocohyla loquaxTlalocohyla godmani

Tlalocohyla pictaTlalocohyla smithii

Charadrahyla nephilaCharadrahyla taeniopus

Megastomatohyla mixePtychohyla zophodesPtychohyla leonhardschultzeiPtychohyla euthysanota

Ptychohyla hypomykterPtychohyla dendrophasma

Duellmanohyla rufioculisDuellmanohyla soralia

Bromeliohyla bromeliaciaPtychohyla spinipollex

Ecnomiohyla miotympanumEcnomiohyla miliaria

Ecnomiohyla mineraPlectrohyla calthulaPlectrohyla pentheterPlectrohyla bistincta

Plectrohyla ameibothalamePlectrohyla cycladaPlectrohyla arborescandens

Plectrohyla siopelaPlectrohyla matudai

Plectrohyla guatemalensisPlectrohyla chrysopleura

Plectrohyla glandulosaExerodonta xera

Exerodonta smaragdinaExerodonta chimalapa

Exerodonta melanommaExerodonta sumichrasti

Exerodonta abdivitaExerodonta perkinsi

Pseudacris nigritaPseudacris kalmi

Pseudacris triseriataPseudacris feriarum

Pseudacris maculataPseudacris clarkiiPseudacris fouquetteiPseudacris brimleyi

Pseudacris brachyphonaPseudacris streckeriPseudacris illinoensis

Pseudacris ornataPseudacris crucifer

Pseudacris ocularisPseudacris regilla

Pseudacris cadaverinaAcris crepitans

Acris blanchardiAcris gryllus

100

92

94

86

100

77

100

98

8095 95

968373

8161100

100

100 99

100

92100

9252

100100

99

94

100100

9995

97 96

98

87

84

83100

100

100

100

99

95 100

100

100

99100

89100

8889

100

100

96

5674

83 84

80

92

68

100

76 10064

100

100

98

97

100

71

10067

52 100100

100

100

100100

100

100

100 90Hylidae cont.

Y

Fig. 2 (continued)

572 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

refrain from addressing generic-level taxonomy here, the genusBatrachyla represents a special case, being split between two fam-ilies. As Batrachyla taeniata, Batrachyla antartandica, and Hylorinasylvatica are strongly placed within Eupsophus, we synonymizethose three species with Eupsophus. We keep the other two

Batrachyla species (Batrachyla fitzroya and Batrachyla nibaldoi) inBatrachyla with the type species B. leptopus in Batrachylidae.

In summary, our new taxonomy replaces the non-monophyleticinterdigitating families Ceratophryidae and Cycloramphidae with asomewhat larger set of families that are each generally strongly

Eupsophus contulmoensisEupsophus roseus

Eupsophus insularisEupsophus nahuelbutensisEupsophus migueli

Batrachyla antartandicaBatrachyla taeniata

Hylorina sylvaticaEupsophus vertebralis

Eupsophus calcaratusEupsophus emiliopuginiAlsodes barrioi

Alsodes monticolaAlsodes kaweshkariAlsodes gargolaAlsodes tumultuosusAlsodes australis

Alsodes nodosusAlsodes vanzolinii

Limnomedusa macroglossaHylodes ornatus

Hylodes sazimaiHylodes phyllodes

Hylodes perplicatusHylodes meridionalis

Megaelosia goeldiiHylodes dactylocinus

Crossodactylus schmidtiCrossodactylus caramaschii

Thoropa taophoraThoropa miliaris

Cycloramphus acangatanCycloramphus boraceiensis

Telmatobius huayraTelmatobius hintoniTelmatobius gigasTelmatobius culeusTelmatobius bolivianus

Telmatobius yuracareTelmatobius sibiricusTelmatobius simonsi

Telmatobius marmoratusTelmatobius vilamensis

Telmatobius sanborniTelmatobius verrucosusTelmatobius espadai

Telmatobius truebaeTelmatobius vellardi

Telmatobius nigerTelmatobius zapahuirensis

Atelognathus patagonicusAtelognathus jeinimenensis

Batrachyla leptopusRhinoderma darwinii

Insuetophrynus acarpicusProceratophrys renalis

Proceratophrys boieiProceratophrys laticeps

Proceratophrys cururuOdontophrynus moratoi

Proceratophrys concavitympanumProceratophrys goyana

Proceratophrys avelinoiProceratophrys bigibbosa

Proceratophrys appendiculataProceratophrys melanopogon

Proceratophrys schirchiProceratophrys cristiceps

Odontophrynus achalensisOdontophrynus occidentalis

Odontophrynus americanusOdontophrynus cultripes

Odontophrynus carvalhoiMacrogenioglottus alipioi

Ceratophrys ornataCeratophrys cranwelli

Lepidobatrachus laevisChacophrys pierottii

Ceratophrys cornuta

53

54

91

95

9599

50

97

90

61

56

6175

68

89

97

9254

92

79

100

100

100

57

88

9396

68

50

73 8571

76

96 100

96

100

100

67

77 99

59

99

5057

85

100

66

99

61

100

65100

82Ceratophryidae

Odontophrynidae

Rhinodermatidae

Batrachylidae

Telmatobiidae

Cycloramphidae

Hylodidae

Alsodidae

Z

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 573

Author's personal copy

Leptodactylus plaumanniLeptodactylus gracilis

Leptodactylus albilabrisLeptodactylus longirostris

Leptodactylus bufoniusLeptodactylus fuscus

Leptodactylus mystaceusLeptodactylus didymus

Leptodactylus notoaktitesLeptodactylus elenae

Leptodactylus spixiLeptodactylus mystacinus

Leptodactylus pentadactylusLeptodactylus knudseniLeptodactylus labyrinthicus

Leptodactylus fallaxLeptodactylus vastus

Leptodactylus rhodonotusLeptodactylus griseigularis

Leptodactylus discodactylusLeptodactylus diedrus

Leptodactylus podicipinusLeptodactylus validusLeptodactylus pallidirostris

Leptodactylus wagneriLeptodactylus melanonotus

Leptodactylus riveroiLeptodactylus leptodactyloides

Leptodactylus ocellatusLeptodactylus chaquensis

Leptodactylus silvanimbusLeptodactylus rhodomystax

Adenomera heyeriAdenomera hylaedactyla

Adenomera andreaeLithodytes lineatus

Physalaemus barrioiPhysalaemus gracilisPhysalaemus riograndensis

Physalaemus biligonigerusPhysalaemus ephippifer

Physalaemus cuvieriPhysalaemus albonotatus

Physalaemus signiferEupemphix nattereri

Engystomops randiEngystomops montubio

Engystomops coloradorumEngystomops guayaco

Engystomops pustulatusEngystomops freibergi

Engystomops petersiEngystomops pustulosus

Edalorhina pereziPleurodema bibroniPleurodema thaul

Pleurodema bufoninumPleurodema marmoratum

Pleurodema brachyopsPseudopaludicola falcipes

Paratelmatobius gaigeaeParatelmatobius poecilogaster

Paratelmatobius cardosoiScythrophrys sawayae

79

93

100

56

84

6294

70

5666

88

10095

52

80

54

58

69100

92

93

9354

65

99

99

98

100

98

9996

80

100

100

100

99

100100

100

94

9899

91

9994

94

9393

100

Leptodactylidae

Paratelmatobiinae

Leiuperinae

Leptodactylinae

AA

Fig. 2 (continued)

574 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

supported. However, we acknowledge that the family-level place-ment of the cycloramphid genera Rupirana (no subfamily assignedby AW or ASW), Zachaenus, and Crossodactylodes (both previouslyCycloramphinae; AW; ASW) are uncertain in our classification(Hyloidea incertae sedis), given the lack of molecular data for these

genera and the apparent problems in the previous taxonomy(Figs. 1 and 2Z). Assuming that they are cycloramphids as the fam-ily is defined here (Figs. 1 and 2; Appendix B) may be incorrect.

We also find that the currently recognized families Leiuperidaeand Leptodactylidae are also problematic (Fig. 2AA). Our results

Centrolene altitudinaleCentrolene notostictum

Centrolene buckleyiCentrolene hesperium

Centrolene venezuelenseCentrolene pipilatum

Centrolene hybridaCentrolene bacatum

Centrolene geckoideumCentrolene antioquiense

Centrolene peristictumCentrolene savagei

Centrolene daidaleumNymphargus siren

Nymphargus megacheirusNymphargus rosadus

Nymphargus puyoensisNymphargus cochranae

Nymphargus wileyiNymphargus griffithsi

Nymphargus posadaeNymphargus bejaranoiNymphargus pluvialis

Nymphargus mixomaculatusCentrolene grandisonae

Rulyrana adiazetaRulyrana susatamai

Rulyrana spiculataRulyrana flavopunctata

Sachatamia albomaculataSachatamia punctulata

Sachatamia ilexEspadarana prosobleponEspadarana callistomma

Espadarana andinaChimerella mariaelenaeCochranella euknemos

Cochranella macheCochranella granulosa

Cochranella nolaCochranella litoralis

Teratohyla spinosaTeratohyla midas

Teratohyla pulverataVitreorana helenae

Vitreorana oyampiensisVitreorana gorzulae

Vitreorana castroviejoiVitreorana antisthenesiVitreorana eurygnatha

Ikakogi tayronaHyalinobatrachium ibama

Hyalinobatrachium pallidumHyalinobatrachium duranti

Hyalinobatrachium orocostaleHyalinobatrachium fragile

Hyalinobatrachium orientaleHyalinobatrachium fleischmanni

Hyalinobatrachium tatayoiHyalinobatrachium carlesvilai

Hyalinobatrachium mondolfiiHyalinobatrachium crurifasciatum

Hyalinobatrachium eccentricumHyalinobatrachium ignioculus

Hyalinobatrachium tayloriHyalinobatrachium iaspidienseHyalinobatrachium colymbiphyllum

Hyalinobatrachium chirripoiHyalinobatrachium talamancae

Hyalinobatrachium pellucidumHyalinobatrachium bergeri

Hyalinobatrachium aureoguttatumHyalinobatrachium valerioi

Celsiella revocataCelsiella vozmedianoi

Allophryne ruthveni

100

100

70

60

80

100

61

100

8389

6799

86

95

100

100

100

98

8189 85

76

5790

84 80

100

76

85

10097

88

100100

61100

96

100

96100

5099

95

66 100

5096

100

98

72

61

83

93100

99

58

95

88

8292

10088

85

10070

100

62100

100

Allophrynidae

Centrolenidae

Hyalinobatrachinae

Centroleninae

AB

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 575

Author's personal copy

Dendrobates ventrimaculatusDendrobates variabilis

Dendrobates amazonicusDendrobates uakarii

Dendrobates reticulatusDendrobates duellmani

Dendrobates fantasticusDendrobates vanzoliniiDendrobates imitator

Dendrobates flavovittatusDendrobates biolat

Dendrobates lamasiDendrobates claudiaeDendrobates minutus

Dendrobates fulguritusDendrobates bombetesDendrobates virolinensis

Dendrobates mysteriosusDendrobates captivus

Dendrobates pumilioDendrobates vicentei

Dendrobates speciosusDendrobates arboreusDendrobates lehmanniDendrobates sylvaticusDendrobates histrionicus

Dendrobates granuliferusDendrobates leucomelasDendrobates tinctorius

Dendrobates auratusDendrobates truncatus

Dendrobates galactonotusDendrobates castaneoticus

Dendrobates quinquevittatusDendrobates steyermarki

Phyllobates terribilisPhyllobates aurotaenia

Phyllobates bicolorPhyllobates lugubrisPhyllobates vittatus

Hyloxalus awaHyloxalus toachi

Hyloxalus infraguttatusHyloxalus elachyhistusHyloxalus insulatus

Hyloxalus idiomelusHyloxalus chlorocraspedusHyloxalus azureiventris

Hyloxalus nexipusHyloxalus sylvaticus

Hyloxalus pulcherrimusHyloxalus anthracinus

Hyloxalus delatorreaeHyloxalus pulchellus

Hyloxalus vertebralisHyloxalus sauliHyloxalus bocagei

Hyloxalus maculosusHyloxalus sordidatusHyloxalus leucophaeus

Hyloxalus subpunctatusAmeerega petersiAmeerega cainarachi

Ameerega smaragdinaAmeerega rubriventrisAmeerega maceroAmeerega pictaAmeerega hahneliAmeerega pulchripectaAmeerega trivittata

Ameerega pongoensisAmeerega parvulaAmeerega bilinguis

Ameerega bassleriAmeerega braccata

Ameerega flavopictaAmeerega silverstonei

Ameerega simulansAmeerega altamazonica

Colostethus argyrogasterColostethus fugax

Colostethus fraterdanieliColostethus panamansis

Colostethus inguinalisColostethus imbricolus

Colostethus prattiColostethus latinasus

Epipedobates tricolorEpipedobates anthonyiEpipedobates machalillaEpipedobates espinosai

Epipedobates boulengeriSilverstoneia flotator

Silverstoneia nubicolaAllobates conspicuus

Allobates trilineatusAllobates caeruleodactylus

Allobates gasconiAllobates juaniiAllobates femoralis

Allobates zaparoAllobates nidicola

Allobates brunneusAllobates talamancae

Allobates undulatusMannophryne venezuelensis

Mannophryne trinitatisMannophryne herminae

Aromobates nocturnusAromobates saltuensis

Anomaloglossus beebeiAnomaloglossus roraima

Anomaloglossus praderioiAnomaloglossus degranvillei

Anomaloglossus tepuyensisAnomaloglossus baeobatrachusAnomaloglossus stepheni

Rheobates palmatus

100

97

71

100

99

72

58

64

69

59

85

89

84 93

100

10081 100

10084

71

10094615795

95

98

10096

100

6272

70

100

10075

100

99

100

91100

6580

100 100

100100

100 100

80

100 99

57

100

100

98

83100

89

86

88

85

82

97

85100

100

10097

100

100100

598795

77

100

50

100

10099

9188

8583

100

99 100 100

100

100

8710064

100

98

Dendrobatidae

AC

Fig. 2 (continued)

576 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Bufo houstonensisBufo americanusBufo hemiophrys

Bufo baxteriBufo woodhousiiBufo fowleriBufo terrestrisBufo microscaphus

Bufo californicusBufo speciosus

Bufo retiformisBufo debilis

Bufo cognatusBufo quercicus

Bufo punctatusBufo canorusBufo exsulBufo boreasBufo nelsoni

Bufo macrocristatusBufo campbelli

Bufo vallicepsBufo nebuliferBufo mazatlanensis

Bufo luetkeniiBufo melanochlorus

Bufo ibarraiBufo cycladen

Bufo cocciferBufo coniferusBufo fastidiosus

Bufo marmoreusBufo canaliferusBufo tacanensisBufo occidentalis

Bufo alvariusBufo bocourti

Bufo manuBufo nesiotes

Bufo chavinRhamphophryne rostrata

Rhamphophryne macrorhinaRhamphophryne festaeBufo margaritifer

Bufo dapsilisBufo castaneoticus

Bufo ocellatusBufo amboroensis

Bufo veraguensisBufo ictericusBufo arenarum

Bufo cruciferBufo achavaliBufo schneideriBufo marinus

Bufo poeppigiiBufo beebei

Bufo granulosusBufo aruncoBufo atacamensis

Bufo arequipensisBufo spinulosus

Bufo vellardiBufo limensisBufo guttatusBufo glaberrimus

Bufo haematiticusBufo nasicus

Bufo peltocephalusBufo fustigerBufo empusus

Bufo taladaiBufo gundlachi

Bufo longinasusBufo guentheri

Bufo lemurBufo cophotisBufo variegatus

Dendrophryniscus minutusOsornophryne bufoniformis

Osornophryne antisanaOsornophryne puruanta

Osornophryne guacamayoOsornophryne sumacoensis

Atelopus senexAtelopus varius

Atelopus zetekiAtelopus chiriquiensis

Atelopus spurrelliAtelopus longirostris

Atelopus bomolochosAtelopus ignescens

Atelopus halihelosAtelopus peruensis

Atelopus flavescensAtelopus franciscus

Atelopus spumariusAtelopus pulcherAtelopus seminiferus

Melanophryniscus klappenbachiMelanophryniscus stelzneri

Melanophryniscus rubriventris

96

100

75

90

100

100

6170

90

99

10097

7270

10089

99100100

10097

67

100100

10077

84

58

90

65

100

100 100

100

100 100

84

95

100

6495

74

54

100

100

10053

99

7683

10064

75

100

63

99

6478

73100

67

100

87

100

100

99

10072

100

95

6661

94

100

61 9973

100

100

7098

9081100

100

100

100 100100

100

100

Bufonidae

Bufonidae cont.AD

Fig. 2 (continued)

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 577

Author's personal copy

Bufo parietalisBufo brevirostris

Bufo melanostictusBufo atukoraleiBufo scaber

Bufo himalayanusBufo stuarti

Bufo crocusBufo stomaticus

Bufo hololiusBufo dhufarensisBufo koynayensis

Adenomus kelaartiiBufo brongersmai

Nectophrynoides minutusNectophrynoides tornieri

Nectophrynoides viviparusChuramiti maridadi

Bufo variabilisBufo viridis

Bufo balearicusBufo pewzowiBufo oblongusBufo siculus

Bufo boulengeriSchismaderma carens

Pedostibes tuberculosusAnsonia minuta

Ansonia platysomaAnsonia hanitschi

Ansonia spinuliferAnsonia malayanaAnsonia longidigita

Ansonia leptopusAnsonia muelleri

Ansonia fuligineaPelophryne signata

Pelophryne brevipesPelophryne misera

Didynamipus sjostedtiAnsonia ornata

Bufo galeatusBufo philippinicus

Bufo macrotisBufo celebensis

Bufo divergensBufo biporcatus

Sabahphrynus maculatusPedostibes hosiiPedostibes rugosusBufo juxtasper

Bufo asperBufo tibetanusBufo tuberculatusBufo stejnegeri

Bufo japonicusBufo torrenticola

Bufo bankorensisBufo gargarizansBufo aspinius

Bufo cryptotympanicusBufo tuberospinius

Bufo bufoBufo verrucosissimus

Bufo raddeiBufo calamita

Leptophryne borbonicaNectophryne batesii

Nectophryne afraWolterstorffina parvipalmata

Werneria mertensianaBufo xerosBufo garmaniBufo gutturalis

Bufo gracilipesBufo kisoloensis

Bufo camerunensisBufo tuberosus

Bufo latifronsBufo vertebralis

Bufo maculatusBufo regularis

Bufo lemairiiBufo brauni

Bufo poweriBufo pantherinus

Bufo pardalisBufo steindachneri

Bufo mauritanicusCapensibufo roseiCapensibufo tradouwi

Stephopaedes loveridgeiStephopaedes anotisBufo lindneri

Mertensophryne micranotisBufo taitanus

Bufo uzunguensisBufo damaranus

Bufo dombensisBufo fenoulheti

Bufo gariepensisBufo robinsoni

Bufo amatolicusBufo inyangae

Bufo angusticeps

99

73

9862

10099

10055

100

59100

97

98100 95

10081

59

55

91

60

9894

97 74

94100

70

100 92

100

5268

90

98

90

100

100

97

81

97

100100

98 73

100

89

100

96

82

91

100100

91

82

55

80

8157

100

99

9984

100 100

100

89

100

100

56Bufonidae cont.

AE

Fig. 2 (continued)

578 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

(Fig. 2AA) show that Leptodactylidae is paraphyletic with respectto Leiuperidae, given that the leptodactylid genera Paratelmatobiusand Scythrophrys are more closely related to leiuperids than theyare to other leptodactylids (although this is not strongly sup-ported). We solve this taxonomic problem by expanding Leptodac-tylidae to again include all leiuperid genera, and recognizingLeiuperinae and Leptodactylinae as subfamilies. This arrangementtreats Leptodactylidae as the strongly supported clade (BS = 79%)of mostly foam-nesting frogs that has long been recognized asbehaviorally and morphologically distinctive (as the leptodactylineleptodactylids; Lynch, 1971; Duellman and Trueb, 1994). We con-sider this preferable to recognizing a new family for Paratelmatobi-us and Scythrophrys, genera for which we recognize a newsubfamily (Paratelmatobiinae subfam. nov.; Appendix A), to avoida paraphyletic Leptodactylinae.

According to our results, the family Strabomantidae (sensu AW,ASW) is also paraphyletic (Fig. 2R). Strabomantidae is a recentlydescribed family (Hedges et al., 2008) that includes many speciesthat were traditionally classified as Eleutherodactylus (in the familyLeptodactylidae; see ASW). Specifically, we find that the strabo-mantid genera Hypodactylus and Strabomantis are more closely re-lated to craugastorids (Haddadus, Craugastor) than they are to theother sampled strabomantid genera (e.g., Barycholos, Bryophryne,Holoaden, Lynchius, Noblella, Oreobates, Phrynopus, Pristimantis,Psychrophrynella). To resolve this problem (and to reduce the pro-liferation of terraranan families), we subsume Strabomantidae intoCraugastoridae, given that Craugastoridae occurs first in Hedgeset al. (2008), though we recognize that this is an arbitrary criterion.Within Craugastoridae, we recognize a subfamily Craugastorinae(Fig. 2R) that corresponds to the previously recognized family(e.g., Hedges et al., 2008; AW, ASW).

The former members of Strabomantidae are apportioned amongthree strongly supported clades (which we recognize as subfamilieswithin Craugastoridae) and one weakly supported clade (which weconsider incertae sedis). One of the strongly supported clades con-sists solely of the genus Strabomantis, for which we recognizea restricted subfamily Strabomantinae (Appendix B). Another com-prises the genera Barycholos, Bryophryne, Holoaden, Noblella, andPsychrophrynella, for which we use the previously recognized sub-family Holoadeninae (e.g., ASW). The third strongly supported cladecomprises the genera Lynchius, Oreobates, Phrynopus, and Pristiman-tis. We recognize this clade as a new subfamily, Pristimantinae sub-fam. nov. (see Appendix A for formal definition). The weaklysupported clade is the genus Hypodactylus. Rather than recognizinga new subfamily for this genus (or allowing it to render other sub-families non-monophyletic), we consider this genus incertae sedis,along with several other genera of the former Strabomantidae thatwere not included in this (or other molecular phylogenies), includ-ing Atopophrynus, Dischiodactylus, Geobatrachus, Mucubatrachus,Niceforonia, and Paramophrynella. In theory, some of these closely re-lated subfamilies could be combined (e.g., Craugastorinae and Strab-omantinae or Holoadeninae and Pristimantinae), but the resultingsubfamilies would then not be strongly supported.

As in most previous studies (Darst and Cannatella, 2004; Roe-lants et al., 2007; Wiens, 2007a, 2011), we find strong supportfor monophyly of Hyloidea, but relationships among the familiesare weakly supported (Figs. 1 and 2P-AE). Therefore, we do notpresent extensive comparison of among-family relationships be-tween our study and previous studies. Nevertheless, there aresome intriguing patterns that occur in multiple studies, such asplacement of bufonids with dendrobatids (e.g., this study, Frostet al., 2006; Roelants et al., 2007; Wiens, 2011). We also corrobo-rate the monophyly and current composition of Brachycephalidae(Hedges et al., 2008), Hemiphractidae (Wiens et al., 2007a,b;Wiens, 2011), Hylidae (with subfamilies Hylinae, Phyllomedusinae,and Pelodryadinae; Wiens et al., 2010), Bufonidae (Pramuk et al.,

2008; Van Bocxlaer et al., 2009), Allophrynidae and Centrolenidae.Within Centrolenidae (Fig. 2AB), we support the subfamilies Cen-troleninae and Hyalinobatrachinae, and we place the previouslyincertae sedis genus Ikakogi in Centroleninae with strong (70%)bootstrap support. We do not recognize a family Aromobatidaeseparate from Dendrobatidae, as there is no phylogenetic justifica-tion for splitting Dendrobatidae (Fig. 2AC). We follow Santos et al.(2009) in recognizing a single family Dendrobatidae, including theformer aromobatids and containing no subfamilies (see also AW).

Our higher-level phylogeny within Ranoidea is generally similarto other recent estimates (e.g., Frost et al., 2006; Roelants et al., 2007;Wiens, 2011), and many of these relationships are well supported inour study and previous studies (e.g., among brevicipitids, hemisot-ids, microhylids, hyperoliids, arthroleptids). Our results also supportcurrent delimitation of subfamilies (Figs. 1 and 2H–I; see AppendixB) in Microhylidae (van der Meijden et al., 2007) and Arthroleptidae(including Astylosterninae; see ASW). Some previous taxonomies(e.g., Bossuyt et al., 2006; Wiens et al., 2009) and current taxonomies(including AW) recognize a large (>1400 species) family Ranidae(with 13 subfamilies) as the sister group to all other ranoids. Otherrecent authors have considered these subfamilies distinct families(Bossuyt and Roelants, 2009; Frost et al., 2006; Roelants et al.,2007). We follow this latter arrangement here, recognizing the fam-ilies Ptychadenidae, Micrixalidae, Phrynobatrachidae, Conrauidae,Petropedetidae, Pyxicephalidae, Nyctibatrachidae, Ceratobatrachi-dae, Ranixalidae, Dicroglossidae, Ranidae, and Rhacophoridae, andMantellidae, all of which are strongly supported (Figs. 1 and 2J–O).Within these families, subfamilies follow Frost (2011): within Pyxi-cephalidae, we recognize Cacosterninae and Pyxicephalinae;Dicroglossidae comprises Occidozyginae and Dicroglossinae; Rhac-ophoridae consists of Buergeriinae and Rhacophorinae; and Mantel-lidae is composed of Laliostominae, Boophinae, and Mantellinae(Figs. 1 and 2J–O). Relationships among many of these families re-main poorly supported, as in previous studies (Roelants et al.,2007; Wiens et al., 2009). Given the extensive sampling of taxa inthis clade, resolving their relationships may instead require addingmany more characters (i.e., more genes).

4. Discussion

4.1. Systematics of extant lissamphibians

Here, we provide a large-scale estimate of amphibian phylogeny,containing over 2800 species (42% of the known extant diversity).This phylogeny is largely congruent with those of several recentmolecular analyses (Frost et al., 2006; Roelants et al., 2007; Wiens,2007a, 2011). Nevertheless, our increased sampling of taxa andcharacters (especially among former leptodactylid frogs) revealsthat several currently recognized families are not monophyletic ascurrently delimited (i.e., Ceratophryidae, Cycloramphidae, Lepto-dactylidae, Strabomantidae). To correct these problems, we presenta new classification of extant amphibians. We have been as conser-vative as possible in our taxonomic changes, such that deviationsfrom current taxonomy are made only when necessitated by non-monophyly of higher taxa, and in such a way that newly recognizedtaxa are strongly supported (with the exception of Alsodidae as de-scribed above). It is possible that future phylogenies might revealsome of our changes to be unnecessary (e.g., in cases where therewas weak support for non-monophyly of families, future analysesmight strongly resolve them as monophyletic). However, by focus-ing on only strongly supported clades, the higher taxa that we recog-nize should not be misleading, even as new data are added. We arealso conservative in that we only address taxonomy at the subfamilylevel and above, given that our sampling of genera is mostly com-plete whereas our sampling of species is not. Nevertheless, our study

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 579

Author's personal copy

corroborates previous studies showing the paraphyly of numerousgenera (e.g., Bufo, Rana) and shows many additional genera to benon-monophyletic (e.g., Batrachyla). Importantly, our study alsoprovides a framework to which additional sequences can be readilyadded. Our data matrix is available at Dryad repository doi:10.5061/dryad.vd0m7. It should thus be relatively straightforward to addmore taxa to this tree.

4.2. Supermatrices and large-scale phylogenetic inference

This analysis corroborates several recent studies suggesting thatthe supermatrix approach is a powerful strategy for large-scalephylogenetic inference (e.g., Driskell et al., 2004; McMahon andSanderson, 2006; Thomson and Shaffer, 2010; Pyron et al., 2011;Wiens et al., 2005b). For example, even though each taxon had(on average) 80% missing data, we found that most species wereplaced in the families and genera expected based on previous tax-onomy, often with very strong support. In cases where we foundthat currently recognized families were not monophyletic, thiswas not due to species being randomly placed on the tree, butrather due to differences in the placement of strongly supportedclades of species and genera. Moreover, all of our 67 families andall but two of the 50 subfamilies are strongly supported.

Despite the overall strong support for most of the tree (i.e., 64%of all nodes have BS >70), certain clades remain poorly supported.Therefore, a potential criticism of the supermatrix approach is thatthis poor support may have arisen due to missing data in manytaxa. However, several lines of evidence suggest that this is notthe case. First, many previous studies have shown that there is typ-ically little relationship between the support for clades and theamount of missing data in the included species (e.g., Pyron et al.,2011; Wiens et al., 2005b, and for an analysis of multiple datasetssee Wiens and Morrill, 2011). Second, we find that most of theclades that are weakly supported in our study are also weakly sup-ported in other studies that have more limited missing data (andthe same is true for strongly supported clades). For example, intheir study of extant amphibian phylogeny based on multiple nu-clear and mitochondrial genes (with little missing data), Roelantset al. (2007) showed weak support for relationships among hyloidfamilies, microhylid subfamilies, and the families of former ranids,but strong support for relationships among the major clades offrogs, salamanders, and caecilians. These same patterns of weakand strong support appear in our study (Fig. 1). Previous studiessuggest that these patterns of support are more likely to reflectunderlying branch lengths, such as weak support for shortbranches (Wiens et al., 2008), rather than impacts of missing data.

Our results and those of other studies suggest that extensivemissing data need not be an impediment to constructing large-scale phylogenies with the supermatrix approach. Nevertheless,one aspect of our sampling design may have greatly facilitatedthe integration of the different genes used in this study. Specifi-cally, 90% of the species had sequence data for the 16S gene and81% had data for 12S. Thus, most species had comparable datafor at least one gene, which may have greatly facilitated placingthem on the tree with only a limited amount of character data(Wiens et al., 2005b). Although it is possible to reconstruct a phy-logeny when missing and non-missing data are randomly distrib-uted among characters, the number of genes and charactersrequired to obtain accurate phylogenies may be much higher thanwhen the non-missing data are all in the same characters (e.g.,Wiens, 2003). A clear lesson for future studies is that adding taxato this large-scale phylogeny will be greatly facilitated if research-ers include these same 12S and 16S genes, along with widely sam-pled nuclear genes such as RAG-1. Increasing sampling of the othernuclear genes may be advantageous as well.

Acknowledgments

We thank the many researchers who made this study possiblethrough their detailed studies of amphibian phylogeny with a (mostly)shared set of molecular markers, and uploading their sequence data toGenBank. We would like to thank F.T. Burbrink (CUNY-CSI), J. Lom-bardo (CUNY-CSI), and T.J. Guiher (CUNY-CSI) for computational assis-tance, and D.R. Frost (AMNH) and A.M. Bauer (Villanova) for advice ontaxonomy. This research was supported in part by US National ScienceFoundation grants to R.A.P. (DBI-0905765), J.J.W. (EF 0334923), and theCUNY HPCC (CNS-0958379 and CNS-0855217). We would like to thankA. Larson, and two anonymous reviewers for helpful comments thatsubstantially improved this manuscript.

Appendix A. Description of new subfamilies

Pristimantinae subfam. nov. (family Craugastoridae)Type: genus and species Pristimantis galdi Jiménez de la

Espada, 1870.Content: four genera, >465 species; Lynchius, Oreobates,

Phrynopus, Pristimantis.Phylogenetic Definition: this subfamily consists of the most

recent common ancestor of Lynchius, Oreobates, Phrynopus,and Pristimantis, and all descendants thereof.

Distribution: these frogs are primarily restricted to the Andesand Amazon Basin of South America (Hedges et al., 2008).

Remarks: The four genera of this subfamily are grouped withstrong support (81% BS proportion; Fig. 2R), and we findweak support for their placement as the sister group toHoloadeninae (Fig. 2R).

Paratelmatobiinae subfam. nov. (family Leptodactylidae)Type: genus and species Paratelmatobius lutzii Lutz and

Carvalho 1958.Content: two genera, eight species; Paratelmatobius and

Scythrophrys.Phylogenetic Definition: this subfamily consists of the most

recent common ancestor of Paratelmatobius andScythrophrys, and all descendants thereof.

Distribution: these frogs are primarily restricted to southernand eastern Brazil (AW; ASW).

Remarks: The two genera of this subfamily are grouped withstrong support (93% BS proportion), and we find weaksupport for placing them as the sister group of Leiuperinae(Fig. 2AA).

Appendix B. Generic content of families and subfamilies

The list below accounts for all extant amphibian genera currentlyrecognized by AW and ASW, with family and subfamily classificationupdated to reflect our phylogenetic estimate and taxonomic changes.The 72 genera not sampled in our phylogeny are either included intheir previously delimited groups (when these were found to bestrongly supported), or considered incertae sedis (along with anysampled taxa explicitly delimited as such) when their placementwas ambiguous due to non-monophyly of previously recognizedhigher taxa. As noted above, Lissamphibia also contains numerousextinct taxa, including gymnophionans, caudates, and anurans,which are not considered here (Marjanovic and Laurin, 2007).

B.1. Gymnophiona

Caeciliidae: incertae sedis: (Atretochoana, Brasilotyphlus, Idiocra-nium, Indotyphlus, Microcaecilia, Mimosiphonops, Nectocaecilia, Par-

580 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

vicaecilia, Potomotyphlus, Sylvacaecilia); Caeciliinae (Caecilia,Chthonerpeton, Dermophis, Gegeneophis, Geotrypetes, Grandisonia,Gymnopis, Hypogeophis, Luetkenotyphlus, Oscaecilia, Praslinia,Typhlonectes, Schistometopum, Siphonops), Herpelinae (Herpele,Boulengerula), Scolecomorphinae (Crotaphotrema, Scolecomorphus);Ichthyophiidae: Caudacaecilia, Ichthyophis, Uraeotyphlus; Rhinatr-ematidae: Epicrionops, Rhinatrema.

B.2. Caudata

Ambystomatidae: Ambystoma; Amphiumidae: Amphiuma;Cryptobranchidae: Andrias, Cryptobranchus; Dicamptodontidae:Dicamptodon; Hynobiidae: Batrachuperus, Hynobius, Liua, Onycho-dactylus, Pachyhynobius, Paradactylodon, Protohynobius, Pseudohyno-bius, Ranodon, Salamandrella; Plethodontidae: Bolitoglossinae(Batrachoseps, Bolitoglossa, Bradytriton, Chiropterotriton, Cryptotriton,Dendrotriton, Ixalotriton, Lineatriton, Nototriton, Nyctanolis, Oedipina,Parvimolge, Pseudoeurycea, Thorius), Hemidactylinae (Hemidactyli-um), Plethodontinae (Aneides, Desmognathus, Ensatina, Hydromantes,Karsenia, Phaeognathus, Plethodon), Spelerpinae (Eurycea, Gyrinophi-lus, Haideotriton, Pseudotriton, Stereochilus, Urspelerpes); Proteidae:Necturus, Proteus; Rhyacotritonidae: Rhyacotriton; Salamandri-dae: Pleurodelinae (Calotriton, Cynops, Echinotriton, Euproctus,Ichthyosaura, Laotriton, Lissotriton, Neurergus, Notophthalmus,Ommatotriton, Pachytriton, Paramesotriton, Pleurodeles, Taricha, Trit-urus, Tylototriton), Salamandrinae (Chioglossa, Lyciasalamandra, Mer-tensiella, Salamandra), Salamandrininae (Salamandrina); Sirenidae:Siren, Pseudobranchus.

B.3. Anura

Incertae sedis in Hyloidea (Crossodactylodes, Rupirana,Zachaenus).

Allophrynidae: Allophryne; Alsodidae: Alsodes, Eupsophus, Lim-nomedusa; Alytidae: Alytes; Arthroleptidae: Arthroleptinae (Athro-leptis, Cardioglossa), Astylosterninae (Astylosternus, Leptodactylodon,Nyctibates, Scotobleps, Trichobatrachus), Leptopelinae (Leptopelis);Ascaphidae: Ascaphus; Batrachylidae: Atelognathus, Batrachyla;Bombinatoridae: Barbaroula, Bombina; Brachycephalidae: Brachy-cephalus, Ischnocnema; Brevicipitidae: Balebreviceps, Breviceps,Callulina, Probreviceps, Spelaeophryne; Bufonidae: Adenomus, Altiph-rynoides, Andinophryne, Ansonia, Atelopus, Bufo, Bufoides, Capensi-bufo, Churamiti, Crepidophryne, Dendrophryniscus, Didynamipus,Frostius, Laurentophryne, Leptophryne, Melanophryniscus, Merten-sophryne, Metaphryniscus, Nectophryne, Nectophrynoides, Nimbaph-rynoides, Oreophrynella, Osornophryne, Parapelophryne, Pedostibes,Pelophryne, Pseudobufo, Rhamphophryne, Sabahphrynus, Schismader-ma, Spinophrynoides, Stephopaedes, Truebella, Werneria, Wolterstorffi-na; Calyptocephalellidae: Calyptocephalella, Telmatobufo;Centrolenidae: Centroleninae (Centrolene, Chimerella, Cochranella,Espadarana, Ikakogi, Nymphargus, Rulyrana, Sachatamia, Teratohyla,Vitreorana), Hyalinobatrachinae (Celsiella, Hyalinobatrachium); Cer-atobatrachidae: Batrachylodes, Ceratobatrachus, Discodeles, Inger-ana, Palmatorappia, Platymantis; Ceratophryidae: Ceratophrys,Chacophrys, Lepidobatrachus; Ceuthomantidae: Ceuthomantis; Con-rauidae: Conraua; Craugastoridae: incertae sedis (Atopophrynus,Dischiodactylus, Geobatrachus, Hypodactylus, Mucubatrachus, Nicef-oronia, Paramophrynella), Craugastorinae (Craugastor, Haddadus),Holoadeninae (Barycholos, Bryophryne, Euparkerella, Holoaden,Noblella, Psychrophrynella), Pristimantinae (Lynchius, Oreobates,Phrynopus, Pristimantis), Strabomantinae (Strabomantis); Cycloram-phidae: Cycloramphus, Thoropa; Dendrobatidae: Allobates, Ameere-ga, Anomaloglossus, Aromobates, Colostethus, Dendrobates,Epipedobates, Hyloxalus, Mannophryne, Phyllobates, Rheobates,Silverstoneia; Dicroglossidae: Dicroglossinae (Chaparana, Chirixalus,Euphlyctis, Fejervarya, Hoplobatrachus, Limnonectes, Nannophrys,

Nanorana, Paa, Sphaerotheca), Occidozyginae (Ingerana, Occidozyga);Discoglossidae: Discoglossus; Eleutherodactylidae: Eleutherodac-tylinae (Diasporus, Eleutherodactylus), Phyzelaphryninae (Adeloph-ryne, Phyzelaphryne); Heleophrynidae: Hadromophryne,Heleophryne; Hemiphractidae: Cryptobatrachus, Flectonotus, Gas-trotheca, Hemiphractus, Stefania; Hemisotidae: Hemisus; Hylidae:Hylinae (Acris, Anotheca, Aparasphenodon, Aplastodiscus,Argenteohyla, Bokermannohyla, Bromeliohyla, Charadrahyla, Corytho-mantis, Dendropsophus, Diaglena, Duellmanohyla, Ecnomiohyla, Exer-odonta, Hyla, Hyloscirtus, Hypsiboas, Isthmohyla, Itapotihyla,Megastomatohyla, Myersiohyla, Nyctimantis, Osteocephalus, Osteopi-lus, Phyllodytes, Plectrohyla, Pseudacris, Pseudis, Ptychohyla, Scarthyla,Scinax, Smilisca, Sphaenorhynchus, Tepuihyla, Tlalocohyla, Trachy-cephalus, Triprion, Xenohyla), Pelodryadinae (Litoria), Phyllomedusi-nae (Agalychnis, Cruziohyla, Hylomantis, Pachymedusa, Phasmahyla,Phrynomedusa, Phyllomedusa); Hylodidae: Crossodactylus, Hylodes,Megaelosia; Hyperoliidae: Acanthixalus, Afrixalus, Alexteroon, Arl-equinus, Callixalus, Chlorolius, Chrysobatrachus, Cryptothylax, Heterix-alus, Hyperolius, Kassina, Kassinula, Morerella, Opisthothylax,Paracassina, Phlyctimantis, Semnodactylus, Tachycnemis; Leiopel-matidae: Leiopelma; Leptodactylidae: Leptodactylinae (Adenomera,Hydrolaetere, Leptodactylus, Lithodytes), Leiuperinae (Edalorhina,Engystomops, Eupemphix, Physalaemus, Pleurodema, Pseudopaludico-la, Somuncuria), Paratelmatobiinae (Paratelmatobius, Scythrophrys);Mantellidae: Boophinae (Boophis), Laliostominae (Aglyptodactylus,Laliostoma), Mantellinae (Blommersia, Boehmantis, Gephyromantis,Guibemantis, Mantella, Mantidactylus, Spinomantis, Tsingymantis,Wakea); Megophryidae: Borneophrys, Brachytarsophrys, Leptobrach-ella, Leptobrachium, Leptolalax, Megophrys, Ophryophryne, Oreolalax,Scutiger, Vibrissaphora, Xenophrys; Micrixalidae: Micrixalus; Micro-hylidae: incertae sedis (Gastrophrynoides, Paramophrynella),Asterophryninae (Albericus, Aphantophryne, Asterophrys, Austrocha-perina, Barygenys, Callulops, Choerophryne, Cophixalus, Copiula, Geny-ophryne, Hylophorbus, Liophryne, Mantophryne, Oreophryne,Oxydactyla, Pherohapsis, Sphenophryne, Xenorhina), Cophylinae(Anodonthyla, Cophyla, Madecassophryne, Platypelis, Plethodontohyla,Rhombophryne, Stumpffia), Dyscophinae (Dyscophus), Gastrophryni-nae (Adelastes, Altigius, Arcovomer, Chiasmocleis, Ctenophryne, Dasy-pops, Dermatonotus, Elachistocleis, Gastrophryne, Hamptophryne,Hyophryne, Hypopachus, Melanophryne, Myersiella, Nelsonophryne,Relictivomer, Stereocyclops, Syncope), Hoplophryninae (Hoplophryne,Parhoplophryne), Kalophryninae (Kalophrynus), Melanobatrachinae(Melanobatrachus), Microhylinae (Calluella, Chaperina, Glyphoglos-sus, Kaloula, Metaphrynella, Microhyla, Micryletta, Ramanella, Uper-odon), Otophryninae (Otophryne, Synapturanus), Phrynomerinae(Phrynomantis), Scaphiophryne (Paradoxophyla, Scaphiophryne);Myobatrachidae: Limnodynastinae (Adelotus, Heleioporus, Lechrio-dus, Limnodynastes, Mixophyes, Neobatrachus, Notaden, Philoria,Platyplectrum, Pseudophryne), Myobatrachinae (Arenophryne, Assa,Crinia, Geocrinia, Metacrinia, Myobatrachus, Paracrinia, Rheobatra-chus, Spicospina, Taudactylus, Uperoleia); Nasikabatrachidae: Nasik-abatrachus; Nyctibatrachidae: Lankanectes, Nyctibatrachus;Odontophrynidae: Macrogenioglottus, Odontophrynus, Proceratoph-rys; Pelobatidae: Pelobates; Pelodytidae: Pelodytes; Petropedeti-dae: Petropedetes; Phrynobatrachidae: Phrynobatrachus; Pipidae:Hymenochirus, Pipa, Pseudhymenochirus, Silurana, Xenopus; Ptycha-denidae: Hildebrandtia, Lanzarana, Ptychadena; Pyxicephalidae:Cacosterninae (Amietia, Anhydrophryne, Arthroleptella, Cacosternum,Ericabatrachus, Microbatrachella, Natalobatrachus, Nothophryne,Poyntonia, Strongylopus, Tomopterna), Pyxicephalinae (Aubria,Pyxicephalus); Ranidae: Amnirana, Amolops, Huia, Hylarana, Meris-togenys, Odorrana, Pseudoamolops, Pterorana, Rana, Staurois; Ranix-alidae: Indirana; Rhacophoridae: Buergeriinae (Buergeria),Rhacophorinae (Chiromantis, Dendrobatorana, Feihyla, Ghatixalus,Gracixalus, Kurixalus, Liuixalus, Nyctixalus, Philautus, Polypedates,Rhacophorus, Theloderma), Rhinodermatidae: Insuetophrynus,

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 581

Author's personal copy

Rhinoderma; Rhinophrynidae: Rhinophrynus; Scaphiopodidae:Scaphiopus, Spea; Sooglossidae: Sechellophryne, Sooglossus; Telma-tobiidae: Batrachophrynus, Telmatobius.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, inthe online version, at doi:10.1016/j.ympev.2011.06.012.

References

Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale,G., Harmon, L.J., 2009. Nine exceptional radiations plus high turnover explainspecies diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA 106, 13410–13414.

Biju, S.D., Bossuyt, F., 2003. New frog family from India reveals an ancientbiogeographical link with the Seychelles. Nature 425, 711–714.

Blaustein, A.R., Wake, D.B., 1990. Declining amphibian populations – a globalphenomenon. Trends Ecol. Evol. 5, 203–204.

Bossuyt, F., Roelants, K., 2009. Anura. In: Hedges, S.B., Kumar, S. (Eds.), The Timetreeof Life. Oxford University Press, New York, pp. 357–364.

Bossuyt, F., Brown, R.M., Hillis, D.M., Cannatella, D.C., Milinkovitch, M.C., 2006.Phylogeny and biogeography of a cosmopolitan frog radiation: late Cretaceousdiversification resulted in continent-scale endemism in the family Ranidae.Syst. Biol. 55, 579–594.

Camp, C.D., Peterman, W.E., Milanovich, J.R., Lamb, T., Maerz, J.C., Wake, D.B., 2009.A new genus and species of lungless salamander (family Plethodontidae) fromthe Appalachian highlands of the south-eastern United States. J. Zool. 279, 86–94.

Carroll, R.L., 2009. The Rise of Amphibians: 365 Million Years of Evolution. JohnsHopkins University Press, Baltimore.

Chippindale, P.T., Bonett, R.M., Baldwin, A.S., Wiens, J.J., 2004. Phylogenetic evidencefor a major reversal of life-history evolution in plethodontid salamanders.Evolution 58, 2809–2822.

Darst, C.R., Cannatella, D.C., 2004. Novel relationships among hyloid frogs inferredfrom 12S and 16S mitochondrial DNA sequences. Mol. Phylogenet. Evol. 31,462–475.

de Queiroz, A., Gatesy, J., 2007. The supermatrix approach to systematics. TrendsEcol. Evol. 22, 34–41.

Driskell, A.C., Ane, C., Burleigh, J.G., McMahon, M.M., O’Meara, B.C., Sanderson, M.J.,2004. Prospects for building the Tree of Life from large sequence databases.Science 306, 1172–1174.

Duellman, W.E., 1999. Patterns of Distribution of Amphibians: A Global Perspective.Johns Hopkins University Press, Baltimore.

Duellman, W.E., Trueb, L., 1994. Biology of Amphibians. Johns Hopkins UniversityPress, Baltimore.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy andhigh throughput. Nucl. Acids Res. 32, 1792–1797.

Faivovich, J., Haddad, C.F.B., Garcia, P.C.A., Frost, D.R., Campbell, J.A., Wheeler, W.C.,2005. Systematic review of the frog family Hylidae, with special reference toHylinae: phylogenetic analysis and taxonomic revision. Bull. Am. Mus. Natl.Hist. 294, 6–228.

Faivovich, J., Haddad, C.F.B., Baeta, D., Jungfer, K.H., Alvares, G.F.R., Brandao, R.A.,Sheil, C., Barrientos, L.S., Barrio-Amoros, C.L., Cruz, C.A.G., Wheeler, W.C., 2010.The phylogenetic relationships of the charismatic poster frogs,Phyllomedusinae (Anura, Hylidae). Cladistics 26, 227–261.

Feller, A.E., Hedges, S.B., 1998. Molecular evidence for the early history of livingamphibians. Mol. Phylogenet. Evol. 9, 509–516.

Felsenstein, J., 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Mass.Frost, Darrel, R., 2011. Amphibian Species of the World: an Online Reference.

Version 5.5 (31 January, 2011). American Museum of Natural History, NewYork, USA. Electronic Database accessible at http://research.amnh.org/vz/herpetology/amphibia/.

Frost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F.B., De Sa, R.O.,Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A.,Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M.,Wheeler, W.C., 2006. The amphibian tree of life. Bull. Am. Mus. Natl. Hist. 297,8–370.

Grant, T., Frost, D.R., Caldwell, J.P., Gagliardo, R., Haddad, C.F.B., Kok, P.J.R., Means,D.B., Noonan, B.P., Schargel, W.E., Wheeler, W.C., 2006. Phylogeneticsystematics of dart-poison frogs and their relatives (Amphibia:Athesphatanura: Dendrobatidae). Bull. Am. Mus. Natl. Hist. 299, 6–262.

Guayasamin, J.M., Castroviejo-Fisher, S., Trueb, L., Ayarzaguena, J., Rada, M., Vila, C.,2009. Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) andtheir sister taxon Allophryne ruthveni. Zootaxa 2100, 1–97.

Günther, A.C.L.G., 1858. On the systematic arrangement of the tailless batrachiansand the structure of Rhinophrynus dorsalis. Proc. Zool. Soc. Lond. 1858, 339–352.

Hedges, S.B., Duellman, W.E., Heinicke, M.P., 2008. New World direct-developingfrogs (Anura: Terrarana): molecular phylogeny, classification, biogeography,and conservation. Zootaxa 1737, 1–182.

Heinicke, M.P., Duellman, W.E., Trueb, L., Means, D.B., MacCulloch, R.D., Hedges, S.B.,2009. A new frog family (Anura: Terrarana) from South America and an

expanded direct-developing clade revealed by molecular phylogeny. Zootaxa2211, 1–35.

Hugall, A.F., Foster, R., Lee, M.S.Y., 2007. Calibration choice, rate smoothing, and thepattern of tetrapod diversification according to the long nuclear gene RAG-1.Syst. Biol. 56, 543–563.

Kozak, K.H., Mendyk, R.W., Wiens, J.J., 2009. Can parallel diversification occur insympatry? Repeated patterns of body-size evolution in coexisting clades ofNorth American salamanders. Evolution 63, 1769–1784.

Lannoo, M.J., 2005. Amphibian Declines: The Conservation Status of United StatesSpecies. University of California Press, Berkeley.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam,H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J.,Higgins, D.G., 2007. ClustalW and ClustalX version 2.0. Bioinformatics 23, 2947–2948.

Laurent, R.F., 1984. Heterogeneidad de la familia Caeciliidae (Amphibia–Apoda).Acta Zool. Lilloana 37, 199–200.

Lynch, J.D., 1971. Evolutionary relationships, osteology, and zoogeography ofleptodactyloid frogs. Misc. Pub. Mus. Natl. Hist. Kansas 58, 1–238.

Marjanovic, D., Laurin, M., 2007. Fossils, molecules, divergence times, and the originof lissamphibians. Syst. Biol. 56, 369–388.

McMahon, M.M., Sanderson, M.J., 2006. Phylogenetic supermatrix analysis ofGenBank sequences from 2228 papilionoid legumes. Syst. Biol. 55, 818–836.

Miranda-Ribeiro, A.D., 1920. Algumas consideracões sobre Holoaden lüderwaldti egeneros correlatos. Rev. Mus. Paulista, São Paulo 12, 319–320.

Pauly, G.B., Hillis, D.M., Cannatella, D.C., 2004. The history of a Nearcticcolonization: molecular phylogenetics and biogeography of the NearcticToads (Bufo). Evolution 58, 2517–2535.

Pauly, G.B., Hillis, D.M., Cannatella, D.C., 2009. Taxonomic freedom and the role ofofficial lists of species names. Herpetologica 65, 115–128.

Peng, R., Zhang, P., Xiong, J.-L., Gu, H.-J., Zeng, X.-M., Zou, F.-D., 2010. Rediscovery ofProtohynobius puxiongensis (Caudata: Hynobiidae) and its phylogenetic positionbased on complete mitochondrial genomes. Mol. Phylogenet. Evol. 56, 252–258.

Pramuk, J.B., Robertson, T., Sites, J.W., Noonan, B.P., 2008. Around the world in 10million years: biogeography of the nearly cosmopolitan true toads (Anura:Bufonidae). Glob. Ecol. Biogeogr. 17, 72–83.

Pyron, R.A., 2010. A likelihood method for assessing molecular divergence timeestimates and the placement of fossil calibrations. Syst. Biol. 59, 185–194.

Pyron, R.A., 2011. Divergence time estimation using fossils as terminal taxa and theorigins of Lissamphibia. Syst. Biol. 60, 466–481.

Pyron, R.A., Burbrink, F.T., 2009. Systematics of the Common Kingsnake(Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage intaxonomy. Zootaxa 2241, 22–32.

Pyron, R.A., Burbrink, F.T., Colli, G.R., de Oca, A.N.M., Vitt, L.J., Kuczynski, C.A., Wiens,J.J., 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of anew subfamily and comparison of support methods for likelihood trees. Mol.Phylogenet. Evol. 58, 329–342.

Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau,L., Bossuyt, F., 2007. Global patterns of diversification in the history of modernamphibians. Proc. Natl. Acad. Sci. USA 104, 887–892.

San Mauro, D., 2010. A multilocus timescale for the origin of extant amphibians.Mol. Phylogenet. Evol. 56, 554–561.

San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R., Meyer, A., 2005. Initialdiversification of living amphibians predated the breakup of Pangaea. Am. Nat.165, 590–599.

San Mauro, D., Gower, D.J., Massingham, T., Wilkinson, M., Zardoya, R., Cotton, J.A.,2009. Experimental design in caecilian systematics: phylogenetic informationof mitochondrial genomes and nuclear RAG1. Syst. Biol. 58, 425–438.

Santos, J.C., Coloma, L.A., Summers, K., Caldwell, J.P., Ree, R., Cannatella, D.C., 2009.Amazonian amphibian diversity is primarily derived from Late Miocene Andeanlineages. PLoS Biol. 7, 448–461.

Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogeneticanalyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L.,Waller, R.W., 2004. Status and trends of amphibian declines and extinctionsworldwide. Science 306, 1783–1786.

Thomson, R.C., Shaffer, H.B., 2010. Sparse supermatrices for phylogenetic inference.taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst. Biol.59, 42–58.

Van Bocxlaer, I., Biju, S.D., Loader, S.P., Bossuyt, F., 2009. Toad radiation reveals into-India dispersal as a source of endemism in the Western Ghats–Sri Lankabiodiversity hotspot. BMC Evol. Biol. 9, 131.

van der Meijden, A., Vences, M., Hoegg, S., Boistel, R., Channing, A., Meyer, A., 2007.Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and adiscussion of competing hypotheses concerning their biogeographical origins.Mol. Phylogenet. Evol. 44, 1017–1030.

Vieites, D.R., Wollenberg, K.C., Andreone, F., Kohler, J., Glaw, F., Vences, M., 2009.Vast underestimation of Madagascar’s biodiversity evidenced by an integrativeamphibian inventory. Proc. Natl. Acad. Sci. USA 106, 8267–8272.

Vieites, D.R., Roman, S.R., Wake, M.H., Wake, D.B., 2011. A multigenic perspective onphylogenetic relationships in the largest family of salamanders, thePlethodontidae. Mol. Phylogenet. Evol. 59, 623–635.

Wiens, J.J., 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Syst.Biol. 52, 528–538.

Wiens, J.J., 2007a. Global patterns of diversification and species richness inamphibians. Am. Nat. 170, S86–S106.

582 R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583

Author's personal copy

Wiens, J.J., 2007b. Review of ‘‘The amphibian tree of life’’ by Frost et al. Quart. Rev.Biol. 82, 55–56.

Wiens, J.J., 2008. Systematics and herpetology in the age of genomics. Bioscience 58,297–307.

Wiens, J.J., 2011. Re-evolution of lost mandibular teeth in frogs after more than 200million years, and re-evaluating Dollo’s law. Evolution 65, 1283–1296.

Wiens, J.J., Morrill, M.C., 2011. Missing data in phylogenetic analysis: reconcilingresults from simulations and empirical data. Syst. Biol. doi:10.1093/sysbio/syr025.

Wiens, J.J., Bonett, R.M., Chippindale, P.T., 2005a. Ontogeny discombobulatesphylogeny: paedomorphosis and higher-level salamander relationships. Syst.Biol. 54, 91–110.

Wiens, J.J., Fetzner, J.W., Parkinson, C.L., Reeder, T.W., 2005b. Hylid frog phylogenyand sampling strategies for speciose clades. Syst. Biol. 54, 719–748.

Wiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A., Reeder, T.W., 2006. Evolutionaryand ecological causes of the latitudinal diversity gradient in hylid frogs: treefrogtrees unearth the roots of high tropical diversity. Am. Nat. 168, 579–596.

Wiens, J.J., Kuczynski, C.A., Duellman, W.E., Reeder, T.W., 2007a. Loss and re-evolution of complex life cycles in marsupial frogs: does ancestral traitreconstruction mislead? Evolution 61, 1886–1899.

Wiens, J.J., Parra-Olea, G., Garcia-Paris, M., Wake, D.B., 2007b. Phylogenetic historyunderlies elevational biodiversity patterns in tropical salamanders. Proc. Roy.Soc. Lond. B – Biol. Sci. 274, 919–928.

Wiens, J.J., Kuczynski, C.A., Smith, S.A., Mulcahy, D.G., Sites, J.W., Townsend, T.M.,Reeder, T.W., 2008. Branch lengths, support, and congruence: testing thephylogenomic approach with 20 nuclear loci in snakes. Syst. Biol. 57, 420–431.

Wiens, J.J., Sukumaran, J., Pyron, R.A., Brown, R.M., 2009. Evolutionary andbiogeographic origins of high tropical diversity in Old World frogs (Ranidae).Evolution 63, 1217–1231.

Wiens, J.J., Kuczynski, C.A., Hua, X., Moen, D.S., 2010. An expanded phylogeny oftreefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol.Phylogenet. Evol. 55, 871–882.

Zhang, P., Wake, D.B., 2009a. Higher-level salamander relationships and divergencedates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol.53, 492–508.

Zhang, P., Wake, M.H., 2009b. A mitogenomic perspective on the phylogeny andbiogeography of living caecilians (Amphibia: Gymnophiona). Mol. Phylogenet.Evol. 53, 479–491.

Zhang, P., Zhou, H., Chen, Y.Q., Liu, Y.F., Qu, L.H., 2005. Mitogenomic perspectives onthe origin and phylogeny of living amphibians. Syst. Biol. 54, 391–400.

R. Alexander Pyron, J.J. Wiens / Molecular Phylogenetics and Evolution 61 (2011) 543–583 583