automated fitting of high-resolution spectra of haebe stars improving fundamental parameters jason...

38
Automated Fitting Automated Fitting of High-Resolution of High-Resolution Spectra of HAeBe Spectra of HAeBe stars stars Improving fundamental Improving fundamental parameters parameters Jason Grunhut Jason Grunhut Queen’s University/RMC Queen’s University/RMC

Upload: trevor-parker

Post on 18-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Automated Fitting Automated Fitting of High-Resolution of High-Resolution Spectra of HAeBe Spectra of HAeBe

starsstarsImproving fundamental Improving fundamental parametersparameters

Jason GrunhutJason GrunhutQueen’s University/RMCQueen’s University/RMC

Page 2: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

MotivationMotivation Common ways to Common ways to

determine temperaturedetermine temperature PhotometryPhotometry SEDSED

ProblemsProblems Extinction/emission and Extinction/emission and

calibrationscalibrations Many corrections necessaryMany corrections necessary

Take advantage of high-res Take advantage of high-res ESPaDOnS spectraESPaDOnS spectra Minimal corrections requiredMinimal corrections required

Page 3: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Full ESPaDOnS Spectral Range Full ESPaDOnS Spectral Range 11000 K synthetic model11000 K synthetic model

Page 4: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Full ESPaDOnS Spectral Range Full ESPaDOnS Spectral Range 11000 K synthetic model11000 K synthetic model

Page 5: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Spectrum variation with temperature Spectrum variation with temperature from nearest Kurucz models (from nearest Kurucz models (±500 K)±500 K)

Page 6: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Spectrum variation with temperature Spectrum variation with temperature from nearest Kurucz models (from nearest Kurucz models (±500 K)±500 K)

Page 7: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Automated Fitting of Automated Fitting of SpectraSpectra

Search through a pre-defined grid of Search through a pre-defined grid of synthetic spectra.synthetic spectra. 4200-5200 Angstroms4200-5200 Angstroms Solar abundances.Solar abundances. Most current VALD line list.Most current VALD line list. Micro-turbulent velocity of 2 km/s.Micro-turbulent velocity of 2 km/s. No macro-turbulence.No macro-turbulence. Models computed using synth3Models computed using synth3 Grid from 6500-35000 K, log(g) from Grid from 6500-35000 K, log(g) from

3.0-5.03.0-5.0 100 K resolution up to 20000 K, 200 K 100 K resolution up to 20000 K, 200 K

resolution from then up.resolution from then up.

Page 8: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

How Program WorksHow Program Works

Radial velocity is first determined Radial velocity is first determined based on suggested model.based on suggested model.

Projected rotational velocity is fit for Projected rotational velocity is fit for each model in the specified range each model in the specified range (computed using slightly modified (computed using slightly modified s3dIV code).s3dIV code).

Model with minimum chi-square Model with minimum chi-square represents best fit.represents best fit.

Radial velocity is fit for a final time Radial velocity is fit for a final time for best model.for best model.

Page 9: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Theoretical Results for Theoretical Results for 11000 K synthetic model 11000 K synthetic model

with vsini of with vsini of 40 km/s40 km/s

CLEAR MINIMUM

EXISTS

Page 10: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Chi-Square MapChi-Square MapHD 17081HD 17081

• Using chi-square map, can estimate uncertainties.

• Using 3 parameter fitting space, chi-square difference of 21.1 represents a formal 99.99% confidence level.

• closest model has greater than 2300 chi-square difference

Page 11: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Theoretical ResultsTheoretical Results

• Investigated

• SNR

• vsini

• varying Fe abundance

• random noise to log(gf) values

• micro/macro turbulence

• binaries

• normalization

• conclusion

• other than binaries, for reasonable variations, ~100-200 K uncertainties

Page 12: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

ResultsResultsNameName Metallic Metallic

LinesLines(Teff, (Teff,

Log(g))Log(g))

ReducReduced ed χχ22

HHγγ(Teff, Log(g))(Teff, Log(g))

HHββ(Teff, (Teff,

Log(g))Log(g))

Literature Literature

ValueValue

HD HD 142666142666

7700, 4.07700, 4.0 6.686.68 7300, 3.57300, 3.5 7500, 4.57500, 4.5 85008500

HD HD 144432144432

7700, 4.07700, 4.0 7.167.16 7200, 3.07200, 3.0 7400, 4.57400, 4.5 79507950

HD 17081HD 17081 13700, 13700, 4.04.0

6.216.21 11800, 3.511800, 3.5 12000, 12000, 4.04.0

1230012300

HD HD 244604244604

8600, 3.58600, 3.5 5.295.29 8200, 4.08200, 4.0 8100, 4.08100, 4.0 ~9500~9500

HD 31648HD 31648 8200, 3.58200, 3.5 25.7725.77 8300, 4.08300, 4.0 8300, 4.08300, 4.0 8700 8700 ± ± 10051005

HD 34282HD 34282 10200, 10200, 4.54.5

2.232.23 9800, 4.59800, 4.5 10100, 10100, 4.54.5

8700 8700 +410/-198+410/-198

HD 35187HD 35187 9200, 4.09200, 4.0 4.664.66 8700, 4.08700, 4.0 8600, 4.08600, 4.0 9100 9100 ± ± 420420

HD 36112HD 36112 7900, 4.07900, 4.0 5.365.36 8000, 5.08000, 5.0 8100, 5.08100, 5.0 7750 7750 ± ± 358358

HD 53367HD 53367 31200, 31200, 4.54.5

3.613.61 29200, 4.029200, 4.0 31400, 31400, 4.04.0

31600 31600 ± ± 36503650

Page 13: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 17081HD 17081

• B7IV Classification

•Best Fit

• 13700 K

• Log(g)=4.0

• vsini=20 km/s

• Literature Results

• ~12300 K

Page 14: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 17081HD 17081

Page 15: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 17081HD 17081

Page 16: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 17081 Balmer FitsHD 17081 Balmer Fits

Best Fit: 11800 K, Log(g)=3.5

Best Fit: 12000 K, Log(g)=4.0

Page 17: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 34282HD 34282

• A0e+sh Classification

• Best Fit

• 10200 K

• Log(g)=4.5

• vsini=108 km/s

•Literature Results

• ~8700 (+410,-198) K

Page 18: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 34282HD 34282

Page 19: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 34282 Balmer FitsHD 34282 Balmer Fits

Best Fit: 9800 K, Log(g)=4.5

Best Fit: 10100 K, Log(g)=4.5

Page 20: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 36112HD 36112

• A8e Classification

• Best Fit

• 7900 K

• Log(g)=4.0

• vsini=52 km/s

• Literature Results

• ~7700 K

Page 21: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 36112HD 36112

Page 22: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 36112 Balmer FitsHD 36112 Balmer Fits

Best Fit: 8000 K, Log(g)=5.0

Best Fit: 8100 K, Log(g)=5.0

Page 23: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 31648HD 31648

• A3pshe+ Classification

• Best Fit

• 8200 K

• Log(g)=3.5

• vsini=95 km/s

• Literature Results

• 8700 K

• 9250 K, Log(g)=3.5

Page 24: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 31648HD 31648

Page 25: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Difficult Stars:Difficult Stars:BF OriBF Ori

• A5II-IIIe var

• Best Fit

• ~7500

• Log(g)~4.0

• vsini~53 km/s

• Literature Results

• 6750

Page 26: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

BF OriBF Ori

Page 27: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HR DIAGRAM:HR DIAGRAM:New TemperaturesNew Temperatures

Page 28: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HR Diagram:HR Diagram:New Temperatures and New Temperatures and

DistancesDistances

Page 29: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HR Diagram:HR Diagram:New Temperatures and New Temperatures and Computed PhotometryComputed Photometry

Page 30: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

FUTURE WORKFUTURE WORK Automated fitting for all field HAeBe stars Automated fitting for all field HAeBe stars

with ESPaDOnS observations.with ESPaDOnS observations. Use improved temperatures to improve Use improved temperatures to improve

mass and age estimates.mass and age estimates. Use Bayesian statistical approach to Use Bayesian statistical approach to

improving luminosities.improving luminosities.Major IssuesMajor Issues

Abundances for chemically peculiar stars.Abundances for chemically peculiar stars. Micro/macro turbulence.Micro/macro turbulence. Systematic normalization issues.Systematic normalization issues.

Page 31: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

THE ENDTHE END

Page 32: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Balmer Line Normalization: Balmer Line Normalization: HD36112HD36112

Page 33: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Balmer Line Normalization: Balmer Line Normalization: HD139614HD139614

Page 34: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Balmer Line Normalization:Balmer Line Normalization:Comparison between ESPaDOnS Comparison between ESPaDOnS

and FORS1and FORS1HD 36112

Page 35: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Uncertainty vs SNRUncertainty vs SNRFor 15000 K synthetic model with 40 For 15000 K synthetic model with 40

km/s vsini.km/s vsini.

Page 36: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

15000 K synthetic model 15000 K synthetic model with with

40 km/s vsini40 km/s vsini

Page 37: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

Difficult stars:Difficult stars:HD 31293HD 31293

Page 38: Automated Fitting of High-Resolution Spectra of HAeBe stars Improving fundamental parameters Jason Grunhut Queen’s University/RMC

HD 31293HD 31293