automática. ejercicios capítulo 4. respuesta de … · respuesta de régimen transitorio...

42

Upload: duongphuc

Post on 20-Sep-2018

250 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

DepartamentodeTecnologíaElectrónicaeIngenieríadeSistemasyAutomáca

JoséRamónLlataGarcíaEstherGonzálezSarabiaDámasoFernándezPérezCarlosTorreFerrero

MaríaSandraRoblaGómez

Capítulo4.RespuestadeRégimenTransitorioEjercicios

Automáca

Page 2: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

EJERCICIO 4.1.

Calcular los valores de K y Kh para que el sistema tenga una respuesta con un

sobreimpulso del 20% y un tiempo de 1sg.

G(s)+ -

R(s) Y(s)

H(s)

)1s(s

K)s(G

; sK1)s(H h

Ks)KK1(s

K

)1s(s

)sK1(K1

)1s(s

K

)s(Mh

2h

0.45= 2.0eM21

p

sg/rad w sg1w

t dd

p

rad/sg 3.52=w 1ww n2

nd

22

2

52.3s168.3s

52.3)s(M

Ks)KK1(s

K)s(M

h2

39.1252.3K 2

16.3KK1 h

178.039.12/16.2Kh

1

Page 3: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

EJERCICIO 4.2.

Dada la respuesta del siguiente sistema a una entrada escalón unidad, calcular k, f y M.

k F

x

Mf

3.285

kfsMs

1)s(G

2

n2

n2

n2

wsw2s

wC)s(G

Comparando ambas expresiones se tiene:

Mkwn ; )Mk2(f ; k/1C

095.03

3285.3

)(c

)(c)t(cM p

p

0.6= 095.0eM21

p

sg/rad 96.1 w sg21w

t n2n

p

3)s(sXlim)(x0s

2

Page 4: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

3kfsMs

1lim

s

1)s(sGlim

20s0s

3k/1C

m/N3/1k

96.1Mkw n 22 96.13

1

96.1

kM

Kg087.0M

6.0)Mk2(f 3

1087.026.0Mk26.0

)sg/m/(N204.0f

EJERCICIO 4.3.

Para el sistema de la figura siguiente, calcular el valor de K y p para que cumpla:

%5Mp sg4ts

G(s)+ -

R(s) Y(s)

)ps(s

K)s(G

Kpss

K)s(M

2

n2

n2

n2

wsw2s

w)s(M

0.69 05.0eM21

p

sg/rad 13.1 w sg4w

t nn

s

º36.46)(ArcCos

78.013.1*69.0wn

jw

Re

-0.78

kpss

K)s(M

2

27.1wK 2n

56.113.169.022p n

3

Page 5: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

EJERCICIO 4.4.

Para el sistema de la figura siguiente, donde )6s(s

25)s(G

Calcular: - Tiempo de subida - Tiempo de pico. - Sobreimpulso. - Tiempo de asentamiento.

G(s)+ -

R(s) Y(s)

25s6s

25

)6s(s

251

)6s(s

25

)s(G1

)s(G)s(M

2

6.0 ;sg/rad5wn

- Tiempo de Subida:

dr

wt

sg/rad927.0)6.0(ArcCos)(ArcCos

sg/rad46.0151ww 22nd

sg55.04

927.0tr

- Tiempo de Pico:

dp w

t

sg785.04

tp

- Sobreimpulso:

21p eM

%5.9095.0eM26.01

6.0

p

4

Page 6: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

Tiempo de asentamiento:

ns w

t

sg05.15*6.0

ts

EJERCICIO 4.5.

Para el sistema del ejercicio 1.1. suponiendo:

);sg/m/(N1f ;kg1M ;m/N1k

;N1)t(F

Obtener la respuesta temporal del sistema ante un escalón unitario

Del ejercicio 1.1 se tiene:

kfsMs

1

)s(F

)s(X2

Aplicando una fuerza escalón unitario la salida del sistema será:

s

1

)1ss(

1)s(X

2

2222 866.0)5.0s(

866.0

866.0

5.0

866.0)5.0s(

5.0s

s

1)s(X

5

Page 7: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Aplicando tablas de transformadas:

)t866.0(Sene576.0)t866.0(Cose1)t(x t5.0t5.0

EJERCICIO 4.6.

Para el sistema del ejercicio 1.3. suponiendo:

mN 1=k ;m/sgN 1=2f=1f ;Kg 5.02M ;Kg 11M

Calcular la respuesta temporal del sistema ante una entrada escalón unitario.

En el ejercicio 2.3 se obtuvo las funciones de transferencia que relacionaban las variables del sistema:

2222211

221

fskfsMffsM

skfsM

)s(F

)s(V

2222211

22

fskfsMffsM

f

)s(F

)s(V

Sustituyendo por los valores:

2s2s2s5.0

1ss5.0

1s11s5.02s

s11s5.0

)s(F

)s(V23

21

6

Page 8: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

s

1

)2s2s2s5.0(

1ss5.0)s(V

23

2

1

221043.1435.0s

086.0s288.0

13.3s

212.0

s

5.0)s(V

Aplicando las tablas de transformadas de Laplace:

t435.0t13.31 e)613.0t043.1cos(353.0e212.05.0)t(v

2s2s2s5.0

s

1s11s5.02s

1

)s(F

)s(V23

2

s

1

)2s2s2s5.0(

s)s(V

232

222043.1435.0s

541.0s239.0

13.3s

239.0)s(V

Aplicando las tablas de transformadas de Laplace:

t435.0t13.32 e)369.0t043.1sen(663.0e239.0)t(v

0 2 4 6 8 10-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v1(t)

v2(t)

Tiempo (s)

7

Page 9: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

EJERCICIO 4.7.

Para el sistema del ejercicio 1.10. si se aplica una fuerza f(t) de 1 Newton, calcular:

- Posición del deslizador en estado estacionario. - Posición máxima a la que llega.

En el ejercicio 1.10. se obtuvo la función de transferencia del sistema linealizada en torno del punto de reposo donde x = 1:

10s10s3

)s(F)s(X

2

Valor en régimen estacionario:

1.010s10s3

s1

slim10s10s3

)s(Fslim)s(Xslim

20s20s0s

Luego 1.11.01xest

Valor máximo:

3

10s

3

10s

31

)s(F

)s(X

2

Comparando esta expresión con la de un sistema de segundo orden se tiene:

n 10

3

210

3 n

10 3

2 3 10

30

60 9128.

M e ep

1

0 9128

1 0 9128 32 2

088 10 0 088%.

. . .

Xmax 11 11 088 10 110013. . . .

8

Page 10: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

EJERCICIO 4.8.

1) Obtener las funciones de transferencia G1, G2, G3, G4.y total del sistema.2) Introducir un controlador proporcional que haga al sistema comportarse como si fuese de

2º orden, con sobreimpulso, ante entrada escalón, del 4.321%

Para obtener la función de transferencia del sistema de la figura se han realizado una serie de ensayos a los bloques G1, G2, G3 y G4 que lo constituyen.

Al bloque G1 se le ha sometido a una señal de entrada rampa unidad, obteniéndose la respuesta de la gráfica:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

Al bloque G2 se le ha introducido una señal escalón unidad, respondiendo como se puede ver en la gráfica:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

R(s) +G1(s)

G4(s)G3(s)

G2(s)

+

+-

9

Page 11: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Al bloque G3 se le ha introducido una señal impulso unidad, obteniéndose:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.11

Al bloque G4 se le ha introducido una señal escalón unidad, obteniéndose

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1) El bloque G1(s) corresponde con un derivador con ganancia 3: s3)s(G1

El bloque G2(s) corresponde con una ganancia unitaria: 1)s(G2

El bloque G3(s) corresponde con un integrador de ganancia 0.11: s9

1

s

11.0)s(G3

El bloque G4(s) corresponde con un integrador de ganancia unidad: s

1)s(G4

Luego la cadena directa del sistema quedará:

24321Ts9

1)1s3()s(G)s(G))s(G)s(G()s(G

10

Page 12: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

9

KKs

9

3s

)1s3(

9

K

KKs3s9

)1s3(K

s9

1s3K1

s9

1s3

)s(G1

)s(G)s(M

22

2

2

T

T

2) Suponiendo que el cero no afecta a la respuesta:

04321.0eM21

p

1

222

1

·

221

12 2 7071.0

n

n

2K9

3

3

K

3

K2K

9

3 2K

2K

EJERCICIO 4.9.

Obtener la respuesta del sistema del ejercicio 1.9. ante una entrada escalón unitario. Analizar el posible uso de un sistema equivalente reducido.

En el ejercicio 1.9. se obtuvo la función de transferencia del sistema que relaciona el desplazamiento angular del eje de salida con el desplazamiento angular del eje de referencia:

E (s)aE(s)(s)

m

(s)c

EngraneMotorAmplific.(s)r

+ -

50000s1725s5.50s

5000023

r

c

La transformada de la salida c, para esta entrada escalón unitario es:

s

1

50000s1725s5.50s

50000)s(

23c

11

Page 13: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Expansión en fracciones parciales:

2222c

3.35)7.5s(

3.35

3.35

34.22

3.35)7.5s(

3.35s458.0

1.39s

54.0

s

1)s(

y la respuesta del sistema ante una entrada escalón queda:

t7.5t7.5t1.39

c e)t3.35(Sin3.35

34.22e)t3.35(Cos458.0e54.01)t(

Que de forma gráfica sería:

La respuesta es muy similar al de un sistema de segundo orden subamortiguado, con las siguientes características:

Mp = 41%; tr = 0.07sg.; tp = 0.11sg.

El motivo de que la respuesta sea similar a la de un sistema de segundo orden está en que, para este valor de ganancia del amplificador, la función de transferencia de lazo cerrado tiene dos polos complejos conjugados en -5.7j35.3 (dominantes) y uno real en -39.1. De esta forma podemos ver que el polo del eje real tiene una constante de tiempo pequeña comparada con la de los otros dos polos y por eso la forma de la respuesta es dominada por los complejos.

Se podía pensar en aproximar el sistema por una simplificación con solo los polos complejos, como la siguiente:

6.1278s4.11s

6.1278)s(M

2

El problema está en que será una aproximación muy burda ya que la relación entre las distancias al eje imaginario, de los polos complejos con el polo real, es menor de 10 (6.8)

12

Page 14: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

luego no sería despreciable.

Para comprobar que no se puede realizar la aproximación (en principio) comparamos la respuesta, ante un escalón unidad, del sistema real con la del sistema reducido:

Se puede ver como en la parte transitoria se produce un error apreciable.

EJERCICIO 4.10.

Para el sistema del ejercicio 1.12., suponiendo que el amplificador K toma el valor 0.6, dibujar de forma aproximada la respuesta del sistema x(t) ante una entrada escalón unitario en la referencia de posición r(t). Indicar los valores numéricos de los principales parámetros de dicha respuesta.

En el ejercicio 1.12. se obtuvo el siguiente diagrama de bloques del sistema:

s

1)s(R

1s5.4s10s10

3.0

1s5.2s5

25.0

1s2

2.1)s(G

232

K1s2

2.1

1s5.2s5

25.02

10

AmplificadorBomba Embolo

Transductor

+ _

v(t) p(t) x(t)r(t) e(t)

c(t)

13

Page 15: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

8.2s5.4s10s10

18.0

101s5.4s10s10

3.06.01

1s5.4s10s10

3.06.0

)s(H)s(GK1

)s(GK)s(M

23

23

23

Los polos de la función de transferencia de lazo cerrado se encuentran en:

567.0j0718.0p 2,1

856.0p3

Como p3 está lo suficientemente alejado para poder despreciarlo frente a p1 y p2 se considerará el sistema equivalente de segundo orden formado por los dos polos dominantes p1 y p2.

Para estos polos se obtiene los principales parámetros del sistema:

567.0j0718.01jjp 2nnd2,1

0718.0n

567.01 2n

1266.01 2

01604.001604.1 2 1256.0

5717.01256.0

0718.0n

cos rad445.1cosar

s99.2567.0

445.1t

dr

s54.5567.0

td

p

s75.430718.0

ts

%18.676718.0eeM 1256.01

1256.0

1p

2

Valor final:

064.0s

1

8.2s5.4s10s10

18.0s)s(R)s(sMlim

230s

14

Page 16: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

La figura muestra la respuesta la respuesta del sistema completo.

El sistema equivalente considerado para el cálculo de los parámetros ha sido:

3266.0s1436.0s

k

567.0)0718.0s(

k)s(M

2red

22red

red

064.0s

1

3266.0s1436.0s

ks)s(R)s(sMlim

20s

064.0

3266.0

kred 0209.0kred

3266.0s1436.0s

0209.0)s(M

2red

La respuesta del sistema reducido es:

Tiempo(s)

Am

plit

ud

Respuesta al escalón unitario

0 10 20 30 40 50 60 70 800

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Tiempo (s)

Am

plit

ud

Respuesta al escalón del equivalente reducido

0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

15

Page 17: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Comparando ambas respuestas en la misma gráfica pueden observarse las diferencias existentes al despreciar el polo más alejado del origen.

La respuesta en línea continua corresponde con el sistema total y la de línea discontinúa con el equivalente reducido.

EJERCICIO 4.11.

Para el sistema de control cuyo diagrama de bloques se muestra en la figura:

K G(s)

H(s)

+ -

X(s) E(s) U(s) Y(s)

5s4s

)66.0s(3)s(G

2

6)(s8)(2s

10H(s)

1. Obtener la transformada inversa de la respuesta del sistema para una entrada escalónunitario cuando K=1.

2. Calcular un sistema reducido equivalente al de lazo cerrado, para K= 0.13. Calcular los parámetros de la respuesta del sistema para una entrada escalón unitario:

- Tiempo de subida (tr) - Tiempo de pico (tp) - Máximo sobreimpulso (Mp) - Tiempo de asentamiento (ts)

Tiempo(s)

Am

plit

udComparativa de las respuestas de ambos sistemas

0 10 20 30 40 50 60 70 800

0.02

0.04

0.06

0.08

0.1

0.12

16

Page 18: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

1. Transformada inversa.

10s15)6s)(4s)(5s4s(

)6s)(4s)(2s3(

)6s)(4s(

5

5s4s

2s31

5s4s

2s3

)s(H)s(G·K1

)s(G·K)s(M

2

2

2

)170.2)661.2s)((132.7s)(546.1s(s

)6s)(4s)(667.0s(3

10s15)6s)(4s)(5s4s(

)6s)(4s)(2s3(

s

1)s(Y

222

Cuya descomposición en fracciones simples es:

22 170.2)661.2s(

209.1s86.0

132.7s

0699.0

546.1s

561.0

s

369.0)s(Y

222222 170.2)661.2s(

255.1255.1406.1s86.0

170.2)661.2s(

406.1s86.0

170.2)661.2s(

209.1s86.0

222222 170.2)661.2s(

255.1

170.2)661.2s(

661.2s86.0

170.2)661.2s(

255.1255.1406.1s86.0

2222 170.2)661.2s(

170.2

170.2

255.1

170.2)661.2s(

661.2s86.0

2222 170.2)661.2s(

170.25783.0

170.2)661.2s(

661.2s86.0

Aplicando las tablas de transformada de Laplace:

1s

1 ate

as

1

tcose)as(

as at22

tsene)as(

at22

2222 170.2)661.2s(

170.25783.0

170.2)661.2s(

661.2s86.0

132.7s

0699.0

546.1s

561.0

s

369.0)s(Y

)t170.2sen(5783.0)t170.2cos(e86.0e0699.0e561.0369.0)t(y t661.2t138.7t546.1

)5243.0t170.2cos(e9934.0e0699.0e561.0369.0)t(y t661.2t138.7t546.1

17

Page 19: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

2. Sistema reducido equivalente. Factorizando M(s) para K=0.1 se tiene:

10s15)6s)(4s)(5s4s(

)6s)(4s)(2s3(

)6s)(4s(

5

5s4s

2s31.01

5s4s

2s31.0

)s(H)s(G·K1

)s(G·K)s(M

2

2

2

)2.6s)(47.3s)(97.0)16.2s((

)6s)(4s)(66.0s(3.0

121s5.147s69s14s

)6s)(4s)(2s3(1.0)s(M

22234

Un sistema aproximado, aunque de forma grosera, sería:

6.5s32.4s

2184.0

97.0)16.2s(

2184.0)s('M

222

donde se ha ajustado la ganancia del equivalente reducido para tener la misma ganancia estática que el sistema original (0.039).

Un modelo reducido más ajustado sería:

6.5s32.4s

)66.0s(321.0

97.0)16.2s(

)66.0s(321.0)s(''M

222

La diferencia está en el cero en –0.66, porque suma a la respuesta del primer equivalente la respuesta del sistema de segundo orden a un impulso:

s

1

6.5s32.4s

66.0321.0

6.5s32.4s

s321.0)s(X)s(M)s(''Y

22

s

1

6.5s32.4s

66.0321.0

6.5s32.4s

321.0)s(''Y

22

Tiempo (s.)

Respuesta al impulso

0 0.5 1 1.5 2 2.5 30

0.01

0.02

0.03

0.04

0.05

0.06

18

Page 20: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

Tiempo (s.)

Respuesta al escalón del sistema original y equivalentes reducidos

0 0.5 1 1.5 2 2.5 30

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M’’(s)

M(s)

M’(s)

3. Parámetros obtenidos sobre el equivalente reducido:

6.52n s/rad36.26.5n

32.42 n 91.036.22

32.4

rad427.0º5.2491.0arccosarccos

978.091.0136.21 22nd rad/s

s21.3978.0

td

p

s77.2978.0

427.0t

dr

s46.136.291.0

tn

s

%1.000101.0eM21

p

19

Page 21: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

EJERCICIO 4.12.

El siguiente sistema se utiliza para eliminar durante su transporte parte de la humedad de una sustancia que se almacena en un silo:

Vref(t)Vm(t)

Vh(t)(t)

h(t)

A+

_

Aire

La señal de error e(t) compara la referencia de humedad Vref(t) con la obtenida del sensor Vh(t), se amplifica por un valor A, y se utiliza Vm(t) como entrada a un motor de CC que actúa sobre una válvula que gobierna el paso de una corriente de aire caliente. La ganancia del amplificador es de A Voltios/Voltio.

La relación entre la posición del eje del motor (t) en grados y la tensión aplicada al mismo Vm(t) viene dada en la siguiente gráfica:

La relación entre la humedad del material y(t) (en %) y la posición del eje del motor (t) (en grados) viene dada por la respuesta impulsional:

(t)

t

Area=1

1

t

Vm(t)

1

10t

(t)

20

Page 22: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

La humedad es detectada a la salida de la cinta transportadora mediante un instrumento empleado como sensor que genera tensión por unidad de variación del grado de humedad h. Para calcular la función de transferencia del sensor de humedad, cuya ecuación diferencial que rige su funcionamiento es

Vh(t)adt

Vh(t) dh(t)k

se realizó el ensayo de someter al sensor a un cambio brusco de 10 unidades en la humedad obteniéndose los siguientes datos que se muestran en la tabla adjunta.

Dibujar el diagrama de bloques del sistema completo que tiene como entrada la tensión de referencia Vref(s) y como salida la humedad del material H(s), indicando todas las variables y funciones de transferencia.

Analizando el sistema representado se van obteniendo las relaciones entre las diferentes variables del sistema:

)s(Vh)s(Vref)s(E

)s(EA)s(Vm A)s(E

)s(Vm

La relación entre la posición del eje del motor (t) en grados y la tensión aplicada al mismo Vm(t) se obtiene de la gráfica correspondiente. En ella se puede ver que cuando la entrada Vm(t) es un escalón unitario, la salida (t) es una rampa de pendiente 0.1. Luego dicho elemento puede representarse como un integrador cuya función de transferencia corresponde con:

)s(Vms

1.0)s(

s

1.0

)s(Vm

)s(

La relación entre la humedad del material y(t) (en %) y la posición del eje del motor (t) (en grados) viene dada por la respuesta impulsional representada en la gráfica. Esta respuesta corresponde a un sistema de primer orden de la forma:

s

k

)s(

)s(H

Vh (voltios) Tiempo (segundos)

0 07.89 0.512.64 115.56 1.517.31 218.36 2.5

19 319.4 3.519.64 419.78 4.519.87 519.92 5.519.95 619.97 6.5

20 8

21

Page 23: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

La respuesta temporal de un sistema de primer orden ante una entrada impulso es de la

forma: tek)t(h

El valor inicial de la respuesta es 0.1:

1.0kek)0(h 0 1.0k

El área debe ser igual a 1:

11.0k1

0ke

kek0

t

0

t

1.0

Luego la función de transferencia es:

1.0s

1.0

)s(

)s(H

Para calcular la función de transferencia del sensor de humedad, se tiene la ecuación diferencial que rige su funcionamiento:

Vh(t)adt

Vh(t) dh(t)k

Aplicando transformada de Laplace se tendrá:

Vh(s)aVh(s)sH(s)k

Vh(s)a)s(H(s)k

1s

'k

as

k

H(s)

Vh(s)

La tabla proporciona información sobre la respuesta de este sistema ante una entrada escalón de amplitud 10. Como el sistema corresponde con uno de primer orden, de los datos de la tabla obtenemos el valor de la constante de tiempo y de la ganancia k’. El valor al que se estabiliza la respuesta para una entrada escalón de 10 unidades es 20.

Para el sistema de primer orden el valor al que se estabiliza la respuesta es:

'k10s

10

1s

'kslimVh

0s

Luego: 20'k10 210

20'k

La constante de tiempo corresponde con el tiempo transcurrido hasta que la respuesta alcanza el 63.2% del valor final. El 63.2 % de 20 es 12.64 que mirando en la tabla corresponde con t=1 segundo.

22

Page 24: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

Por tanto la función de transferencia es: 1s

2

H(s)

Vh(s)

El diagrama de bloques correspondiente al sistema completo será:

EJERCICIO 4.13.

La figura muestra el esquema del control de velocidad del motor de combustión interna mediante la utilización de una servoválvula hidráulica.

Er

Eo

i

SuministroHidráulico

In Out

Ya

EntradaCombustible

qr

T

woCarga

Tacómetro

Amp. dif.

+-

MotorCombustion

wo

Out

Válvula lineal

ServoválvulaHidráulica

Ya

Se sabe que el amplificador diferencial tiene una ganancia regulable, de valor K y que la función que realiza es: )EE(Ki or . La válvula lineal presenta una relación constante

entre el flujo de mezcla de combustible (qr)a su salida y su desplazamiento (Ya), igual a 10000. Además, se somete al conjunto Motor-Carga a una entrada escalón de amplitud unidad, obteniéndose la respuesta de la gráfica siguiente:

As

1.01.0s

1.0

1s

2

+ _

Vm(s) (s) H(s)Vref(s) E(s)

Vh(s)

23

Page 25: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Se dispone así mismo de una gráfica dada por el fabricante de la servoválvula hidráulica, que muestra la respuesta de la misma ante una entrada escalón unidad de intensidad:

- Se ha sometido a la tacodinamo a una entrada rampa de pendiente 500 r.p.m. (velocidad en el eje creciente linealmente), y se ha obtenido que su respuesta viene dada por la expresión:

t10o e5.05.0t5)500 rampa(E

Se pide: 1. Diagrama de Bloques del sistema indicando la posición de la planta, actuador, regulador,

sensor, realimentación, señal de error, de actuación, de entrada, de salida,...etc. 2. Función de transferencia de cada bloque.3. Función de transferencia de lazo cerrado.4. Indicar mediante observación de la FTLC como será su respuesta (1er orden, 2º orden,

sobreamortiguado, etc.)

1. Diagrama de bloques.

Pot. Servo-válvula

Válvulalineal.

Motor /Carga

Regulador

Tacómetro

Er

Amplificadordiferencial Actuador Planta

Sensor

0qrYai

Señal de error

Señal de control Señal de actuación

Señal de salida

r

Señal dereferencia

Señal derealimentación

E0

_+

2. Funciones de transferencia.

Motor-carga:

La gráfica corresponde con la respuesta de un sistema de primer orden donde la constante

24

Page 26: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

de tiempo leída de la gráfica es aproximadamente 4 segundos y la ganancia K del sistema es 0.1.

0

1

01

4 1

0 025

0 25

( )

( )

. .

.

s

Q s

K

s s sr

Servoválvula:

La gráfica corresponde con la respuesta de un sistema de segundo orden subamortiguado, donde leyendo de la gráfica se puede ver que el tiempo de subida es de 0.4 segundos y el tiempo de pico de 0.55 segundos.

55.0td

p

s/rad71.5tp

d

4.0td

r

rad857.0t dr

654.0857.0coscos

2nd 1 s/rad54.7

1 2

dn

Luego la función de transferencia será:

Y s

I s

K

s sa n

n n

( )

( )

1

2

2 22

donde K1 corresponde con la ganancia de régimen estacionario.

85.56s86.9s

5685.0

85.56s86.9s

85.5601.0

)s(I

)s(Y22

a

100s16s

1

)s(I

)s(Y2

a

Válvula lineal:

10000)s(Y

)s(Q

a

r

Tacómetro: t10

0 e5.05.0t5)t(E

Tomando transformadas:

)10s(s

0

)10s(s

s5.0s5s5.050s5

10s

5.0

s

5.0

s

5)s(E

22

22

20

25

Page 27: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Como esta señal es la respuesta del tacómetro ante entrada rampa de pendiente 500:

20s

500)s(

10s

1.0

500

s

)10s(s

50

)s(

)s(E 2

20

0

Otra posible forma de obtener la función de transferencia sería derivando la respuesta del sistema ante la rampa para obtener la respuesta del sistema ante un escalón:

)e1(5e55dt

)t(dE t10t100

Esta respuesta corresponde a un sistema de primer orden con constante de tiempo 0.1 y ganancia 0.01 (al ser la entrada de amplitud 500).

10s

1.0

1s1.0

01.0

1s

K

)s(

)s(E 2

0

0

Detector de error: ))s(E)s(E(K)s(I 0r

3. Función de transferencia de lazo cerrado.

)25.0s)(100s16s(

K250

25.0s

025.01000

100s16s

1K)s(G

22T

10s

1.0)s(H

10s

1.0

)25.0s)(100s16s(

K2501

)25.0s)(100s16s(

K250

)s(H)s(G1

)s(G)s(M

2

2

T

T

K25250s1065s5.266s25.26s

)10s(K250

K25)10s)(25.0s)(100s16s(

)10s(K250)s(M

2342

4. Como se puede ver en la expresión anterior, la posición de los polos de la función detransferencia de lazo cerrado depende del valor que tome K. Con lo cual es muy dificil decir por mera observación cual sería el comportamiento. Habría que dar valores a K o dibujar el lugar de las raíces.

26

Page 28: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

EJERCICIO 4.14.

Se desea diseñar un controlador de altura para un globo aerostático.

Z

Quemador

Elevación porViento (W)

Aire calienteen interior, atemperatura T

Para ello se dispone de un altímetro, cuya función de transferencia es la unidad, y de la dinámica del sistema que, debido a la dificultad de encontrar las ecuaciones de la dinámica del sistema con precisión, se ha obtenido en base a varios experimentos.

El primer experimento tenía la misión de mostrar la relación entre el Flujo de Calor (Q) aplicado al interior del globo mediante un quemador y la Temperatura que se alcanza en su interior. Para ello se ha realizado un ensayo de forma que se ha aplicado una señal de entrada tipo impulsional de amplitud 10(Kcal/sg), obteniéndose la Gráfica Nº 1.

Posteriormente se ha realizado otro ensayo para conocer la relación entre la Temperatura interior del globo y la altura (Z) que alcanza el mismo. Para esto se ha introducido una señal impulsional de amplitud 5, obteniéndose la Gráfica Nº 2.

Area=2

Gráfica 1 Gráfica Nº 2

Por último, se ha comprobado que, para caracterizar completamente la dinámica del globo, es necesario tener en cuenta la modificación de la altura producida por la componente ascensional del viento (W).

Calcular: - Diagrama de bloques de la planta. - Función de transferencia (Altura/Calor de entrada) de la planta. - Diagrama de bloques en lazo cerrado, indicando la señales de entrada al sistema y

si estas son controlables o no.

27

Page 29: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

- Diagrama de bloques de la planta.

Q(s)G1(s) G2(s)

T(s) Z1(s)

W(s)

Z(s)

Como se observa en la figura anterior, la planta estará formada, según los datos aportados, por dos bloques que representan la dinámica del sistema y que permiten modelar las variaciones de la temperatura interior y de la altura del globo. (Comentar que las ecuaciones que en este ejercicio se han considerado como absolutas son, en realidad “variaciones”).

Además, se incluye la entrada de perturbación producida por la componente vertical del aire.

- Función de transferencia (altura/calor de entrada) de la planta. Para calcular la función de transferencia de la planta es necesario obtener la de cada uno de

los bloques que la componen: a) Función G1(s):

La respuesta temporal de la gráfica Nº 1 es típica de los sistemas de primer orden ante una entrada impulso, luego será de primer orden. Entonces:

ta111 ek

as

k)t(y)t()t(y)t(g

as

k)s(G

L

Para t=0, se comprueba que y t k( ) 10 . Y calculando el área bajo la curva:

area e dta a

a t

1010

0 110

0

Y como el área es dato, queda que a=5. Y teniendo en cuenta que la amplitud del impulso de entrada ha sido 10, la función de

transferencia G1(s) queda:

G sT(s

Q s s1

1

5( )

)

( )

b) Función G2(s):

La expresión matemática de la curva de la gráfica Nº 2 puede ser aproximada por:

02.0

t

e03.0)t(u03.0)t(y

Donde el valor de la constante de tiempo del termino exponencial se ha obtenido a partir de la gráfica, comprobando el tiempo transcurrido para llegar al 63,2% del valor final.

Tomando transformadas de Laplace con C.I. nulas:

Y ss s s s

( ). . .

( )

0 03 0 03

50

15

50

Esta es la transformada de la respuesta del sistema G2 ante una señal de entrada impulso de amplitud 5, luego si dividimos entre la amplitud de la señal de entrada se obtiene la función de transferencia:

28

Page 30: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

G sZ s

T(s s s21 0 3

50( )

( )

)

.

( )

Entonces, la función de transferencia de la planta queda:

G sZ s

Q s s s s( )

( )

( )

.

( )( )

1 0 3

50 5

- Diagrama de bloques en lazo cerrado:

Q(s)G1(s) G2(s)

T(s) Z1(s)

W(s)

Z(s)Zref E(s)Controlador

1

En este sistema se observan dos entradas Zref y W. La primera de ellas es la entrada mediante la cual el operador del globo modifica la posición, es totalmente controlable. En cuanto a la señal W, es no controlable (además de aleatoria y observable) ya que depende de la velocidad que alcance el viento en cada instante.

EJERCICIO 4.15.

Dibujar, indicando un número de puntos que permita observarlo correctamente, la respuesta

del sistema cuya función de transferencia de lazo cerrado es )1s2(

)1s(2)s(M

, ante una entrada

tal como la que se muestra en la figura:

+2

0

-2

6 12 18 2 Tiempo

Descomponemos la señal de entrada en intervalos de tiempo y analizamos el tipo de señal. Así observamos que desde t = 0 a t =6-, la señal de entrada es un escalón de amplitud 2:

1s2

)1s(2)s(M

Entrada R(s) Respuesta C(s)

29

Page 31: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

luego:

)1s2(s

)1s(4

s

2

1s2

)1s(2)s(R)s(M)s(C 11

que descomponiendo en fracciones simples, quedará:

1s2

B

s

A

)1s2(s

)1s(4

4)1s2(s

)1s(4)1s2(B

4)1s2(s

)1s(4sA

5.0s

0s

5.0s

2

s

4

1s2

4

s

4

)1s2(s

)1s(4

Haciendo ahora la transformada inversa, tendremos:

t5.01 e24)t(c

dando valores a t:

900.3)t(c6t

5537.3)t(c3t

2642.3)t(c2t

7869.2)t(c1t

000.4)t(c0t

1

1

1

1

1

A partir de este instante la entrada r2(t) es un escalón de valor -4. Luego:

)5.0s(s

)1s(4

)1s2(s

)1s(8

s

4

1s2

)1s(2)s(R)s(M)s(C 22

Expandiendo en fracciones simples:

5.0s

4

s

8

)5.0s(

B

s

A

)5.0s(s

)1s(4

Hallamos la transformada inversa, resultando:

30

Page 32: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

t5.02 e48)t(c

Ahora el origen está en el punto (6,0) y la gráfica parte del valor 3.900, luego con estas consideraciones, construimos la tabla:

9.3900.38.7:ordenada8.71991.08)t(c)0,12(punto6t

2075.39.31075.7:ordenada1075.78925.08)t(c)0,9(punto3t

6285.29.35285.6:ordenada5285.64715.18)t(c)0,8(punto2t

6739.19.35739.5:ordenada5739.54261.28)t(c)0,7(punto1t

1.0900.34:ordenada448)t(c)0,6(punto0t

2

2

2

2

2

Y volvería a repetirse el proceso, quedando la gráfica de la respuesta:

+2

-2

6 12 18 24 Tiempo

-3.9

-4

+3.9+4

-0.10.1

31

Page 33: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

EJERCICIO 4.16.

Para el sistema que se muestra en la figura siguiente, se han realizado una serie de experiencias con el fin de obtener las funciones de transferencia de cada uno de los bloques que lo componen:

Amplificador Regulador Actuador Planta

sensor

R(s) C(s)

W1(s)

W2(s)

+

+

+ +

+

-

Se ha observado que la integral de la respuesta del regulador, cuando se introduce una señal tipo escalón unitario, viene dada por:

2.0

t

e5

3t3

Para conocer la respuesta del sensor, se ha introducido también un escalón unidad y se ha graficado su salida, siendo ésta la que se muestra a continuación:

Tiempo (seg.)

Res

pues

ta

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.296

1.226

Atendiendo a los datos del fabricante, se sabe que la función de transferencia del actuador es: (s + 3), y se ha obtenido el flujograma de la planta, que es el que se muestra:

3

1

17

4

2

56

1/(s+1)1/(s+1)

R'(s)

C'(s)

32

Page 34: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

Obtener las funciones de transferencia de cada uno de los bloques que componen el sistema.

Regulador

Si se deriva la integral de la respuesta, se tendrá la respuesta, luego:

)e1(3e33)5(e5

33)t(c t5t5t5

Si se hace la transformada de Laplace de esta respuesta, se tiene:

)1s2.0(s

13

)1s2.0(s

s2.01s2.03)s(G

s

1)s(G)s(R

1s2.0

2.0

s

13)s(C

Despejando G(s):

5s

15

1s2.0

3)s(G

Sensor

La respuesta es la de un sistema de segundo orden, que se puede expresar en su formacanónica como:

2nn

2

2n

s2s

K)s(G

De la gráfica de la respuesta, se tiene que:

- El tiempo de pico (tp) es 1.2 segundos.

- El sobreimpulso (Mp) es %8.14148.02

2296.2

.

A partir de estos valores, se pueden obtener los de n y , de acuerdo con las siguientes relaciones:

52.0148.0eM21

p

segrad

nn

2n

2nd

p 3226.1678.3

52.011t

luego sustituyendo en la ecuación de G(s), quedará:

9s12.3s

182sistemadelgananciaK;

3s352.02s

3K)s(G

222

2

33

Page 35: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Planta

La relación entre la salida C'(s) y la entrada R'(s), viene dada por el flujograma. Laobtención de la función de transferencia puede verse en el ejercicio 3.14.:

2

2

)1s(

103s145s56

)s('R

)s('C)s('M

Sustituyendo en el diagrama de bloques, tendremos:

K5s

15

3s 2

2

)1s(

103s145s56

R(s) C(s)

W1(s)

W2(s)

+

+

+ +

+

-

9s12.3s

182

E(s)

EJERCICIO 4.17.

Se sabe que G0(s) ante una entrada s

1.0)s(R tiene una respuesta:

28

tiempo

respuesta

0

y que G1(s) ante una entrada escalón de amplitud A = 2 tiene una respuesta:

tiempo

2

respuesta

0

34

Page 36: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

de G2(s) se conoce su respuesta impulso unitario:

tiempo

respuesta3

Área=1

de G3(s) se conoce también su respuesta impulso unitario:

tiempo

Respuesta0.3333

0.1326

0.6

y que G4(s) ante una entrada rampa unitaria tiene como respuesta:

Calcular dichas funciones de transferencia.

Comenzando por G0(s):

La entrada es un escalón de valor 0.1, y según la gráfica de la respuesta, se ve que es un escalón de amplitud 28, luego hemos amplificado la entrada un valor de:

1.0

28)s(G0 280)s(G0

35

Page 37: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Para G1(s), puede verse en la gráfica que la respuesta es un escalón de valor 2 y como esta respuesta se produce ante una entrada escalón de amplitud 2, la función de transferencia G1(s) es la unidad:

1)s(G1

De G2(s), se sabe por el tipo de respuesta que se trata de un sistema de primer orden, que se define por la constante de tiempo y ganancia como:

1Ts

k)s(G 2

La ecuación de la respuesta es: 0tpara,eT

k)t(c T

t

Integrando entre 0 e , se obtiene el valor del área encerrada, y de ahí el valor de la ganancia.

kT

kT10)T(

T

ke

T

kdte

T

kdte

T

k1Área

0T1

00

Tt

Tt

Tt

Luego la ganancia: k=1

Del valor de la ordenada en el origen se obtiene la constante de tiempo, ya que:

Para t = 0:

3

1T

T

1e

T

k33)0(c T

0

Luego será:

1

3

s

1)s(G 2

Para G3(s) la respuesta tiene por ecuación:

T

t

3 eT

K)t(g

y se dan dos puntos de dicha gráfica, por lo que se puede hallar las dos incógnitas que se tienen en la ecuación:

Para t = 0 3333.0T

K)0(g3

Para t = 0.6 T6.0

T6.0

e3333.0eT

K1326.0)6.0(g3

651.0T9217.0T

6.0

3333.0

1326.0lneln T

6.0

Luego:

s651.01

217.0)s(G3

36

Page 38: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

G4(s):

En la gráfica vemos que se trata de la respuesta de un sistema de primer orden a una entrada rampa unitaria, siendo el sistema de la forma:

1Ts

1)s(G 4

siendo T el error en el infinito, luego de la gráfica:

T T2T 3T

0.08

0.08

T = 0.08 segundosLuego:

1s08.0

1)s(G4

EJERCICIO 4.18.

Obtener la señal de salida del sistema de control de la figura,

1

s

2

3s

++

+ _

Y(s)

R2 (s)

R1 (s)

cuando se le aplican las entradas r1(t) y r2(t).

r1 (t)

3

t

r2 (t)

-2t

Aplicando superposición de las dos entradas se calculará la salida.

La salida cuando r2(t)=0 es:

2

3s + _

Y(s)R1 (s)

s

1

37

Page 39: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

2

3s(s )+ _

Y(s)R1 (s)

Y s

R ss s

s ss s

( )

( )( )

( )1

2

2

3

12

3

2

3 2

Y ss s

R ss s s s s sR s

( ) ( )( )( )2 0 2 1 2 2

2

3 2

2

3 2

3 6

3 2

y cuando r1(t)=0:

1

s+ +

Y(s)R2 (s)

2

3s 1

Y s

R ss

s s

s

s s

( )

( )( )

22

1

12

3

3

3 2

Y ss

s sR s

s

s s s

s

s s sR s( ) ( )

( )( )1 0 2 1 2 2

3

3 2

3

3 2

2 2 6

3 2

Aplicando superposición:

Y s Y s Y ss s s

s

s s s

s

s s s s sR s R s( ) ( ) ( )

( ) ( ) ( )( ) ( )

2 10 0 2 2 2 2

6

3 2

2 6

3 2

2

3 2

2

3 2

Se obtiene ahora la transformada inversa de la respuesta:

Y ss s s s

A

s

B

s( )

( )( )

2

3 2

2

1 2 1 22

As

s

2

2

2

12

1( )

Bs

s

2

1

2

12

2( )

38

Page 40: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

Y ss s

( )

2

1

2

2

y t e e e et t t t( ) ( ) 2 2 22 2

EJERCICIO 4.19.

Para el sistema del ejercicio 3.21. cuyo diagrama de bloques se muestra a continuación:

r(t)

R(s)

n(t) N(s)

c(t)

C(s)_

++

+

3s

2

2s

3

donde la entrada r(t) es un escalón de amplitud 2, y la perturbación n(t) es de tipo exponencial decreciente, de amplitud unidad y constante de tiempo 1/3 segundos, calcular la respuesta temporal en ausencia y presencia de ruido.

En el ejercicio 3.21. se tiene el cálculo de las funciones de transferencia.

La función de transferencia salida/referencia es:

12s5s

)2s(2

)s(R

)s(C2

Y la función de transferencia salida/ruido:

12s5s

6s5s

)s(R

)s(C2

2

Se calculará la transformada inversa de Laplace de la salida en cada una de las situaciones.

Sin ruido, (N(s) = 0):

)t(c)s(C1 L

12s5s

CBs

s

A

)12s5s(s

)2s(4)s(C

22

En donde, A, B y C se determinan a partir de:

sCsB12s5sA8s4 2

39

Page 41: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Problemas de Ingeniería de Sistemas: Sistemas Continuos. Conceptos básicos.

Si se comparan los coeficientes de s2, s y s0, términos de los dos miembros de la ecuación anterior, se obtiene:

A128,CA54,BA0

Resolviendo el sistema, se tiene: 3

2B

3

2CA

Por tanto,

2222

2

23

2

5s

1

3

2

2

23

2

5s

s

3

2

s

1

3

2)s(C

2222

2

23

2

5s

2

51

2

23

2

5s

2

5s

s

1

3

2

2222

2

23

2

5s

2

23

23

2

2

7

2

23

2

5s

2

5s

s

1

3

2

Luego,

t2

23sene

23

237t

2

23cose1

3

2)t(c 2

t5

2

t5

Con ruido, 3s

1)s(N

)t(c)s(C)s(C)s(C)s(C N1

R1

NR1 LLL

nteanteriormeresueltaya)12s5s(s

)2s(4)s(C

21

R1

LL

22

12

1N

1

2

23

2

5s

22

5

2

5s

12s5s

2s)s(C LLL

40

Page 42: Automática. Ejercicios Capítulo 4. Respuesta de … · Respuesta de Régimen Transitorio EJERCICIO 4.1. Calcular los valores de K y Kh para que el sistema tenga una respuesta con

Respuesta de Régimen Transitorio

22

122

1

2

23

2

5s

2

23

23

22

2

5

2

23

2

5s

2

5s

LL

22

12

t5

2

23

2

5s

2

23

23

23t

2

23cose L

t2

23sene

23

23t

2

23cose 2

t5

2

t5

Luego:

t2

23coset

2

23sene

23

23

3

14t

2

23cose

3

2

3

2)t(c 2

t5

2

t5

2

t5

t2

23sene

23

23 2

t5

t2

23sene

23

23

3

11t

2

23cose

3

1

3

2)t(c 2

t5

2

t5

41