autora: ana clÁudia carioca orientador: prof. dr. …‡Ão...em primeiro lugar agradeço a deus...

105
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO Escola de Minas da Universidade Federal de Ouro Preto Departamento de Engenharia de Minas Programa de Pós-Graduação em Engenharia Mineral – PPGEM CARACTERIZAÇÃO DE MINÉRIO DE FERRO POR ESPECTROSCOPIA DE REFLETANCIA DIFUSA AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. GERALDO MAGELA DA COSTA Dissertação apresentada ao Programa de Pós- Graduação do Departamento de Engenharia de Minas da Escola de Minas da Universidade Federal de Ouro Preto, como parte integrante dos requisitos para obtenção do título de Mestre em Engenharia de Minas. Área de concentração: Tratamento de Minérios e Resíduos Ouro Preto – Março de 2010

Upload: others

Post on 03-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO

Escola de Minas da Universidade Federal de Ouro Preto

Departamento de Engenharia de Minas

Programa de Pós-Graduação em Engenharia Mineral – PPGEM

CARACTERIZAÇÃO DE MINÉRIO DE FERRO POR ESPECTROSCOP IA DE

REFLETANCIA DIFUSA

AUTORA: ANA CLÁUDIA CARIOCA

ORIENTADOR: Prof. Dr. GERALDO MAGELA DA COSTA

Dissertação apresentada ao Programa de Pós-Graduação do Departamento de Engenharia de Minas da Escola de Minas da Universidade Federal de Ouro Preto, como parte integrante dos requisitos para obtenção do título de Mestre em Engenharia de Minas.

Área de concentração: Tratamento de Minérios e Resíduos

Ouro Preto – Março de 2010

Page 2: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

ii

Catalogação: [email protected]

C277c Carioca, Ana Cláudia. Caracterização de minério de ferro por espectroscopia de reflectância difusa

[manuscrito] / Ana Cláudia Carioca. – 2010. xiii, 88f. : il. col., graf., tabs. Orientador: Prof. Dr. Geraldo Magela da Costa. Dissertação (Mestrado) – Universidade Federal de Ouro Preto. Departamento de Engenharia de Minas. Programa de Pós-graduação em Engenharia Mineral. Área de concentração: Tratamento de minérios e resíduos.

1. Minérios de ferro - Teses. 2. Espectroscopia – Reflectância difusa - Teses. 3. Mossbauer, Espectroscopia de - Teses. 4. Raios X - Difração – Teses. I. Universidade Federal de Ouro Preto. II. Título.

CDU: 669.162.12:543.4

Page 3: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

iii

Page 4: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

iv

“TUDO POSSO NAQUELE QUE ME

FORTALECE” Fl 4,13

Page 5: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

v

AGRADECIMENTOS

Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo

o que consegui foi o Senhor que me deste. Toda honra e toda glória para Ti, Senhor.

À minha mãe, fonte de inspiração e dedicação, por tudo o que tem feito por mim, muito

obrigada.

Ao meu pai, pelo incentivo e confiança nesta etapa da minha vida.

Aos meus irmãos, pelo amor, pela compreensão e estimulo para seguir sempre em

frente.

À minha família, pela descontração e lealdade em todos os momentos.

A todos os meus amigos, que presente ou ausente confiaram em mim e me apoiaram nas

horas difíceis, minha eterna gratidão.

Ao meu orientador Prof. Dr. Geraldo Magela da Costa, pela paciência, pela

oportunidade, pelos ensinamentos, pela dedicação e acima de tudo pela amizade durante

estes cinco anos de convivência.

Ao Prof. César Mendoça Ferreira, pelo apoio e pelos ensinamentos, minha gratidão.

À Fundação Gorceix pela oportunidade e disponibilidade de realizar as análises de

microscopia ótica.

Ao Prof. Dr. Vidal Barrón, que com muita generosidade me recebeu em Córdoba na

Espanha, e me agraciou com seus ensinamentos e oportunidade, muito obrigado.

Page 6: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

vi

À Universidad de Córdoba, pela oportunidade de aprendizado e pela disponibilidade de

seus equipamentos para as minhas análises.

Aos amigos do Laboratório de difração e espectroscopia Mössbauer da UFOP, Marcela,

Larissa, Marcos pelo apoio, e Guilherme pelo companheirismo, pela ajuda nestes 6 anos

de trabalho juntos.

Ao Laboratório LGQA da UFOP, pelas análises realizadas em ICP-OES.

Ao Programa de Pós-Graduação em Engenharia Mineral pela oportunidade.

À Prof. Dra. Gilmare pela compreensão e pelos ensinamentos em quimiometria.

Page 7: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

vii

RESUMO

A identificação e quantificação das fases mineralógicas constituintes dos minérios de

ferro é de crucial importância, tanto para o controle da qualidade, como para o planejamento

da mina, processamento, etc. O elemento ferro encontra-se geralmente sob a forma de óxidos

ou hidróxidos, principalmente como hematita (α-Fe2O3), goethita (α-FeOOH) e magnetita

(Fe3O4), sendo a cor um dos atributos mais visíveis e característicos destas fases. A íntima

relação entre os teores das fases mineralógicas e o espectro nas regiões espectrais do

ultravioleta, visível, infravermelho próximo e médio permite a identificação e a quantificação

destas fases. Para este estudo optou-se pela espectrofotometria de reflectância difusa para a

identificação e quantificação das fases presentes em amostras de minérios de ferro. A partir

das curvas de reflectância e dos teores medidos dos minerais, e com o auxilio do programa

quimiométrico PARLES, obteve-se modelos de calibração para a hematita, especularita,

martita, goethita, magnetita, quartzo e ferro total. As melhores correlações encontradas foram

obtidas no equipamento ASD portátil (350-2500 nm) para goethita R2C= 0,96; magnetita R2C=

0,90 e martita R2C= 0,84; e no MIR (2500-25000 nm) para especularita R2C= 0,89; ferro R2C=

0,87 e quartzo R2C= 0,89. Para a hematita a melhor correlação foi no equipamento

CARY/MIR (319-25000 nm) com R2C= 0,91. Estes modelos podem ser utilizados para a

quantificação das fases acima mencionadas em outras amostras de minérios de ferro.

Page 8: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

viii

ABSTRACT

The identification and quantification of the mineralogical phases present in iron ore is of

crucial importance, both for quality control and well as for mine planning, processing, etc..

The element iron is usually found in the form of oxides or hydroxides, such as hematite (α-

Fe2O3), goethite (α-FeOOH) and magnetite (Fe3O4), and their colors are a characteristic

attribute. The close relationship between the mineralogical phase contents and the spectrum

obtained in the ultra-violet, visible, near- and mid infrared spectral regions allows the

identification and quantification of these phases. In this study the diffuse reflectance

spectrophotometry was chosen to identify e quantify the constituents of several iron ores.

Calibration models, using the chemometric software PARLES, for hematite, especularite,

martite, goethite, magnetite, quartz and total iron were obtained from the reflectance curves

and the mineral contents. The best correlations were obtained in the portable equipment ASD

(350-2500 nm) for goethite R2C = 0.96, magnetite R2C = 0.90 and martite R2C = 0.84; and in

the MIR (2500-25000 nm) for especularite R2C = 0.89, iron R2C = 0.87 and quartz R2C = 0.89.

For hematite the best correlation was found in the CARY/MIR (319-25000 nm ) R2C = 0.91.

These models can be used to quantify the above mentioned phases in an unknown iron ore

sample.

Page 9: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

ix

SUMÁRIO

1 – INTRODUÇÃO ---------------------------------------------------------------------- 1

2 – OBJETIVO --------------------------------------------------------------------------- 3

3 – REVISÃO BIBLIOGRÁFICA----------------------------------------------------- 4

3.1 – Aspectos Gerais---------------------------------------------------------------------------------- 4

3.1.1 – Reservas, produção, consumo e mercado---------------------------------------------- 5

3.2 – Geologia do ferro-------------------------------------------------------------------------------- 9

3.2.1 – Hematita------------------------------------------------------------------------------------- 9

3.2.1.1 – Especularita---------------------------------------------------------------------------12

3.2.1.2 – Martita---------------------------------------------------------------------------------13

3.2.2 – Goethita-------------------------------------------------------------------------------------15

3.2.3 – Magnetita-----------------------------------------------------------------------------------20

3.3 – Caracterização----------------------------------------------------------------------------------22

3.3.1 – Microscopia ótica-------------------------------------------------------------------------24

3.3.2 – Espectroscopia de Reflectância Difusa (ERD)--------------------------------------25

3.3.2.1 – Medidas de cor------------------------------------------------------------------------28

3.3.2.1.1 – Sistema CIE – X, Y e Z---------------------------------------------------------28

3.3.2.1.2 – Notação Munsell-----------------------------------------------------------------29

3.3.2.1.3 – Sistema CIE – L*a*b*----------------------------------------------------------31

3.3.2.1 – Análise Kubelka-Munk--------------------------------------------------------------33

4 – METODOLOGIA------------------------------------------------------------------ 35

4.1 – Preparação das amostras---------------------------------------------------------------------35

4.2 – Caracterização Química----------------------------------------------------------------------35

4.2.1 – Espectrometria de Plasma---------------------------------------------------------------35

4.2.2 – Espectrometria de Absorção Atômica-------------------------------------------------35

4.3 – Caracterização Mineralógica----------------------------------------------------------------35

4.3.1 – Suscetibilidade Magnética---------------------------------------------------------------35

4.3.2 – Microscopia ótica-------------------------------------------------------------------------36

4.3.3 – Espectroscopia Mössbauer--------------------------------------------------------------36

4.3.4 – Difração de raios X-----------------------------------------------------------------------37

4.3.5 – Espectrofotometria de Reflectância Difusa------------------------------------------37

4.3.5.1 – Espectrofotômetro Cary 5000 UV – Vis – IR------------------------------------37

Page 10: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

x

4.3.5.2 – Espectrofotômetro Tensor 27 MIR------------------------------------------------37

4.3.5.3 – Espectrofotômetro ASD Inc. LabSpec 5000-------------------------------------37

4.3.5.4 – Análise Estatística--------------------------------------------------------------------38

5 – RESULTADOS -------------------------------------------------------------------- 39

5.1 – Análise química quantitativa-----------------------------------------------------------------39

5.2 – Suscetibilidade Magnética (SM)-------------------------------------------------------------39

5.3 – Difração de raios X ----------------------------------------------------------------------------40

5.4 – Espectroscopia Mössbauer -------------------------------------------------------------------45

5.5 – Microscopia Ótica------------------------------------------------------------------------------48

5.6 – Espectrofotometria de Reflectância Difusa------------------------------------------------51

5.6.1 – Análise espectral --------------------------------------------------------------------------52

5.6.2– Análise de cor ------------------------------------------------------------------------------54

5.6.3 – Análises Quimiométricas ----------------------------------------------------------------58

5.6.3.1 – PCA ------------------------------------------------------------------------------------58

5.6.3.2 - PLSR -----------------------------------------------------------------------------------60

5.6.3.3 – Correlações ----------------------------------------------------------------------------62

5.6.3.3.1 – Ferro Total------------------------------------------------------------------------68

5.6.3.3.2 – Hematita---------------------------------------------------------------------------69

5.6.3.3.3 – Goethita----------------------------------------------------------------------------70

5.6.3.3.4 – Especularita -----------------------------------------------------------------------71

5.6.3.3.5 – Martita------------------------------------------------------------------------------72

5.6.3.3.6 – Quartzo -----------------------------------------------------------------------------73

5.6.3.3.7 – Magnetita --------------------------------------------------------------------------74

6 – CONCLUSÃO---------------------------------------------------------------------- 76

7- REFERÊNCIAS BIBLIOGRÁFICAS ------------------------------------------ 78

Page 11: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

xi

LISTA DE FIGURAS

Figura 1. Países com as maiores reservas de minério de ferro. ----------------------------------- 5

Figura 2. Maiores produtores de minério de ferro do mundo em 2007. -------------------------- 5

Figura 3. Distribuição da produção de minério de ferro pelos estados brasileiros.------------ 6

Figura 4. Principais importadores de bens primários de ferro brasileiro.----------------------- 7

Figura 5. Principais importadores de produtos semimanufaturados de ferro brasileiro.------ 7

Figura 6. Países de destino dos produtos manufaturados (aço) brasileiros.--------------------- 8

Figura 7. Setores industriais brasileiros consumidores de minério de ferro. -------------------- 8

Figura 8. Difratograma padrão (tubo de ferro) de hematita bem cristalizada, simulado no programa JADE.------------------------------------------------------------------------------------------10

Figura 9. Espectro Mössbauer à temperatura ambiente de hematita. ---------------------------11

Figura 10. Microfotografia da hematita lamelar mono(A) e policristalina (B), granular mono (C) e policristalina (D), microcristalina (E) e lobular (F). --------------------------------12

Figura 11. Microfotografia de uma amostra de hematita martítica, sem polarizador (A) e com polarizador (B). -------------------------------------------------------------------------------------13

Figura 12. Espectros de infravermelho da (a) hematita martítica e (b) hematita especularítica (Russell e Fraser, 1994). --------------------------------------------------------------15

Figura 13. Difratograma padrão (tubo de ferro) de goethita, simulado no programa JADE.16

Figura 14. Espectro Mössbauer à temperatura ambiente da goethita sintética. ---------------18

Figura 15. Fotomicrografias obtidas em microscópio ótico de goethita: a e b) goethita com baixa porosidade (goethita maciça), c) goethita alveolar, d) goethita fibrosa, e e f) goethita terrosa. -----------------------------------------------------------------------------------------------------19

Figura 16. Espectros de infravermelho de goethita sintética (Russell e Fraser, 1994). ------19

Page 12: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

xii

Figura 17. Difratograma padrão (tubo de ferro) de magnetita, simulado pelo programa JADE.-------------------------------------------------------------------------------------------------------20

Figura 18. Espectro Mössbauer à temperatura ambiente da magnetita. ------------------------21

Figura 19. Fotomicrofotografia de amostras de magnetita mostrando o processo de martitização.-----------------------------------------------------------------------------------------------22

Figura 20. Representação gráfica das formas de reflexão da luz incidente. --------------------25

Figura 21. Representação dos possíveis comprimentos de onda na análise por reflectância difusa (McBratney et al., 2003). ------------------------------------------------------------------------26

Figura 22. Curvas de reflectância difusa para amostras de goethita e hematita (Bárron et al 2000).-------------------------------------------------------------------------------------------------------27

Figura 23. Funções x, y e z baseadas nas cores primárias do sistema CIE (Barrón, 1985). -29

Figura 24. Representação gráfica do sistema de cor Munsell (Barrón e Torrent, 2002). ---30

Figura 25. Representação da tabela Munsell. -------------------------------------------------------31

Figura 26. Representação da atribuição de cor pelo sistema CIE 1976 (L*a*b*) (Barrón e Torrent, 2002). -------------------------------------------------------------------------------32

Figura 27. Difratogramas de raios X de algumas amostras selecionadas. hematita: H; goethita: G; magnetita: Mt; quartzo: Q; muscovita: Mv; caolinita: K. --------------------------41

Figura 28. Espectros Mössbauer à temperatura ambiente de algumas amostras selecionadas.---------------------------------------------------------------------------------------------------------------47

Figura 29. Fotomicrografia da amostra Ana 37 apresentando especularita, goethita, magnetita (cor rosada) e magnetita sofrendo o processo de martitização. ----------------------48

Figura 30. Fotomicrografia da amostra Ana 59 apresentando especularita, goethita, martita e quartzo. As porções brancas dentro do quartzo são de especularita. --------------------------49

Figura 31. Fotomicrografia da amostra Ana 63 apresentando especularita, goethita, martita e quartzo. As porções brancas inclusas no quartzo são de especularita. -----------------------49

Page 13: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

xiii

Figura 32. Fotomicrografia da amostra Ana 64 apresentando martita magnetita (cor rosado) em processo de martitização e hematita lobular. Fotomicrografia sem polarizador (A) e fotomicrografia com polarizador (B). ----------------------------------------------------------50

Figura 33. Fotomicrografia da amostra Ana 70 apresentando martita e uma variedade de goethita. As porções branca dentro da goethita são de martita.----------------------------------50

Figura 34. Curva de reflectância difusa de especularita (a), martita (b), goethita (c) e quartzo (d). ------------------------------------------------------------------------------------------------52

Figura 35. Curva de reflectância difusa de para a amostra ANA 02.----------------------------53

Figura 36. Coordenadas de cromaticidade para as amostras de minérios de ferro. ----------57

Figura 37. Representação gráfica dos componentes principais versus a porcentagem da variância. --------------------------------------------------------------------------------------------------59

Figura 38. Representação gráfica da regressão utilizada para predizer do conteúdo mineral de novas amostras. ---------------------------------------------------------------------------------------61

Figura 39. Representação gráfica das correlações para ferro total, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------68

Figura 40. Representação gráfica das correlações para hematita, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------69

Figura 41. Representação gráfica das correlações para goethita, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------70

Figura 42. Representação gráfica das correlações para especularita, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------71

Figura 43. Representação gráfica das correlações para martita, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------72

Figura 44. Representação gráfica das correlações para quartzo, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------73

Figura 45. Representação gráfica das correlações para magnetita, valores preditos de calibração (azul) e validação (vermelho) versus valores medidos. -------------------------------74

Page 14: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

xiv

LISTA DE TABELAS

Tabela 1. Principais minerais de ferro que compõem os minérios de ferro. --------------------- 4

Tabela 2. Distâncias interplanares da hematita (d), intensidades (I), e índices de Miller (hkl).---------------------------------------------------------------------------------------------------------------10

Tabela 3. Parâmetros hiperfinos de hematita em diferentes temperaturas (Vandenberghe, 1991).-------------------------------------------------------------------------------------------------------11

Tabela 4. Características dos cristais de hematita. -------------------------------------------------14

Tabela 5. Distâncias interplanares (d), intensidades (I) e índices de Miller (hkl) da goethita.---------------------------------------------------------------------------------------------------------------17

Tabela 6. Parâmetros hiperfinos de goethita bem cristalizada (Vandenberghe, 1991). -------18

Tabela 7. Distâncias interplanares (d), intensidades (I) e índices de Miller (hkl) da magnetita.---------------------------------------------------------------------------------------------------------------21

Tabela 8. Parâmetros hiperfinos da magnetita à temperatura ambiente (Vandenberghe, 1991).-------------------------------------------------------------------------------------------------------22

Tabela 9. Análise da porcentagem de magnetita (%Mt) das amostras. --------------------------39

Tabela 10. Tamanhos médios de cristalitos (Ǻ) calculados por difração de raios X.----------42

Tabela 11. Área relativa dos minerais identificados por espectroscopia Mössbauer, hematita (HM), goethita (GOE) e magnetita (Mt).--------------------------------------------------------------45

Tabela 12. Composição mineralógica média (%) das amostras de minério de ferro. ---------51

Tabela 13. Relação dos valores obtidos para os sistemas de cores. ------------------------------54

Tabela 14. Composição mineralógica e química das amostras. ----------------------------------62

Tabela 15. Relação dos parâmetros estatísticos obtidos nas análises quimiométricas. -------65

Page 15: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

xv

GLOSSÁRIO

2εQ – Deslocamento quadrupolar (mm/s).

δ – Desvio isomérico (mm/s).

ASD – Analytical Spectral Devices.

C.I.E – Comissão Internacional da Iluminação.

DNPM – Departamento Nacional de Pesquisa Mineral.

DRX – Difração de raios X.

ERD – Espectroscopia de reflectância difusa.

Hhf – Campo magnético hiperfino (kOe).

ICDD – International Center for Diffraction Data.

ICP – Inductively Coupled Plasma.

MIR – Do Inglês – MID Infrared – Infravermelho Médio

NIR – Do Inglês – NEAR Infrared – Infravermelho Próximo

PCA – Do Inglês – Principal Component Analysis – Análise dos Componentes

Principais.

PLSR – Do Inglês – Regression Partial Least Squares – Regressão dos

Quadrados Mínimos Parciais.

RMSEC – Do Inglês – Root Mean Square Error of Calibration - Raiz Quadrada

do Erro Médio Quadrático da Calibração.

RMSECV - Do Inglês – Root Mean Square Error of Cross Validation - Raiz

Quadrada do Erro Médio Quadrático de Validação Cruzada.

UV – Ultravioleta.

Vis – Visível.

Page 16: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

xvi

Page 17: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

1

1 – INTRODUÇÃO

Muitos dos minérios de ferro brasileiros apresentam estruturas complexas e muito

variadas, devido às diferentes condições de metamorfismo e intemperismo a que foram

sujeitos, ou mesmo, em virtude de sua gênese. Dessa forma, originaram-se minérios com

diferentes constituintes mineralógicos, tamanho e morfologia dos cristais, tamanho e

morfologia dos poros, formas e superfícies das partículas, e cores variadas.

A complexidade dos minérios, tanto sob aspectos físicos, quanto químicos, vem

exigindo estudos de caracterização das propriedades dos seus minerais, precedendo os

processos de concentração e beneficiamento mineral. Tal procedimento é imprescindível, não

apenas pelas questões intrínsecas aos minérios, mas pela necessidade de se aperfeiçoar o

processo de obtenção do melhor produto ao menor custo e à menor geração de impacto

ambiental.

As indústrias mineradoras e siderúrgicas realizam rotineiramente a quantificação das

principais fases mineralógicas existentes nos minérios de ferro. A quantificação de quartzo,

fase mineralógica presente em todos os minérios, também é essencial, devido a sua

importância para vários processos, em especial para a etapa de flotação (Santos e Brandão,

2003; Santos et al, 2005). Existem várias técnicas analíticas que são utilizadas para as análises

mineralógicas e cada qual possui as suas especificidades e restrições.

As técnicas utilizadas para os estudos de caracterização mineral são inúmeras e cada

qual com seu grau de complexidade, que varia desde o uso de avançados microscópios

eletrônicos, da espectroscopia Mössbauer, além das análises granulométricas e análises

químicas por via úmida e instrumental.

Desta forma, a identificação e quantificação das fases mineralógicas constituintes dos

minérios de ferro é um assunto de suma importância para a área mineral. Além de quantificar

os minerais principais existentes no minério de ferro, goethita, magnetita e hematita, também

é essencial que se conheça a proporção da partição da hematita em martita e especularita.

Estas fases mineralógicas influenciam no processo de moagem devido à diferença da área

superficial das partículas e no processo siderúrgico, em relação ao consumo de carvão.

A cor é um dos atributos mais visíveis de óxidos e hidróxidos de ferro. A variedade

das cores exibidas por estes compostos resulta dos diferentes tipos de transições eletrônicas

que neles ocorrem. De fato, todas as cores quentes, do amarelo na goethita ao vermelho roxo

em algumas hematitas, podem ser observadas (Scheinost e Schuwertmann, 1999).

Page 18: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

2

Para a identificação e quantificação dos diferentes constituintes do minério de ferro

optou-se neste trabalho pelo uso da espectroscopia de reflectância difusa, tendo como base o

processo descrito no pedido de patente feito pela Universidade Federal de Ouro Preto

(PI0802824-9, INPI) tendo o Prof. Dr. Geraldo Magela da Costa como responsável pela

pesquisa.

Segundo a patente solicitada, a quantificação das fases mineralógicas em minério de

ferro pode ser realizada obtendo-se o espectro do material na região do visível e do

infravermelho próximo de 400 a 900 nm por espectrofotometria de reflectância difusa.

Portanto, o presente trabalho foi realizado com o objetivo principal de se obter os

espectros de reflectância difusa em equipamentos portáteis e de laboratório, além de se

estender a análise para a região do infravermelho médio.

Page 19: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

3

2 – OBJETIVO

O objetivo principal deste trabalho é quantificar os constituintes dos minérios de ferro

por espectroscopia de reflectância difusa, e comparar estes valores com aqueles obtidos por

técnicas auxiliares.

Page 20: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

4

3 – REVISÃO BIBLIOGRÁFICA

3.1 – Aspectos Gerais

Dos vários elementos que compõem a crosta terrestre, o ferro é o quarto mais

abundante, atrás apenas do oxigênio, da sílica e do alumínio, tendo uma concentração em

massa de 5,0%.

Os hidróxidos mais comuns são a goethita (α-FeOOH), akaganeíta (β-FeOOH) e a

lepidocrocita (γ-FeOOH), e os óxidos são a hematita (α-Fe2O3), maghemita (γ-Fe2O3) e

magnetita (Fe3O4). Segundo Cornell e Schwertmann (1996) os óxidos de ferro são compostos

formados pela combinação dos íons de Fe3+, 2+ com os íons de O2- e/ou OH-. O arranjo entre

os íons é o que define o empacotamento estrutural dos minerais, sendo que na maioria o

empacotamento é hexagonal compacto (hcp) ou cúbico (ccp). Quanto à classificação referente

à luz incidida nos cristais, os óxidos de ferro são denotados de cristais opacos e na sua maioria

possuindo certa cristalinidade, sendo que a forma estrutural e os tamanhos dos cristais

dependem diretamente das condições em que os cristais se originaram.

Um aspecto importante dos óxidos de ferro é a ocorrência de substituição isomórfica

do ferro por outros cátions, devido à similaridade dos raios iônicos. O exemplo mais comum é

a substituição pelo alumínio, sendo que as várias propriedades dos óxidos de ferro mudam

regularmente com o aumento dos teores das substituições. A ocorrência da substituição

isomórfica pode ser detectada por vários métodos tais como a difração de raios X,

espectroscopia Mössbauer, espectroscopia no infravermelho, e espectroscopia de reflectância

difusa (Cornell e Schwertmann, 1996)

Dependendo da composição mineralógica e química dos minérios de ferro pode-se

obter teores de ferro variados, devido a diferentes fórmulas químicas de seus constituintes

conforme mostrado na Tabela 1.

Tabela 1. Principais minerais de ferro que compõem os minérios de ferro.

Mineral Fórmula química % de ferro

Hematita Fe2O3 69,9

Magnetita Fe3O4 72,4

Goethita FeOOH 62,9

Siderida FeCO3 48,3

Pirita FeS2 46,6

Pirrotita Fe1-x S 61,5

Ilmenita FeTiO3 36,8

Page 21: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

5

3.1.1 – Reservas, produção, consumo e mercado

Segundo os dados do Departamento Nacional de Produção Mineral (DNPM) para o

ano de 2007, as reservas mundiais de minério de ferro são da ordem de 340 bilhões de

toneladas, com o Brasil ocupando a quinta posição com cerca de 10 % (Figura 1), ficando

atrás da Ucrânia, Rússia, China e Austrália. Em relação à produção mundial neste mesmo ano,

o DNPM considerou o Brasil o segundo maior produtor com mais de 350 milhões de

toneladas, totalizando assim um percentual de 19% da produção mundial, ficando atrás apenas

da China que é responsável por 600 milhões de toneladas (Figura 2).

Ucrânia 20%

Russia17%

China14%

Austrália13%

Brasil10%

outros26%

Figura 1. Países com as maiores reservas de minério de ferro.

Brasil19%

Australia16%

China31%

India9%

Outros16%Rússia

6%

EUA3%

Figura 2. Maiores produtores de minério de ferro do mundo em 2007.

Page 22: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

6

As reservas brasileiras se concentram principalmente no estado de Minas Gerais com

cerca de 63% do total, consolidando assim este estado como o principal produtor de minério

de ferro, seguido pelos estados do Pará com 18% e o Mato Grosso do Sul com cerca de 17%,

(Figura 3).

No ano de 2007 a produção interna de minério de ferro foi de 354,7 milhões de

toneladas, sendo que deste montante a VALE e as empresas nas quais ela tem participação

produziram cerca de 308,4Mt, totalizando assim 87% do total produzido no país.

PA18%

MS17%

outros2%

MG63%

Figura 3. Distribuição da produção de minério de ferro pelos estados brasileiros.

As exportações brasileiras de minério de ferro em 2007 foram de 285,8 Mt, mostrando

um aumento de 11,1% em relação ao ano anterior. Deste montante, 269,4 Mt foram de bens

primários de ferro (minério e pelota). Os principais importadores estão representados na

Figura 4. Os produtos semimanufaturados totalizaram cerca de 11,2 Mt, tendo como principal

comprador os Estados Unidos (Figura 5).

Page 23: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

7

China33%

Japão13%

Alemanha10%

outros34%

França5%

Coreia do Sul5%

Figura 4. Principais importadores de bens primários de ferro brasileiro.

Figura 5. Principais importadores de produtos semimanufaturados de ferro brasileiro.

Com relação à exportação de produtos manufaturados provenientes de minério de

ferro brasileiro (aço), os Estados Unidos também é o principal importador com 18 %, seguido

pela Argentina e Colômbia com 6% cada (Figura 6).

Coréia do Sul 7%

Taiwan 6% México 6%

Tailândia 6%

Outros 28%

EUA 47%

Page 24: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

8

EUA; 18%

Argentina; 6%

Colômbia; 6%

Chile; 5%

Espanha; 5%

Figura 6. Países de destino dos produtos manufaturados (aço) brasileiros.

Na Figura 7 são mostrados os principais mercados consumidores de minério de ferro

no Brasil tendo as indústrias siderúrgicas (78%) em primeiro lugar, em seguida as indústrias

de pelotização, extração e beneficiamento de minerais, fundição, cimento e ferro-ligas,

(DNPM 2007).

Siderurgia; 78%

Beneficiamento 2,73%

Fundição; 0,47%

Não Informado; 5,44%

Pelotização; 13,30%

Cimento; 0,03%

Ferro-Liga; 0,01%

Figura 7. Setores industriais brasileiros consumidores de minério de ferro.

Page 25: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

9

3.2 – Geologia do ferro

3.2.1 – Hematita

A hematita (α-Fe2O3) é um óxido de ferro III que tem 69,9 % de ferro em sua

estrutura. Segundo Dana (1978) pode ser encontrada em rochas de várias idades, é o principal

mineral de ferro nos minérios, sendo muito abundante em jazidas em Minas Gerais

(Quadrilátero Ferrífero) e Pará (Serra dos Carajás).

Apresenta empacotamento hexagonal compacto de ânions oxigênio numa sequência

ABABAB ... e com os íons Fe3+ ocupando interstícios octaédricos com as dimensões a=

0,5034 nm e c= 1,3752 nm. O sistema cristalino é romboédrico, com estrutura similar ao

coríndon, e sua densidade teórica é 5,3 g/cm3. É mais comumente encontrada na forma

isolada (mineral), ou em agregados com partículas distintas, sendo o caso mais clássico com

partículas de quartzo, ou ainda em associação com a goethita, material este conhecido como

limonita (Cornell e Schwertmann, 1996).

É um mineral muito comum, sendo sua cor dependente da granulometria e da

cristalinidade, podendo ser preto, cinza, marrom, marrom avermelhado, ou vermelho. No

sistema Munsell de cor a hematita vermelha possui matiz (hue) entre 5R - 2,5YR. As

principais variedades de hematita são a martita e a especularita (hematita com brilho

especular). A coloração avermelhada de alguns solos pode ser explicada devido à

porcentagem de hematita no mesmo, sendo que cerca de 1% desta fase é suficiente para

colorir alguns solos (Stucki, 1985).

O difratograma de raios X de uma amostra de hematita pura e bem cristalizada está

representado na Figura 8. Na Tabela 2 estão listadas as intensidades relativas dos picos mais

intensos em relação ao pico (104), as distâncias interplanares (d) e os índices de Miller (hkl),

catalogado no banco de dados do International Center for Diffraction Data ((ICDD: 033-

0664).

Page 26: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

10

10 20 30 40 50 60 70

0

2000

4000

6000

8000

10000

Inte

nsid

ade

2 - theta

Figura 8. Difratograma padrão (tubo de ferro) de hematita bem cristalizada, simulado no programa

JADE.

Tabela 2. Distâncias interplanares da hematita (d), intensidades (I), e índices de Miller (hkl).

2-Theta d (Å) I (%) hkl

30.468 3.6840 30.0 012

42.019 2.7000 100.0 104

45.199 2.5190 70.0 110

52.031 2.2070 20.0 113

63.461 1.8406 40.0 024

69.697 1.6941 45.0 116

74.503 1.5992 10.0 018

81.305 1.4859 30.0 214

83.496 1.4538 30.0 300

A hematita tem um comportamento magnético bem complexo, podendo ser

paramagnética, fracamente ferromagnética e antiferromagnética, dependendo da temperatura.

Acima da temperatura de Curie (TC = 955K) ela é paramagnética; entre TC e a temperatura de

Morin (TM = 260K) ela á fracamente ferromagnética e para temperaturas abaixo de TM ela é

antiferromagnética (Stucki, 1985).

Page 27: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

11

Uma técnica muito utilizada nos últimos anos com relação à caracterização de

hematitas é a espectroscopia Mössbauer. O espectro característico se apresenta na forma de

um sexteto simétrico (Figura 9), e os valores dos principais parâmetros Mössbauer para uma

amostra de hematita pura estão mostrados na Tabela 3.

-10 -5 0 5 1088

90

92

94

96

98

100

Tra

nsm

issã

o (%

)

Velocidade (mm/s)

Figura 9. Espectro Mössbauer à temperatura ambiente de hematita.

Tabela 3. Parâmetros hiperfinos de hematita em diferentes temperaturas (Vandenberghe, 1991).

T (K) Hhf (kOe) δ (Fe) (mm/s) 2εQ (mm/s)

4 542 0,48 0,38

80 541 0,47 0,37

295 517 0,36 -0,20

Em relação à identificação da hematita por microscopia ótica, a análise deve ser

realizada sob luz refletida, em seções polidas, pois apresenta cristais opacos que refletem

intensivamente a luz incidente. Geralmente se apresentam com pouca porosidade, cristais

compactos, exceto a hematita martítica (porosa) com os cristais podendo variar de 0,01mm a

tamanhos superiores a 0,22mm, o que dependerá das características de formação geológica e

mineralógica (temperatura, pressão, intemperismo, metamorfismo, etc.).

As principais texturas/microestruturas encontradas são a hematita tabular

(especular/lamelar), a hematita granular, a hematita lobular (sinuosa) e a hematita martítica

Page 28: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

12

(martita). Sob luz polarizada/nicóis cruzados, os planos cristalinos da martita são

evidenciados, apresentando as estruturas em treliças (Ferreira, 1993).

A Figura 10 mostra as principais texturas/microestruturas para a hematita.

Figura 10. Microfotografia da hematita lamelar mono(A) e policristalina (B), granular mono (C) e

policristalina (D), microcristalina (E) e lobular (F).

3.2.1.1 – Especularita

Pode ocorrer como produto de sublimação em conexão com as atividades vulcânicas,

em depósitos metamórficos de contato e como mineral acessório nas rochas ígneas

feldspáticas, tais como o granito (Dana, 1978).

A hematita especularítica é um mineral que foi submetido a temperaturas mais altas e

mais fortemente deformado possuindo assim um brilho metálico das placas, que geralmente

são de forma alongadas, constituindo uma lineação mineral (Rosière et al, 1996). É mais

conhecida como especularita e se apresenta na forma de finas placas, muito brilhantes,

conferindo a ela um aspecto de espelho e apresentando uma partição micácea, o que pode

resultar na ocorrência de orientação preferencial em uma análise de difração de raios X.

Page 29: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

13

3.2.1.2 – Martita É uma hematita conhecida como pseudomórfica a partir de transições sofridas pela

magnetita. Martita (Figura 11) não é considerado um nome válido de um espécime mineral,

sendo esse termo usado para designar octaedros de magnetita que sofreram modificação

química (oxidação) e se transformaram em hematita, mantendo, contudo o hábito octaédrico

da magnetita. É comumente encontrada em ambientes sujeitos à ação do intemperismo

químico: solos, aluviões, rochas em processo de alteração, etc.

Figura 11. Microfotografia de uma amostra de hematita martítica, sem polarizador (A) e com polarizador

(B).

Segundo Rosière et al (1996) a martita é um mineral que apresenta uma boa

performance durante o beneficiamento do minério, pois possui baixa intensidade de

crepitação e de desintegração granulométrica durante os processos de britagem e moagem.

Na Tabela 4 são apresentadas algumas das características dos cristais que podem

auxiliar na identificação da textura/microestrutura das partículas minerais de hematita no

minério de ferro.

Page 30: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

14

Tab

ela

4. C

arac

terí

stic

as d

os c

rista

is d

e he

mat

ita.

Car

acte

ríst

icas

dos

cris

tais

Tab

ular

/La

mel

ar

Gra

nula

r

Lobu

lar

Mar

tític

a

Por

osid

ade

do c

rista

l M

uito

bai

xa (

cris

tais

com

pact

os).

Mui

to b

aixa

(cr

ista

is

com

pact

os).

Mui

to b

aixa

(cr

ista

is c

ompa

ctos

).

Por

oso

a m

uito

po

roso

.

Con

tato

ent

re c

rista

is R

etilí

neo,

se

houv

er

orie

ntaç

ão.

Ret

ilíne

o, c

om ju

nçõe

s

tríp

lices

.

Irre

gula

res,

ge

ralm

ente

imbr

icad

os.

Late

rais

ret

ilíne

os q

uand

o pr

eser

va o

habi

tus

da m

agn

etita

.

Dim

ensõ

es d

o cr

ista

l

Rel

ação

ent

re

com

prim

ento

e la

rgur

a

mai

or q

ue 5

:1.

Gra

nula

r, g

eral

men

te

equi

dim

ensi

onai

s.

Asp

ecto

gra

nula

r co

m c

rist

ais

ineq

uidi

men

sion

ais

e irr

egu

lare

s À

s ve

zes

tota

lmen

te

irre

gula

res.

Gra

nula

ção

do

cris

tal

De

fina

(0,0

1 a

0,03

mm

) a

mui

to g

ross

a

(>0,

22m

m).

De

fina

(0,0

1 a

0,03

mm

) a

mui

to g

ross

a

(>0,

22m

m).

De

mui

to fi

na (

<0,

01m

m)

a m

édia

(0,0

4 a

0,11

mm

).

De

fina

(0,0

1 a

0,03

mm

) a

mui

to

gros

sa (

>0,

22 m

m).

Asp

ecto

s de

Luz

R

efle

te a

luz

inte

nsam

ente

.

Ref

lete

a lu

z

inte

nsam

ente

. Mel

hor

dist

inçã

o en

tre

cris

tais

sob

luz

pola

rizad

a/

nicó

is c

ruza

dos.

Ref

lete

a lu

z in

tens

amen

te. M

elho

r

dist

inçã

o en

tre

cris

tais

sob

luz

pola

rizad

a/ n

icói

s cr

uzad

os.

Sob

luz

pola

rizad

a, p

ode

apre

sent

ar

estr

utur

a em

trel

iça.

Dis

tinçã

o m

ais

difíc

il qu

ando

a p

oros

ida

de é

mui

to

elev

ada.

Page 31: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

15

Mesmo a hematita se apresentando em duas formas morfológicas distintas

(martita e especularita), seus espectros na região de infravermelho médio (4000 – 200

cm-1), são geralmente similares, mas com algumas diferenças que podem ser notadas na

Figura 12; as bandas 532, 450 e 317 cm-1 na martita, se apresentam em uma frequência

maior que na especularita 562, 480 e 352 cm-1. Outro detalhe são as bandas fracas em

643 e 400 cm-1 no espectro da martita. Tais diferenças são devido aos diferentes

tamanhos dos cristais, e pela diferença na forma das partículas (Russell e Fraser, 1994).

Figura 12. Espectros de infravermelho da (a) hematita martítica e (b) hematita especularítica

(Russell e Fraser, 1994).

3.2.2 – Goethita

A goethita é um hidróxido de ferro (α-FeOOH), que contém 62,9% de ferro. Sua

estrutura cristalina é de empacotamento hexagonal compacto, semelhante à hematita no

que diz respeito ao arranjo dos íons de oxigênio, onde os interstícios octaédricos

existentes são preenchidos pelos íons Fe3+ (Cornell e Schwertmann, 1996).

Page 32: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

16

A célula unitária possui dimensões: a=0,4608 nm, b=0,9956 nm e c=0,3021 nm.

Apresenta uma morfologia essencialmente acicular, podendo ser também bipiramidal,

cubos, etc, e pode ocorrer na natureza com granulometria variada. A densidade relativa

é de 4,37 g/cm3. Segundo Stucki (1985) a goethita possuiu um poder de pigmentação

bem menor que a hematita, com matiz na notação Munsell variando de 2,5Y a 7,5 YR, o

que dá a ela uma coloração amarela. Entretanto, Cornell e Schwertmann (1996) relatam

que a coloração depende da região de origem, podendo variar, além do amarelo, de

marrom a preto.

O difratograma de raios X da goethita no intervalo de 10º a 70º está mostrado na

Figura 13, e os principais picos de difração estão listados na Tabela 5 ((ICDD: 029-

0713).

10 20 30 40 50 60 70

0

2000

4000

6000

8000

10000

Inte

nsid

ade

2-Theta

Figura 13. Difratograma padrão (tubo de ferro) de goethita, simulado no programa JADE.

Page 33: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

17

Tabela 5. Distâncias interplanares (d), intensidades (I) e índices de Miller (hkl) da goethita.

2-Theta d (Å) I (%) hkl

22.417 4.9800 12.0 020

26.761 4.1830 100.0 110

42.134 2.6930 35.0 130

44.020 2.5830 12.0 021

45.775 2.4890 10.0 040

46.546 2.4500 50.0 111

50.892 2.2530 14.0 121

52.465 2.1900 18.0 140

68.536 1.7192 20.0 221

76.495 1.5637 10.0 151

O comportamento magnético da goethita está diretamente relacionado à

temperatura de Neel (TN) cujo valor é 393K. Acima deste valor ela é paramagnética e

abaixo é antiferromagnética.

Quando se observa o espectro Mössbauer (Figura 14) para uma amostra de

goethita pura pode-se notar a presença de um sexteto assimétrico, algumas vezes

superposto a um dubleto. Os parâmetros hiperfinos obtidos através dos espectros

Mössbauer para uma amostra de goethita bem cristalizada estão listados na Tabela 6.

Page 34: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

18

-10 -5 0 5 10

96

97

98

99

100

101

Tra

nsm

issã

o (%

)

Velocidade (mm/s)

Figura 14. Espectro Mössbauer à temperatura ambiente da goethita sintética.

Tabela 6. Parâmetros hiperfinos de goethita bem cristalizada (Vandenberghe, 1991).

T (K) Hhf (kOe) δ (Fe) (mm/s) 2εQ (mm/s)

4 507 0,49 -0,26

80 500 0,48 -0,26

295 381 0,37 -0,28

400 - < 0,30 -

A microscopia ótica é uma excelente ferramenta de identificação da goethita

devido às variedades existentes desse mineral, podendo ser terrosa, compacta, fibrosa

e/ou alveolar. Os vários aspectos das texturas do material podem ser facilmente

visualizados, conforme mostrado na Figura 15.

Entre os minerais de ferro, a goethita é o mineral que apresenta os maiores níveis

de contaminações por alumina, fósforo e outros compostos/elementos químicos, que

geralmente são prejudiciais na geração de produtos do minério de ferro e que muitas

vezes são difíceis de serem removidos nos processos de beneficiamento clássicos.

Page 35: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

19

Figura 15. Fotomicrografias obtidas em microscópio ótico de goethita: a e b) goethita com baixa

porosidade (goethita maciça), c) goethita alveolar, d) goethita fibrosa, e e f) goethita terrosa.

Para a goethita a caracterização pelo infravermelho ocorre de forma mais fácil

em decorrência da forte ligação -OH que absorve na região de 3153 cm-1. Outros picos

característicos para a ligação -OH (deformação) estão localizados em 893 e 794 cm-1. O

espectro na região do infravermelho médio para a goethita está representado na Figura

16 (Russell e Fraser, 1994).

Figura 16. Espectros de infravermelho de goethita sintética (Russell e Fraser, 1994).

Page 36: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

20

3.2.3 – Magnetita

A magnetita é um óxido de fórmula Fe3O4, contendo 72,4% de ferro, e tendo em

sua estrutura os íons Fe2+ e Fe3+ ocupando sítios octaédricos e tetraédricos. Apresenta

uma coloração preta, tendo como característica marcante a presença de ferrimagnetismo

(Cornell e Schwertmann, 1996).

Apresenta sistema cúbico com parâmetro de rede de a= 0,8391 nm, densidade

teórica de 5,18 g/cm3, hábito dos cristais geralmente octaédricos, mas alguns podem

aparecer como dodecaédricos. O difratograma de raios X da magnetita no intervalo de

10º a 70º (tubo de ferro) é mostrado na Figura 17, e os principais picos de difração estão

listados na Tabela 7 (ICDD: 019-0629).

10 20 30 40 50 60 70

0

2000

4000

6000

8000

10000

Inte

sida

de

2 - theta

Figura 17. Difratograma padrão (tubo de ferro) de magnetita, simulado pelo programa JADE.

Page 37: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

21

Tabela 7. Distâncias interplanares (d), intensidades (I) e índices de Miller (hkl) da magnetita.

2-Theta d (Å) I (%) hkl

38.084 2.9670 30.0 220

44.954 2.5320 100.0 311

54.918 2.0993 20.0 400

68.746 1.7146 10.0 422

73.610 1.6158 30.0 511

81.398 1.4845 40.0 440

98.200 1.2807 10.0 533

124.664 1.0930 12.0 731

Devido à existência de Fe3+ e Fe2+ na estrutura da magnetita, o espectro

Mössbauer de uma amostra pura e bem cristalizada contém dois sextetos (Figura 18),

cujos parâmetros hiperfinos estão listados na Tabela 8 (Vandenberghe, 1991).

Figura 18. Espectro Mössbauer à temperatura ambiente da magnetita.

Page 38: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

22

Tabela 8. Parâmetros hiperfinos da magnetita à temperatura ambiente (Vandenberghe, 1991).

Hhf (kOe) δ (Fe) (mm/s) 2εQ (mm/s)

Fe 3+ 491 0,28 0

Fe 2,5+ 460 0,66 0

A identificação da magnetita por microscopia ótica é realizada com facilidade,

devido a esta fase mineralógica apresentar uma coloração rósea típica. Entretanto, com

o passar do tempo pode sofrer oxidação e se transformar em martita, em um processo

conhecido como martitização. Nestes casos, a identificação da magnetita pode ficar

comprometida, pois irá depender da quantidade de magnetita ainda existente. A Figura

19 mostra duas microfotografias de magnetita, uma das quais em um estado avançado

de oxidação.

Figura 19. Fotomicrofotografia de amostras de magnetita mostrando o processo de martitização.

3.3 – Caracterização

A caracterização mineral é uma etapa importante para o uso dos recursos

minerais de forma otimizada. Ocorre nesta etapa à determinação e quantificação da

assembléia mineralógica (mineral de interesse e mineral de ganga), como também os

estudos sobre a textura, tamanho de partículas, além das propriedades físicas e

químicas. O tipo de caracterização realizada deve ser escolhido dependendo do objetivo

do trabalho e varia com a mineralogia e propriedades dos minerais (Neumann, et al.,

2004).

Page 39: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

23

A complexidade dos minérios, tanto sob aspectos físicos quanto químicos, vem

exigindo estudos de caracterização das propriedades dos seus minerais, precedendo os

processos de concentração e beneficiamento mineral. Tal procedimento é

imprescindível, não apenas pelas questões intrínsecas aos minérios, mas pela

necessidade de se otimizar o processo de obtenção do melhor produto ao menor custo.

Segundo Porphírio e Barbosa (1995) alguns itens são essenciais para uma boa

caracterização mineralógica:

1 – Identificação de todos os minerais presentes;

2 – Avaliações e cálculos quantitativos das proporções percentuais de todos os minerais

do minério;

3 – Medidas de reflectividade dos minerais opacos através de aparelhagem própria;

4 – Fotomicrografias;

5 – Identificações mineralógicas através de difração de raios X e microscopia eletrônica

de varredura (MEV);

6 – Complementação e compatibilização dos estudos através dos resultados de análises

químicas dos elementos maiores e traços.

A técnica de difração de raios X é muito utilizada para a identificação de

sustâncias cristalinas, entretanto não muito utilizada para quantificação das fases

minerais presente, devido a fatores que influenciam a intensidade dos picos, textura

(orientação preferencial), stress e o tamanho do cristal (Jenkins e Snyder, 1996;

Pöllmann e Angélica, 2002)

Para a identificação dos componentes mineralógicos do material a ser analisado,

a técnica mais utilizada é a difração de raios X. Contudo esta é uma técnica que também

apresenta a possibilidade de se conhecer o tamanho médio dos critalitos (τ), estimados

através da equação de Scherrer (Equação 1).

τ = (k.λ) / (β.cos θ) (Equação 1)

Onde (β): largura à meia altura do pico; (λ): comprimento de onda; (θ) ângulo de Bragg

do pico e (k): constante com valor de 0,9 para cristalitos esféricos.

Page 40: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

24

Uma técnica analítica apropriada, para estudos de compostos contendo o

elemento ferro em sua estrutura é a espectroscopia Mössbauer. Essa técnica pode ser

usada para identificar e quantificar todas as fases contendo ferro, como também para se

obter informações sobre o estado de oxidação e coordenação, efeitos morfológicos e

substituição isomórfica. A obtenção de todas essas informações geralmente requer a

obtenção de espectros em diferentes temperaturas e/ou com a aplicação de um campo

magnético externo. A identificação é baseada na comparação dos parâmetros hiperfinos

derivados com as listadas na literatura para amostras bem caracterizadas, visto que a

quantificação é baseada nas áreas relativas obtidas para cada componente (De Grave,

1991).

Uma técnica possível para caracterização de minerais em minério de ferro é a

espectroscopia de reflectância difusa, porém não é ainda utilizada, muito embora

existam muitos trabalhos relativos à caracterização de minerais em solos.

3.3.1 – Microscopia ótica

A microscopia ótica requer uma preparação prévia das amostras, que consiste na

confecção de pastilhas polidas ou lâminas delgadas polidas. A escolha do tipo de

preparação depende do tipo de material a ser analisado (opacos ou

transparentes/translúcidos) e do tipo de luz incidente, refletida ou transmitida. Pela

microscopia pode-se obter uma margem de erro inferior a 3% se cerca de 500 partículas

forem observadas e quantificadas. Para uma margem de erro inferior a 1%, deve-se

observar e quantificar cerca de 3000 partículas (Ferreira 1993).

A microscopia ótica possibilita obter alguns dados sobre as partículas ou grãos

de minerais: formas/habitus, características de superfície, cor e associações minerais,

sendo que os equipamentos mais completos dispõem também de recursos de luz

transmitida e sistemas de polarização de luz, além da luz refletida, possibilitando a

determinação de propriedades ópticas. A faixa de aumento típica empregada nas

observações é de 10 a 500 vezes. A microscopia óptica é a técnica mais utilizada para

quantificar os minerais presentes em minérios de ferro, com uma incerteza de cerca de

5-10%. A quantificação é feita por contagem de pelo menos 500 partículas e, em

seguida, pela conversão da porcentagem volumétrica em porcentagem mássica

utilizando a densidade média de cada fase (Donskoi et al, 2007; Ferreira, 1993). No

entanto, esta técnica requer várias horas para sua realização e seus resultados são

dependentes da preparação das amostras, do operador, e das densidades dos minerais.

Page 41: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

25

Segundo Donskoi et al. (2008) a densidade relativa de cada mineral presente nos

minérios de ferro (goethita, magnetita, especularita e martita) necessária para a

quantificação das mesmas por microscopia ótica é dependente de alguns fatores, como

do grau de oxidação e da porosidade de cada um.

3.3.2 – Espectroscopia de Reflectância Difusa (ERD)

Quando ocorre a incidência da luz sobre uma amostra, parte é refletida pelos

grãos da superfície de forma especular, parte atravessa a superfície e é refletida de

forma difusa, parte passa através desses grãos e parte é absorvida (Figura 20). A cor é o

resultado da capacidade de absorção da luz em determinados comprimentos de onda em

relação a outros (Torrent e Barrón, 1993; Bárron et al 2000).

Figura 20. Representação gráfica das formas de reflexão da luz incidente.

Há alguns anos a reflectância difusa vem sendo utilizada para estudos de

identificação e quantificação de minerais em solos e sedimentos, visando à obtenção dos

parâmetros composicionais (Torrent e Barrón, 1993).

Um dado importante a ser observado no estudo de minerais por espectroscopia

de reflectância difusa é o comprimento de onda, que varia da região do ultravioleta,

passando pela região do visível à região do infravermelho próximo (UV/VIS/NIR: 300

– 2500 nm), e a região do infravermelho médio (4000 – 200 cm-1), tendo como resposta

Page 42: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

26

um espectro formado por bandas, que são o resultado das propriedades dielétricas

específicas, como também decorrente das absorções características dos minerais. (Ben-

Dor, 2002). Outros fatores de relevância a serem observados no estudo de reflectância é

a morfologia do mineral, devido ao fato de gerar espalhamento da luz, como também o

tamanho das partículas.

A aplicação de reflectância difusa na região do espectro do visível e do

infravermelho próximo, juntamente com análises quimiométricas, vem obtendo

resultados satisfatórios na agricultura, particularmente na caracterização de óxidos de

ferro e outros componentes em solo (Ben-Dor e Banin, 1990; Reeves et al, 1999;

Viscarra Rossel et al, 2003; Viscarra Rossel et al, 2006).

Os trabalhos mais recentes do uso de reflectância difusa para análise

mineralógica são comparações entre os dados obtidos entre a região do visível (Vis)

(400 – 700 nm), a região do infravermelho próximo (NIR) (700 – 2500 nm) e no

infravermelho médio (MIR) (2500 – 25000 nm) como representado na Figura 21

(Jandik et al, 1998; Viscarra Rossel et al, 2006, Madari et al, 2006, Viscarra Rossel e

Lark, 2009, Sellitto et al. 2009).

Figura 21. Representação dos possíveis comprimentos de onda na análise por reflectância difusa

(McBratney et al., 2003).

Segundo Cornell e Schwertmann (1996) a absorção da luz está relacionada com

a parte visível do espectro, isto é, comprimentos de onda entre 400nm e 700nm, e tal

absorção é o resultado da interação entre a luz incidente e os elétrons de valência nos

Page 43: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

27

compostos, gerando a curva de reflectância difusa (Figura 22). As cores dos sólidos são

complementos da luz absorvida, por exemplo, um pigmento (goethita, por exemplo) que

absorve luz no comprimento de onda entre 400 e 500nm (azul – verde) aparecerá de

coloração amarela.

Morris et al. (1985) realizaram um estudo das propriedades espectrais e físico-

químicas de alguns minerais e comprovaram que para a hematita a absorção

característica está situada entre 550 e 630 nm, e para a goethita entre 480 e 650 nm.

Figura 22. Curvas de reflectância difusa para amostras de goethita e hematita (Bárron et al 2000).

Segundo Barrón e Torrent (1986) valores maiores de reflectância caracterizam

solos mais claros e amarelados, enquanto que valores menores significam que a

coloração se apresenta mais escurecida e avermelhada.

Os espectros de reflectância difusa podem apresentar bandas fracas ou bandas

sobrepostas, devido à proximidade das bandas de alguns minerais. Portanto, para a

identificação e quantificação dos minerais utilizam-se muitas vezes as derivadas das

curvas de reflectância (Torrent e Barrón, 2008).

Page 44: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

28

A curva de reflectância difusa apresenta bandas de absorção ao invés de picos,

requerendo a utilização de tratamentos matemáticos para a obtenção de dados

específicos. Os tratamentos mais comuns são:

1 – Medida de cor

1.1 – Sistema CIE - X, Y e Z;

1.2 – Notação Munsell;

1.3 – Sistema CIE - L*a*b*;

2 – Análise Kubelka – Munk.

3.3.2.1 – Medidas de cor Há alguns anos a cor era classificada objetivando duas propriedades básicas,

matiz (tom da cor) e a saturação, porém estudos, mas recentes trabalham com três

propriedades: matiz, saturação e luminosidade da cor. Estas propriedades podem ser

expressas quantitativamente por coordenadas (X,Y,Z e/ou H,C,V e/ou L*a*b*), pelo

comprimento de onda específico inerente a cada material a ser analisado e pelo grau de

saturação (Pospísil et al. 2007).

Para quantificar e medir as cores existe três sistemas de classificação: o sistema

CIE (tricromáticas) sistema (X, Y, Z), o sistema CIE (L *, a *, b *) e o sistema de

Munsell (H, V, C) (Wyszecki e Stiles, 1982; Cornell e Schwertmann, 1996; Munsell,

1941).

3.3.2.1.1 – Sistema CIE – X, Y e Z Sistema C.I.E (Comissão Internacional da Iluminação) – X, Y e Z.

É a decomposição da curva de reflectância em três variáveis X, Y e Z (tri-

estímulo), obtidas através da integração da curva no intervalo de 400 a 800 nm

(Wyszecki e Stiles 1982):

X = ∫ EλRλxλ dλ

Y = ∫ EλRλyλ dλ

Z = ∫ EλRλzλ dλ

onde:

E é a energia da fonte de luz;

R é reflectância da amostra;

x, y e z contribuição das variáveis para cada comprimento de onda.

Page 45: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

29

Segundo Barrón (1985), é possível obter outras cores a partir de combinações

lineares entre as três cores primárias, vermelho (X), verde (Y) e azul (Z) (Figura 23),

entretanto o mais usual é a transformação das mesmas em outras variáveis mais usadas,

conhecidas como coordenadas tri cromáticas (x, y e z), que são obtidas através das

equações descritas a seguir.

x = X y = Y z = Z .

(X + Y + Z) (X + Y + Z) (X + Y + Z)

Figura 23. Funções x, y e z baseadas nas cores primárias do sistema CIE (Barrón, 1985).

3.3.2.1.2 – Notação Munsell Outro sistema de identificação das cores para minerais é conhecido como

notação Munsell que é definida pela correlação entre três parâmetros: Hue (H), Chroma

(C) e Value (V), que são conhecidos respectivamente pela posição da cor no espectro, a

graduação da cor e a luminosidade respectivamente (Figura 24). (Torrent e Barrón,

1993; Cornell e Schwertmann, 1996)

Page 46: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

30

Figura 24. Representação gráfica do sistema de cor Munsell (Barrón e Torrent, 2002).

A notação Munsell pode ser obtida através de cartilhas próprias (tabela

Munsell), porém com uma maior imprecisão e subjetividade. Pode ser deduzida também

a partir das coordenadas CIE – X, Y, Z, em um programa específico de conversão

digital denominado “Munsell Conversion”.

O parâmetro Hue (H) é definido como a cor espectral dominante, podendo se

diferenciar em cinco tons fundamentais e seus intermediários, o vermelho (R), o

amarelo (Y), o verde (G), o azul (B) e a cinza (P). O Value (V) é o valor dado a

luminosidade da cor, que flutua entre o zero para o preto e 10 para o branco, enquanto o

Chroma (C) por sua vez, indica a intensidade da cor tendo o seu valor no intervalo entre

1 e 10.

Entretanto, apesar de ser uma análise rápida, esta forma de caracterização não é

muito difundida devido à imprecisão na sua determinação, que era realizada por

comparação visual através da tabela Munsell (Figura 25).

Page 47: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

31

Figura 25. Representação da tabela Munsell.

3.3.2.1.3 – Sistema CIE – L*a*b* Outro sistema utilizado para identificação da cor dos minerais obtidos a partir

das coordenadas C.I.E – X, Y, Z e do programa de conversão Munsell Color é o sistema

CIE – L*a*b* (Figura 26).

O sistema CIE L*a*b* é apresentado por eixos ortogonais, onde o eixo de escala

L* representa a luminosidade da cor, unidade esta que pode variar de 100% para o

branco até 0% para o preto; o eixo a* é a variação entre as cores vermelho (+a*) e verde

(-a*), e o eixo b* a variação entre o amarelo (+b*) e a cor azul (-b*).

Page 48: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

32

Figura 26. Representação da atribuição de cor pelo sistema CIE 1976 (L*a*b*)

(Barrón e Torrent, 2002).

Individualmente cada fase mineralógica apresenta uma cor distinta devido

principalmente às transições eletrônicas permitidas por sua estrutura. Entretanto, as

cores podem ser afetadas significativamente pela morfologia e pelo tamanho do cristal,

e exemplos clássicos destes efeitos são os minerais de goethita e hematita.

Partículas de goethita de tamanho de 0,3 - 1,0µm são de coloração amarelada, se

tornando mais escuras com a diminuição do seu tamanho. Em relação às partículas de

hematita, nota-se que ao aumentar o diâmetro do cristal de 0,1 para 1,0 µm, a cor muda

de vermelho-amarelado (YR) para azul-esverdeado (GB). Entretanto outros fatores

devem ser considerados ao se analisar a cor de um dado mineral, como por exemplo,

defeitos estruturais dos cristais, impurezas adsorvidas e substituição isomórfica (Barrón

e Torrent, 1986).

Segundo Schwertmann (1993) e Scheinost e Schwertmann (1999) a substituição

isomórfica entre Al e Fe resulta em um aumento na variação da luminosidade da cor

obtida através da espectroscopia de reflectância difusa para os óxidos de ferro. A

goethita pode ter sua cor totalmente modificada quando sofre a substituição isomórfica,

e sua coloração pode passar de amarela (Y) para verde (G), dependendo do cátion na

sua estrutura.

Page 49: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

33

Entretanto, estudos revelam que existem fatores que influenciam na precisão da

medição das cores por ERD. Tais fatores são: a natureza da luz que será incidida nas

amostras, a superfície da amostra, e a sensibilidade espectral do receptor.

3.3.2.1 – Análise Kubelka-Munk A reflectância não apresenta uma correlação linear com a concentração, logo é

necessário realizar uma conversão de reflectância para absorbância, que tem certa

correlação com concentração. Esta transformação pode ser realizada através da análise

de Kubelka-Munk (Barrón e Torrent, 1986; Barrón e Montealegre, 1986).

A teoria estabelece uma correlação entre os coeficientes de absorção (K) e de

dispersão (S) com a reflectância (R∞) como representada pela Equação 2:

K = (1-R)2 (Equação 2)

S 2R

Esta técnica possui várias vantagens ao ser comparada com as técnicas de

caracterização mineralógica utilizadas hoje nas empresas. Um dos aspectos mais

marcante é o fato de ser uma análise rápida e barata, podendo ser obtido um espectro

com poucos minutos. Por este motivo, pode-se analisar um grande lote de amostras em

pouco tempo. Além disso, é uma análise não-destrutiva e não requer pré-tratamento da

amostra, e pode ser feita uma análise in situ (Weckhuysen e Schoonheydt, 1999;

Viscarra Rossel et al. 2006).

Uma possível desvantagem da técnica é a ocorrência de interferências

resultantes de sobreposição das bandas espectrais, dos ruídos, e do próprio erro

instrumental. A correção destes erros na quantificação e identificação envolve um pré-

tratamento espectral, que consiste na utilização de algoritmos variados como o

alisamento Savitzky-Golay (Savitzky e Golay, 1964), a correção do sinal (Geladi e

Kowalski, 1986) e a correção da linha de base (Barnes et al. 1989).

Para se obter informações quantitativas a partir das características dos espectros

de reflectância difusa é necessário a utilização de técnicas de compressão dos dados,

isto é, é necessário realizar tratamentos quimiométros, tais como Análise de

Componentes Principais (PCA) (Brown, 1995; Ferreira, 2002), Regressão de

Componentes Principais (PCR) (Chang et al. 2001) e Regressão dos Quadrados

Mínimos Parciais (PLSR) (Wold et al. 1983; McCarty et al., 2002), Análise de

Page 50: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

34

Regressão Múltipla (MRA) (Ben-Dor e Banin, 1995), Regressão Linear Múltipla

(SMLR) (Shibusawa et al., 2001). Contudo, os tratamentos mais usados são o PCR e o

PLSR.

Page 51: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

35

4 – METODOLOGIA

4.1 – Preparação das amostras

Foram estudadas 113 amostras de minério de ferro, na sua maioria oriunda da

região do Quadrilátero Ferrífero, estado de Minas Gerais. As demais amostras foram

coletadas na região de Carajás, estado do Pará.

As amostras foram obtidas na forma de sólido seco, sendo realizada a britagem e

moagem das mesmas. Procedeu-se à separação granulométrica, sendo utilizada a

amostra passante na peneira de 100# (0,150mm) para os estudos de reflectância difusa,

microscopia ótica, espectroscopia Mössbauer, difração de raios X e análises químicas

por ICP e espectroscopia de absorção atômica.

4.2 – Caracterização Química

4.2.1 – Espectrometria de Plasma

O equipamento utilizado foi o espectrofotômetro de emissão atômica com fonte

plasma, marca - Spectro / Modelo - Ciros CCD. A abertura das amostras foi feita

através da dissolução de cerca de 0,1 g de minério em 20 ml de HCl concentrado a

quente e diluindo-se para 50 ml. Esta análise foi realizada no Laboratório de

Geoquímica no Departamento de Geologia (DEGEO) da Universidade Federal de Ouro

Preto – MG.

4.2.2 – Espectrometria de Absorção Atômica

O equipamento utilizado foi o espectrofotômetro de absorção atômica, marca

Perkin Elmer 3100, no comprimento de onda de 248,3 nm específico para análise do

elemento ferro. A abertura das amostras foi feita através da dissolução de cerca de

0,05 g de minério em 2 ml de HCl concentrado e diluindo-se para 10 ml. As análises

foram realizadas no Laboratório de Edafologia da Universidade de Córdoba, na

Espanha.

4.3 – Caracterização Mineralógica

4.3.1 – Suscetibilidade Magnética

A determinação dos teores de magnetita nas amostras foi feita através da técnica

de suscetibilidade magnética e o equipamento utilizado foi o Bartington MS-2B com

sensor duplo de freqüência (Bartington Instruments Ltd., Oxford, UK). A concentração

Page 52: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

36

de magnetita foi calculada usando o valor de 5,0x10-4 m3 kg-1 para a suscetibilidade

magnética (Dearing, 1999). As análises foram realizadas no Laboratório de Edafologia

da Universidade de Córdoba, na Espanha

4.3.2 – Microscopia ótica

As análises mineralógicas foram feitas em um microscópio ótico de luz refletida

Leica modelo DMEP com magnificação de 200 vezes. Foram identificadas e contadas,

no mínimo, 500 partículas, entre partículas totalmente liberadas e mistas, tanto entre

minerais minério entre si, quanto desses com o quartzo. Os dados de contagem e

identificação foram obtidos diretamente do microscópio e forneceram uma porcentagem

volumétrica que foi ponderada em função das densidades dos respectivos minerais e

peso de fração granulométrica obtendo-se deste modo uma porcentagem em peso. Estas

análises foram realizadas no Laboratório NUTEC – Fundação Gorceix, Ouro Preto –

MG. As densidades (ρ) que foram usadas para conversão da porcentagem volumétrica

(%v) para porcentagem mássica (%m) para especularita e para martita foi de 5,3 e 4,3

respectivamente.

Os cálculos da conversão foram realizados da seguinte forma:

%m = 100 / [Σ(%v dos minerais x ρ dos minerais)] x (%v do mineral x ρ do mineral)

4.3.3 – Espectroscopia Mössbauer

Os espectros foram coletados à temperatura ambiente (RT) com um

espectrômetro operando no modo de aceleração constante, e a acumulação dos dados foi

feita com um analisador multicanal com 512 canais, e intervalo de velocidade -11 a +11

mm/s. Os absorvedores foram preparados misturando-se cerca de 30 a 40 mg da amostra

com glucose a fim de se obter cerca de 10 a 20 mg de Fe por centímetro quadrado. Os

ajustes foram realizados computacionalmente com sextetos e/ou dubleto simétricos ou

com um modelo independente de distribuição do campo hiperfino (Bancroft 1973). Os

desvios isoméricos são dados em referência ao ferro metálico (α-Fe). A partir dos

sextetos e dubletos obtidos foram determinadas as áreas relativas de cada componente

mineral contendo ferro em sua estrutura. Esta análise foi realizada no Laboratório de

Espectroscopia Mössbauer do Departamento de Química da Universidade Federal de

Ouro Preto.

Page 53: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

37

4.3.4 – Difração de raios X

Os difratogramas foram coletados em um difratômetro Shimadzu, modelo XRD

6000, equipado com tubo de Fe e monocromador de grafite. As varreduras foram feitas

entre 7-70º (2-theta) com velocidade do goniômetro de 2º por minuto. Foi utilizado o

software JADE para a identificação das fases mineralógicas presente nas amostras. A

análise foi realizada no Laboratório de Difração de Raios X do Departamento de

Química da Universidade Federal de Ouro Preto.

4.3.5 – Espectrofotometria de Reflectância Difusa

Para as análises de reflectância difusa foram utilizados três diferentes

instrumentos: o Cary 5000, o Tensor 27 e o ASD, com colaboração dos Laboratórios da

Universidade de Córdoba na Espanha. Utilizou-se periodicamente a substância HALON

(politetrafluoretileno, TEFLON) como branco padrão para a calibração dos

equipamentos.

4.3.5.1 – Espectrofotômetro Cary 5000 UV – Vis – IR

O espectrofotômetro CARY 5000 (Varian Inc. Palo Alto, CA) é equipado com

uma esfera integradora de 110 mm, com capacidade de coletar o fluxo refletido e um

detector PMT/PbS. As medições foram realizadas entre 300 a 2500 nm em intervalos de

0,5 nm. A porção visível do espectro foi utilizada para os cálculos dos parâmetros de

cor, valores do tri estímulo (X, Y, e Z) a partir de equações descritas por Wyszecki e

Stiles (1982). Tais valores foram convertidos para a notação Munsell (Matiz, Value e

Chroma) e para o sistema CIE-L*a*b*.

4.3.5.2 – Espectrofotômetro Tensor 27 MIR

O equipamento espectrômetro TENSOR 27 (Bruker, Ettlingen, Alemanha) é

equipado com uma semi-esfera de reflectância difusa Pike EasiDiff. Os dados espectrais

foram coletados entre 4000 a 200 cm-1 (2500 – 50000 nm) em intervalos de 4 cm-1.

4.3.5.3 – Espectrofotômetro ASD Inc. LabSpec 5000 O espectrofotômetro ASD Inc. LabSpec 5000 (Analytical Spectral Devices, Inc.,

Boulder, CO) é equipado com três detectores dependentes do comprimento de onda, e

Page 54: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

38

de uma sonda modelo A122374. As coletas dos dados espectrais foram entre 350 a 2500

nm em intervalos de 1 nm.

4.3.5.4 – Análise Estatística

Aos dados de reflectância obtidos efetuou-se a conversão para medidas de

absorbância [Log10(1/reflectância)] para prosseguir com o tratamento estatístico.

A parte estatística foi realizada pela análise do PCA (Análise das Componentes

Principais), algoritmos NIPALS (Martens e Naes, 1989), e pelo sistema de análise

PLSR (Regressão por Quadrados Mínimos Parciais) (Geladi e Kowalski, 1986). O

resultado desta análise é a correlação do espectro com a composição mineral das

amostras, realizada pelo software de quimiometria PARLES (Viscarra Rossel, 2008). A

precisão da calibração foi avaliada pelo coeficiente de determinação (R2) e pelo erro

padrão de calibração (SEC). A validação dos dados foi realizada através da técnica de

validação cruzada, sendo esta validada pelo erro padrão de validação (SEV) (Shenk e

Westerhaus, 1996).

Page 55: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

39

5 – RESULTADOS

5.1 – Análise química quantitativa

Os elementos traço foram analisados via ICP, e os teores de ferro foram obtidos

através de absorção atômica .

De acordo com os resultados da análise química, as amostras apresentaram uma

média de 51,5% de ferro, com limites de 68,8% (amostra ANA 105) e de 4,1 %

(amostra ANA 13).

5.2 – Suscetibilidade Magnética (SM)

Os resultados da porcentagem de magnetita existente nas amostras estão

relacionados na Tabela 9.

Tabela 9. Teores de magnetita (%) das amostras.

AMOSTRA Mt AMOSTRA Mt AMOSTRA Mt ANA 01 0,8 ANA 40 0,1 ANA 78 4,1 ANA 02 4,1 ANA 41 0,2 ANA 79 1,1 ANA 03 0,6 ANA 42 2,6 ANA 80 0,6 ANA 04 6,1 ANA 43 0,5 ANA 81 0,3 ANA 05 9,7 ANA 44 76,0 ANA 82 0,5 ANA 06 0,3 ANA 45 68,0 ANA 83 0,3 ANA 07 0,2 ANA 46 0,4 ANA 84 0,2 ANA 08 0,2 ANA 47 0,1 ANA 85 0,4 ANA 09 0,2 ANA 48 0,2 ANA 86 0,7 ANA 10 19,4 ANA 49 0,2 ANA 87 5,3 ANA 11 0,1 ANA 50 0,2 ANA 88 0,3 ANA 13 0,0 ANA 51 0,3 ANA 89 2,2 ANA 14 2,2 ANA 52 0,2 ANA 90 0,6 ANA 15 0,7 ANA 53 0,2 ANA 91 0,6 ANA 16 0,4 ANA 54 1,2 ANA 92 0,5 ANA 17 11,9 ANA 55 6,9 ANA 93 6,8 ANA 18 9,1 ANA 56 4,8 ANA 94 1,5 ANA 19 0,8 ANA 57 4,5 ANA 95 1,6 ANA 20 0,3 ANA 58 6,8 ANA 96 2,5 ANA 21 1,6 ANA 59 0,7 ANA 97 0,9 ANA 22 3,1 ANA 60 0,5 ANA 98 0,1 ANA 23 0,5 ANA 61 0,1 ANA 99 0,4 ANA 24 0,8 ANA 62 1,7 ANA 100 0,2 ANA 25 0,7 ANA 63 0,6 ANA 101 0,5 ANA 26 1,6 ANA 64 11,4 ANA 102 3,3 ANA 27 0,7 ANA 65 0,1 ANA 103 0,2 ANA 28 2,3 ANA 66 0,3 ANA 104 0,2 ANA 29 0,3 ANA 67 3,2 ANA 105 0,1 ANA 30 1,0 ANA 68 0,4 ANA 106 0,2 ANA 31 1,0 ANA 69 4,8 ANA 107 7,0 ANA 32 1,7 ANA 70 0,6 ANA 108 3,7 ANA 33 1,5 ANA 71 1,8 ANA 109 4,5 ANA 34 2,8 ANA 72 1,8 ANA 110 7,7 ANA 35 1,7 ANA 73 5,6 ANA 111 0,7 ANA 36 0,9 ANA 74 6,9 ANA 112 0,5 ANA 37 3,8 ANA 75 0,6 ANA 113 0,6 ANA 38 0,1 ANA 76 0,5 ANA 114 6,3 ANA 39 0,1 ANA 77 0,5

Page 56: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

40

As amostras apresentaram em geral teores baixos de magnetita, com exceção

das amostras ANA 44 e ANA 45, com teores de 76% e 68% respectivamente. Nestas

amostras a única fase contendo ferro é a magnetita. Devido a esse fato a amostra ANA

44 foi utilizada como padrão para o cálculo do teor de magnetita das demais amostras.

Suscetibilidade magnética é a resposta de um mineral a um campo magnético,

sendo que os minerais diamagnéticos não influenciam nos resultados de suscetibilidade,

por exemplo, o quartzo. Entretanto o mineral que mais influência os resultados é a

magnetita, por se tratar de um mineral fortemente ferromagnético (Rosière et al, 1996).

5.3 – Difração de raios X

Os minerais predominantes são a hematita, goethita, magnetita e quartzo.

Entretanto algumas amostras apresentaram os minerais caolinita e muscovita. Na Tabela

1 (Anexo I) estão relacionados às amostras e os minerais encontrados em cada uma,

respectivamente.

Os difratogramas de raios X para algumas amostras estão mostrados na Figura

27.

Page 57: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

41

0

300

600

900

0

250

500

750

0

300

600

900

1200

0

300

600

900

1200

10 20 30 40 50 60 70

0

300

600

900

10 20 30 40 50 60 70

0

600

1200

1800

2400

Mt G

H

Q Mt

Mt

H

H

QH

Mt

HH

Ana 10

KK

Q

GH

Q

H

H

G H

Q

HQ

H

Ana 21

MtMt

H

Mt

HH

Mt

H HH

H

Mv

Mv

Ana 64

Inte

nsid

ade

(uni

dade

arb

itrár

ia)

Q

GH

Q

HHG H

Q

H

Q

H

Ana 76

GG

Q

GH

H

HG

G H Q H

Q

G

Ana 92

2-Theta

QH

H

HH H

H

Ana 113

Figura 27. Difratogramas de raios X de algumas amostras selecionadas. hematita: H; goethita: G; magnetita: Mt; quartzo: Q; muscovita: Mv; caolinita : K.

Se compararmos o difratograma padrão da hematita (Figura 8) com os

difratogramas de algumas amostras, por exemplo, ANA 10, ANA 21, ANA 76 e ANA

113, pode-se notar que houve inversão da intensidade de alguns picos. Este efeito

provavelmente se deve à existência de orientação preferencial (textura) dos cristais,

efeito esse que é conseqüência da forma de disposição não-aleatoria dos cristais que

preferencialmente se orientam de acordo com o seu plano cristalográfico preferencial

(clivagens bem desenvolvidas), (Bravo e Neumann, 2008)

O efeito de textura é o principal problema para a quantificação das fases

minerais por difração de raios X. O efeito de textura foi predominantemente observado

na hematita, entretanto algumas amostras apresentaram orientação preferencial para o

Page 58: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

42

quartzo, por exemplo, ANA 10, ANA 21, ANA 76, ANA 92 e ANA 113, e para a

goethita, como ANA 21.

A orientação preferencial de um dado mineral tem como fator mais relevante ser

o resultado direto do processo de preparação das amostras para a análise. As amostras

são colocadas e compactadas no porta-amostra, gerando assim a possibilidade da

mudança na textura (orientação preferencial) da amostra. A orientação preferencial da

hematita foi mais comumente encontrada em amostras que apresentam especularita,

devido a sua forma micácea.

A quantificação por difração de raios-X de algumas fases mineralógicas

presentes em minérios de ferro foi conseguida pela comparação das intensidades e das

larguras integrais de picos isolados dos minerais (da Costa et al. 2002). Os autores

relataram que a intensidade do pico (111) da goethita não sofre efeito de textura, e que a

largura integral do pico 102 é diretamente proporcional à quantidade de martita presente

das amostras.

Após a subtração do background e do Kα2, utilizou-se a equação de Scherrer para

os cálculos dos tamanhos de cristalitos (MCD) a partir de alguns picos selecionados

para a hematita (012, 104 e 110) e para a goethita (110). Os resultados estão mostrados

na Tabela 10.

Tabela 10. Tamanhos médios de cristalitos (Ǻ) calculados por difração de raios X.

GOETHITA HEMATITA AMOSTRAS MCD110 MCD104 MCD110 MCD012

ANA 01 216 - 258 402 ANA 02 602 784 706 >1000 ANA 03 - >1000 >1000 >1000 ANA 04 551 847 993 >1000 ANA 05 - >1000 >1000 >1000 ANA 06 - >1000 >1000 >1000 ANA 07 - >1000 257 >1000 ANA 08 - >1000 311 >1000 ANA 09 - >1000 303 >1000 ANA 10 235 >1000 774 >1000 ANA 11 - >1000 539 225 ANA 13 - >1000 244 180 ANA 14 >1000 490 690 >1000 ANA 15 - >1000 >1000 >1000 ANA 16 - >1000 >1000 >1000 ANA 17 - >1000 753 >1000 ANA 18 - >1000 681 366 ANA 19 - >1000 >1000 >1000 ANA 20 - >1000 >1000 >1000 ANA 21 539 >1000 >1000 865 ANA 22 487 >1000 528 843 ANA 23 283 >1000 >1000 821

Page 59: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

43

GOETHITA HEMATITA AMOSTRAS MCD110 MCD104 MCD110 MCD012

ANA 24 478 >1000 >1000 >1000 ANA 25 - >1000 >1000 >1000 ANA 26 243 >1000 >1000 >1000 ANA 27 670 >1000 ANA 28 340 >1000 901 972 ANA 29 >1000 >1000 >1000 822 ANA 30 450 >1000 >1000 >1000 ANA 31 - >1000 >1000 >1000 ANA 32 - >1000 >1000 >1000 ANA 33 - >1000 >1000 >1000 ANA 34 - >1000 >1000 >1000 ANA 35 - >1000 >1000 >1000 ANA 36 353 >1000 919 866 ANA 37 500 >1000 949 857 ANA 38 - >1000 >1000 >1000 ANA 39 - >1000 >1000 >1000 ANA 40 - >1000 >1000 >1000 ANA 41 546 >1000 >1000 >1000 ANA 42 607 >1000 711 >1000 ANA 43 - >1000 >1000 >1000 ANA 44 - - - - ANA 45 - - - - ANA 46 - >1000 >1000 >1000 ANA 47 - >1000 >1000 832 ANA 48 - >1000 771 >1000 ANA 49 - >1000 972 986 ANA 50 - >1000 >1000 >1000 ANA 51 - >1000 >1000 >1000 ANA 52 - >1000 >1000 >1000 ANA 53 - >1000 >1000 >1000 ANA 54 303 >1000 >1000 >1000 ANA 55 318 643 416 550 ANA 56 273 600 391 617 ANA 57 368 >1000 642 >1000 ANA 58 566 521 535 884 ANA 59 398 >1000 846 >1000 ANA 60 328 >1000 >1000 >1000 ANA 61 412 360 510 464 ANA 62 257 280 525 611 ANA 63 - >1000 817 >1000 ANA 64 - 652 604 706 ANA 65 - >1000 >1000 >1000 ANA 66 329 >1000 >1000 >1000 ANA 67 733 >1000 >1000 >1000 ANA 68 - >1000 >1000 >1000 ANA 69 301 >1000 >1000 >1000 ANA 70 349 381 435 419 ANA 71 336 345 496 494 ANA 72 344 >1000 >1000 >1000 ANA 73 673 679 885 417 ANA 74 425 >1000 481 538 ANA 75 577 474 361 460 ANA 76 >1000 513 419 399 ANA 77 660 481 379 402 ANA 78 922 647 372 875 ANA 79 - 542 411 455 ANA 80 602 >1000 703 810 ANA 81 - 710 525 595

Page 60: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

44

GOETHITA HEMATITA AMOSTRAS MCD110 MCD104 MCD110 MCD012

ANA 82 684 >1000 >1000 >1000 ANA 83 - 542 371 625 ANA 84 568 759 576 406 ANA 85 >1000 >1000 862 723 ANA 86 262 819 475 570 ANA 87 521 444 631 >1000 ANA 88 556 424 415 519 ANA 89 710 >1000 800 686 ANA 90 585 535 403 536 ANA 91 643 531 487 599 ANA 92 832 936 447 540 ANA 93 658 550 388 471 ANA 94 >1000 769 310 >1000 ANA 95 >1000 465 713 462 ANA 96 >1000 525 412 364 ANA 97 695 423 415 437 ANA 98 565 438 300 598 ANA 99 986 621 522 627 ANA 100 627 539 682 732 ANA 101 >1000 637 649 721 ANA 102 >1000 510 329 482 ANA 103 - >1000 >1000 >1000 ANA 104 - >1000 >1000 >1000 ANA 105 - >1000 >1000 >1000 ANA 106 - >1000 >1000 >1000 ANA 107 408 936 452 647 ANA 108 411 >1000 533 687 ANA 109 358 >1000 561 822 ANA 110 440 675 430 555 ANA 111 351 >1000 >1000 >1000 ANA 112 411 >1000 >1000 >1000 ANA 113 - >1000 >1000 >1000 ANA 114 - 765 462 631

Os resultados mostrados na Tabela 10 mostram que para a hematita os tamanhos

foram sempre superiores a 1000 Ǻ, enquanto que muitas amostras contem goethita com

tamanhos entre 200 e 1000 Ǻ. Este tipo de goethita é normalmente encontrado nos

minérios limoníticos, e é de difícil identificação e quantificação por microscopia ótica.

Page 61: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

45

5.4 – Espectroscopia Mössbauer

Os espectros Mössbauer de algumas amostras representativas estão mostrados na

Figura 28. O dubleto presente em algumas amostras foi atribuído à presença de goethita

na fase superparamagnética. Com exceção das amostras ANA 44 e ANA45, todas as

demais apresentaram hematita. Os valores encontrados para as áreas relativas das fases

identificadas na espectroscopia Mössbauer estão listados na Tabela 11. Os teores foram

calculados com base nas áreas relativas dos sub-espectros e nos teores de ferro total,

conforme mostrado abaixo:

Hematita = Fetotal (%) x ÁreaHem (Mössbauer) x PM Fe2O3 (Equação 3)

2x PM Fe

Goethita = Fetotal(%) x ÁreaGoe (Mössbauer) x PM FeOOH (Equação 4)

PM Fe

Tabela 11. Área relativa dos minerais identificados por espectroscopia Mössbauer, hematita (H),

goethita e magnetita (Mt).

AMOSTRA ÁREA MÖSSBAUER AMOSTRA ÁREA MÖSSBAUER Goethita Goethita

H Sexteto Dubleto Mt H Sexteto Dubleto Mt ANA 01 65 35 - - ANA 26 97 - 3 - ANA 02 66 34 - - ANA 27 87 8 5 - ANA 03 98 - 2 - ANA 28 95 3 2 - ANA 04 82 18 - - ANA 29 90 5 6 - ANA 05 97 6 4 12 ANA 30 90 3 7 - ANA 06 89 11 - - ANA 31 90 - 10 - ANA 07 98 - 2 - ANA 32 89 5 6 - ANA 08 96 - 4 - ANA 33 96 - 4 - ANA 09 94 2 4 - ANA 34 95 - 5 - ANA 10 80 - 5 14 ANA 35 95 - 5 - ANA 11 96 - 4 - ANA 36 83 11 6 - ANA 13 86 - 13 - ANA 37 81 13 - 6 ANA 14 90 - 6 4 ANA 38 99 - 1 - ANA 15 91 - 9 - ANA 39 100 - - - ANA 16 96 - 4 - ANA 40 99 - 1 - ANA 17 79 - 5 16 ANA 41 96 - 4 - ANA 18 85 - 4 11 ANA 42 92 5 2 - ANA 19 95 - 5 - ANA 43 100 - - - ANA 20 98 - 2 - ANA 44 - - - 100 ANA 21 87 8 5 - ANA 45 - - - 100 ANA 22 98 2 - ANA 46 100 - - - ANA 23 88 9 3 - ANA 47 95 - 5 - ANA 24 93 5 2 - ANA 48 100 - - - ANA 25 92 4 5 - ANA 49 100 - - -

Page 62: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

46

AMOSTRA ÁREA MÖSSBAUER AMOSTRA ÁREA MÖSSBAUER Goethita Goethita

H Sexteto Dubleto Mt H Sexteto Dubleto Mt

ANA 50 100 - - - ANA 83 98 1 1 - ANA 51 100 - - - ANA 84 98 8 1 - ANA 52 97 - 3 - ANA 85 91 8 1 - ANA 53 98 - 2 - ANA 86 80 19 1 - ANA 54 95 - 5 - ANA 87 22 78 - - ANA 55 82 4 3 11 ANA 88 30 70 - - ANA 56 81 4 4 11 ANA 89 64 33 2 - ANA 57 84 4 3 8 ANA 90 42 58 - - ANA 58 78 9 2 12 ANA 91 62 37 1 - ANA 59 90 6 4 - ANA 92 53 47 - - ANA 60 92 - 8 - ANA 93 42 49 - 10 ANA 61 18 78 4 - ANA 94 78 21 1 - ANA 62 30 61 9 - ANA 95 65 35 - - ANA 63 98 - 2 - ANA 96 28 72 - - ANA 64 83 - 17 - ANA 97 62 38 - - ANA 65 93 5 2 - ANA 98 11 89 - - ANA 66 90 7 2 - ANA 99 52 48 - - ANA 67 61 39 - - ANA 100 45 54 - - ANA 68 95 3 2 - ANA 101 72 28 1 - ANA 69 88 - 8 4 ANA 102 31 68 1 - ANA 70 35 65 - - ANA 103 100 - - - ANA 71 34 66 - - ANA 104 100 - - - ANA 72 74 26 - - ANA 105 99 - 1 - ANA 73 71 16 2 12 ANA 106 96 - 4 - ANA 74 75 10 2 13 ANA 107 81 4 3 12 ANA 75 16 84 - - ANA 108 94 5 3 8 ANA 76 73 27 - - ANA 109 82 5 3 10 ANA 77 81 18 1 - ANA 110 78 8 2 12 ANA 78 72 20 1 7 ANA 111 89 6 5 - ANA 79 99 - 1 - ANA 112 88 4 7 - ANA 80 94 5 1 - ANA 113 99 - 1 - ANA 81 97 2 1 - ANA 114 87 2 - 11 ANA 82 79 20 1 -

Page 63: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

47

94

96

98

100

85

90

95

100

93

96

99

90

95

100

92

96

100

96

97

98

99

100

-10 -5 0 5 1085

90

95

100

-10 -5 0 5 1085

90

95

100

Ana 06

Ana 45

Ana 55

Ana 64

Transm

issão (%)

Ana 75

Tra

nsm

issã

o (%

)

Ana 93

Ana 106

Velocidade (mm/s)

Ana 111

Figura 28. Espectros Mössbauer à temperatura ambiente de algumas amostras selecionadas.

Segundo Cornell e Schwertmann (2003), quando o campo máximo obtido para a

hematita for bem menor que o valor característico (515 kOe), é em função da existência

de substituição isomórfica de Fe3+ por Al3+ , como também ao pequeno tamanho de

partícula.

Outro detalhe que pode ser observado nos espectros Mössbauer é o aparecimento

de um dubleto, que pode ser devido a óxidos de ferro (superparamagnéticos) de

tamanho médio de partículas muito pequeno. Confirmando os resultados da difração de

raios X que foi observado para o mineral goethita os tamanhos de partículas eram em

torno de 200 Ǻ, portanto pode-se sugerir que os dubletos são devidos à presença de

goethita de pequeno tamanho de partícula.

Page 64: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

48

5.5 – Microscopia Ótica

A análise por microscopia ótica deve como principal finalidade a quantificação

de especularita, martita e quartzo. Entretanto, através dessa técnica podemos observar

várias características, como composição mineralógica volumétrica; composição

mineralógica em peso; tamanho médio dos cristais dos minerais por variedade; grau de

liberação; forma das partículas; tipos de associações minerais, etc.

As amostras na sua maioria apresentaram hematita na forma de especularita e

martita, porém na amostra ANA 64 pode-se observar a presença de hematita lobular,

goethita, quartzo, magnetita pura e magnetita já sofrendo o processo de martitização. As

Figuras 29, 30, 31, 32 e 33 exemplificam os minerais encontrados pela análise para

algumas amostras. Algumas fotomicrografias foram obtidas com a utilização de um

polarizador, permitindo assim uma melhor vizualização de algumas características

intrínsecas dos minerais, por exemplo, a estrutura em treliça da martita, e a forma

multicolorida da hematita.

Figura 29. Fotomicrografia da amostra Ana 37 apresentando especularita, goethita, magnetita (cor rosada) e magnetita sofrendo o processo de martitização.

Page 65: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

49

Figura 30. Fotomicrografia da amostra Ana 59 apresentando especularita, goethita, martita e quartzo. As porções brancas dentro do quartzo são de especularita.

Figura 31. Fotomicrografia da amostra Ana 63 apresentando especularita, goethita, martita e quartzo. As porções brancas inclusas no quartzo são de especularita.

Page 66: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

50

Figura 32. Fotomicrografia da amostra Ana 64 apresentando martita magnetita (cor rosado) em processo de martitização e hematita lobular. Fotomicrografia sem polarizador (A) e

fotomicrografia com polarizador (B).

Figura 33. Fotomicrografia da amostra Ana 70 apresentando martita e uma variedade de goethita. As porções branca dentro da goethita são de martita.

Page 67: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

51

As principais características dos minerais observadas na microscopia ótica são:

Hematita Especular – tem a superfície lisa, isto é, tem a forma micácia, o que

pode indicar que não sofreu intemperismo, estrutura foliada, não apresenta poros, possui

elevado grau de liberação, o que confere a ela pequena área superficial específica.

Revelar ter um bom comportamento na flotação por não produzir muita lama, gasto

elevado de energia na siderurgia;

Hematita Martita – alto índice de porosidade apresenta a superfície rugosa,

frequentemente apresenta resto de magnetita, alta área superficial específica o que

acarreta ter um bom comportamento na flotação reversa;

Magnetita – apresenta estrutura granular e geralmente se encontra em partículas

mistas com martita;

Goethita –ocorre de várias formas, apresenta certa porosidade, e pode apresentar

partículas mistas.

Quartzo - ocorre de forma granular, observa-se com frequência a presença de

inclusões de hematita nos monocristais do quartzo (quartzo encapsulado).

5.6 – Espectrofotometria de Reflectância Difusa

A mineralogia das amostras selecionadas para o presente estudo é bem

diversificada, apresentando a hematita como fase constituinte de maior proporção,

seguida pela goethita. Alguns parâmetros composicionais estão listados na Tabela 12.

A quantificação de hematita e goethita foi realizada através da espectroscopia

Mössbauer, a porcentagem de magnetita foi determinada por medidas de suscetibilidade

magnética. O valor de ferro total foi obtido por absorção atômica e o de especularita,

martita e quartzo foram obtidos por microscopia ótica.

Tabela 12. Composição mineralógica média (%) das amostras de minério de ferro.

Média da Máximo Mínimo Hematita 58.6 23.7 97.3 0.0 Goethita 12.9 17.9 86.3 0.0 Magnetita 3.3 9.8 76.0 0.04 Ferro total 51.5 12.9 68.8 4.1 Especularita 50,9 33,4 100,0 0,0 Martita 19,3 22,2 88,0 0,0 Quartzo 16,6 17,6 94,0 0,0

a Desvio padrão.

Page 68: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

52

5.6.1 – Análise espectral Os espectros nas regiões do visível e infravermelho para os padrões de

especularita, martita, goethita e quartzo são mostrados na Figura 34. Observa-se que

existem diferenças significativas tanto nas posições quanto nas intensidades das bandas,

o que possibilita a identificação destas fases mineralógicas.

0.4

0.6

0.8

1.0

1.2

-0.5

0.0

0.5

1.0

1.5

0.6

0.9

1.2

1.5

-0.5

0.0

0.5

1.0

1.5

2.0

0.0

0.6

1.2

1.8

0.0

0.8

1.6

2.4

0.0

0.2

0.4

0.0

0.8

1.6

2.4

3.2

(b)

(c)

(d)

(a)

500033332500200015001000500

1000200030004000500066671000020000

Absorbância (U

nidade Arbitrária)A

bsor

bânc

ia (

Uni

dade

Arb

itrár

ia)

MIRVis-NIR

Número de onda (cm-1)

Comprimento de onda (nm)10000

Figura 34. Curva de reflectância difusa de especularita (a), martita (b), goethita (c) e quartzo (d).

Pode-se notar certa similaridade entre os espectros da martita e especularita,

entretanto são mostrados alguns detalhes diferentes na região de infravermelho médio

(MIR), como a intensidade e a largura dos picos, fazendo com que os picos da

especularita sejam mais bem definidos que os da martita, bem como um pequeno

deslocamento das bandas (Russell e Fraser, 1994). Outro aspecto distinto entre os dois

Page 69: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

53

espectros é aparecimento de um pico em torno de 1500 cm-1 na amostra de especularita,

que não é notado no espectro da martita.

No espectro da goethita na região MIR, observa-se uma banda larga próxima a

3600 cm-1 e um pico próximo a 900 cm-1, devido ao estiramento e deformação dos

grupamentos -OH, respectivamente (Russell e Fraser 1994). Outros picos também

podem ser notados entre 1000 cm-1 e 250 cm-1.

As absorções devido aos grupos Si-O ocorrem entre 1000 – 1100 e 430 – 530

cm-1 e podem ser observadas no espectro do quartzo.

Com relação à região do visível observa-se a existência de bandas largas tanto

para especularita, martita e para goethita; entretanto, na região do infravermelho

próximo (NIR) não é observada nenhuma banda característica. O quartzo por sua vez

apresenta absorbância próxima a zero para todo o espectro na região Vis – NIR.

O espectro de reflectância difusa na região do visível, infravermelho próximo e

na região do infravermelho médio para a amostra ANA 02 está mostrado na Figura 35,

sendo muito similar ao espectro da especularita.

500 1000 1500 20000.7

0.8

0.9

1.0

1.1

1.2

1.3

4000 3000 2000 1000

0.3

0.6

0.9

1.2

1.5

1.8MIRVis-NIR

Absorb

ânica (u

nidade arbitrária)

3211

,1

1801

,915

48,8

947,

069

2,4

499,

5

1435

,4

1779

,8

1953

,2

2285

,424

24,6

890,

8

646,

5

480,

4

Número de onda (cm-1)

Ab

sorb

ânic

a (u

nid

ade

arbi

trár

ia)

Comprimento de onda (nm)

500066671000020000

10000500033332500

Figura 35. Curva de reflectância difusa de para a amostra ANA 02.

Page 70: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

54

Os resultados mostram que a espectroscopia de reflectância difusa nas regiões do

visível, infra-vermelho próximo e médio, é uma técnica que pode ser usada para a

identificação como quantificação simultânea de várias fases mineralógicas presente nas

amostras.

Segundo Viscarra Rossel et al. (2006) a escolha da região espectral para a

caracterização mineral dependerá:

(i) da precisão das previsões,

(ii) do custo da tecnologia e

(iii) da preparação necessária para amostra.

É possível observar nas figuras acima que na região do infravermelho médio

(MIR) os picos de absorção são mais estreitos e com a definição melhor. Por outro lado,

na região do visível (VIS) e do infravermelho próximo (NIR) nota-se que as bandas de

absorção são mais largas (Torrent e Barrón, 2008).

5.6.2– Análise de cor Pelos dados obtidos previamente na região do espectro visível calcularam-se as

cores das amostras, que variaram da tonalidade de cinza para amarelo e/ou vermelho.

Para o sistema de notação Munsell o valor de matiz variou de H = 0,3Y para 9,9YR; a

variação do Value foi de V=3.11 a V=5.12, mas foi no valor de Chroma que se pôde

notar maior variação, de C= 0.06 a 5.68 (Figura 36) (Torrent e Barrón, 2003). Os

valores obtidos para os 3 sistemas de cores estão na Tabela 13.

Tabela 13. Relação dos valores obtidos para os sistemas de cores.

PARÂMETROS DE COR AMOSTRA Matiz Value Chroma X Y Z L* a* b*

ANA 01 4,0YR 3,1 2,3 7,8 7,1 5,5 31,9 8,5 10,8 ANA 02 6,5YR 3,2 0,8 7,8 7,6 7,8 33,2 2,4 4,0 ANA 03 4,7B 4,0 0,3 11,9 12,2 14,9 41,6 -0,9 -1,0 ANA 04 4,6YR 3,3 0,7 7,9 7,8 8,1 33,5 2,8 3,6 ANA 05 6,1YR 3,1 0,8 7,2 7,1 7,2 32,0 2,7 4,2 ANA 06 6,2PB 3,8 0,1 10,4 10,6 12,6 38,8 0,0 -0,2 ANA 07 4,3Y 4,8 0,6 17,8 18,1 19,2 49,7 -0,2 4,0 ANA 08 5,0Y 4,8 0,6 17,9 18,3 19,4 49,8 -0,4 4,1 ANA 09 9,0YR 4,8 0,8 18,1 18,2 18,9 49,7 1,5 4,8 ANA 10 1,9GY 3,3 0,2 7,5 7,7 8,8 33,3 -0,5 1,0 ANA 11 8,7R 5,2 0,5 21,6 21,6 24,5 53,6 2,1 1,6 ANA 13 3,7YR 5,1 1,1 21,2 20,9 21,7 52,8 3,6 5,0 ANA 14 2,4GY 3,4 0,1 8,3 8,5 9,9 34,9 -0,2 0,5 ANA 15 4,4Y 3,5 0,5 8,7 8,8 9,4 35,7 -0,1 3,3 ANA 16 0,9G 4,0 0,2 11,4 11,7 13,6 40,8 -0,9 0,6

Page 71: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

55

PARÂMETROS DE COR AMOSTRA Matiz Value Chroma X Y Z L* a* b*

ANA 17 2,8GY 3,2 0,1 7,5 7,7 8,9 33,3 -0,4 0,7 ANA 18 8,7GY 3,3 0,2 7,8 8,0 9,3 34,1 -0,9 0,8 ANA 19 5,2Y 3,6 0,5 9,5 9,7 10,3 37,4 -0,3 3,4 ANA 20 0,8B 3,9 0,4 10,8 11,2 13,6 39,9 -1,5 -1,0 ANA 21 1,2Y 4,0 1,2 12,0 12,0 10,9 41,3 1,4 8,3 ANA 22 0,8Y 3,2 0,4 7,4 7,5 8,2 32,9 0,5 2,2 ANA 23 1,9Y 4,3 1,1 13,7 13,8 13,1 44,0 0,9 7,5 ANA 24 3,2Y 3,3 0,3 7,7 7,8 8,6 33,6 0,1 1,9 ANA 25 2,0Y 4,2 1,5 13,6 13,7 11,9 43,7 1,1 10,0 ANA 26 4,2Y 3,3 0,4 8,0 8,1 8,6 34,2 0,0 3,0 ANA 27 0.3Y 4,2 1,9 13,4 13,3 10,6 43,1 2,8 12,5 ANA 28 4,0Y 3,4 0,4 8,1 8,3 8,9 34,6 0,0 2,7 ANA 29 1,0Y 4,2 1,9 13,1 13,0 10,2 42,7 2,3 13,0 ANA 30 2,5Y 3,3 0,5 8,0 8,1 8,6 34,2 0,3 3,1 ANA 31 4,7YR 3,5 3,6 10,3 9,0 5,5 36,0 11,9 17,9 ANA 32 4,3YR 3,4 2,9 9,6 8,6 6,1 35,2 10,1 13,9 ANA 33 3,7YR 3,4 2,5 9,1 8,2 6,3 34,4 9,2 11,6 ANA 34 2,8YR 3,9 0,7 11,2 11,0 11,8 39,7 3,0 3,3 ANA 35 4,2YR 3,3 2,2 8,9 8,2 6,5 34,3 8,0 10,8 ANA 36 5,6YR 3,5 3,8 10,4 9,1 5,1 36,1 11,6 19,8 ANA 37 4,8YR 3,8 3,7 12,0 10,6 6,5 38,9 11,9 18,7 ANA 38 4,3YR 4,3 1,5 14,9 14,3 13,6 44,7 5,2 7,5 ANA 39 4,7YR 4,2 2,0 14,3 13,5 11,7 43,5 6,5 10,1 ANA 40 0,3YR 3,7 2,1 11,0 10,0 9,2 37,9 9,2 7,6 ANA 41 7,3YR 3,8 2,9 11,3 10,5 6,9 38,7 7,8 16,6 ANA 42 3,4YR 3,7 3,2 11,6 10,2 7,2 38,3 11,7 14,9 ANA 43 8,9R 3,6 3,3 11,1 9,4 7,6 36,7 15,0 10,7 ANA 44 0,4GY 3,4 0,1 8,4 8,6 9,9 35,1 -0,2 0,6 ANA 45 1,6Y 3,5 0,1 9,0 9,2 10,7 36,4 0,1 0,5 ANA 46 2,0B 4,2 0,4 12,9 13,4 16,4 43,4 -1,6 -1,1 ANA 47 8,4YR 4,0 2,3 12,4 11,9 8,8 41,0 5,3 14,2 ANA 48 0,6Y 4,1 1,0 12,4 12,5 11,9 41,9 1,5 6,9 ANA 49 8,9YR 3,9 1,9 11,8 11,5 9,2 40,4 3,9 11,9 ANA 50 3,8Y 4,2 0,5 13,0 13,3 14,0 43,2 0,0 3,7 ANA 51 0,5B 4,2 0,3 13,2 13,6 16,4 43,6 -1,2 -0,7 ANA 52 8,4YR 3,8 1,5 10,8 10,5 9,1 38,7 3,6 9,2 ANA 53 4,9YR 3,8 1,0 10,7 10,5 10,5 38,7 3,5 5,1 ANA 54 7,0YR 3,7 3,1 11,2 10,3 6,6 38,3 8,4 17,3 ANA 55 8,6YR 2,8 1,2 5,9 5,7 5,2 28,8 2,8 6,6 ANA 56 2,7YR 3,4 3,5 10,0 8,6 5,8 35,1 13,2 15,1 ANA 57 7,9YR 3,8 3,0 11,8 11,0 7,1 39,6 7,3 17,6 ANA 58 8,2YR 2,9 1,0 6,0 5,9 5,6 29,2 2,6 5,5 ANA 59 7,2YR 3,7 2,3 10,6 10,0 7,5 37,8 6,3 13,0 ANA 60 7,8YR 4,2 4,0 14,5 13,3 7,1 43,2 9,4 23,6 ANA 61 6,4YR 4,0 5,1 14,0 12,2 5,3 41,5 13,7 28,1 ANA 62 8,7YR 4,8 5,7 20,1 18,3 7,3 49,9 10,8 34,6 ANA 63 7,7BG 4,4 0,4 14,4 15,0 18,0 45,6 -1,7 -0,6 ANA 64 9,8YR 2,6 1,0 5,0 4,9 4,6 26,5 1,9 5,6 ANA 65 5,8YR 4,5 3,1 17,0 15,7 11,5 46,6 8,7 16,1 ANA 66 5,1YR 4,2 2,8 14,8 13,6 10,3 43,7 8,6 14,2 ANA 67 7,7YR 4,5 3,8 16,7 15,5 9,1 46,3 8,9 22,3 ANA 68 4,7YR 4,4 1,9 15,8 15,1 13,6 45,8 5,9 9,2 ANA 69 9,8YR 4,5 3,9 16,1 15,3 8,2 46,0 6,4 24,9 ANA 70 8,3YR 4,7 5,6 19,1 17,3 7,0 48,6 11,3 33,5 ANA 71 8,9YR 4,6 5,4 17,9 16,4 6,5 47,5 10,1 33,2 ANA 72 9,7YR 4,2 4,1 14,4 13,6 6,7 43,6 6,9 26,0 ANA 73 8,9YR 4,0 0,3 11,9 12,1 13,6 41,3 0,6 1,7 ANA 74 7,2YR 4,2 0,6 13,2 13,2 14,2 43,0 1,6 3,2

Page 72: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

56

PARÂMETROS DE COR AMOSTRA Matiz Value Chroma X Y Z L* a* b*

ANA 75 6,4YR 3,4 2,5 9,4 8,7 6,3 35,3 7,3 13,4 ANA 76 4,8YR 3,1 1,1 7,1 6,9 6,7 31,5 3,9 5,2 ANA 77 5,7YR 4,1 0,5 12,9 12,9 14,0 42,6 1,6 2,7 ANA 78 4,6YR 3,8 0,7 10,7 10,6 11,3 39,0 2,4 3,3 ANA 79 0,9P 3,8 0,1 10,3 10,5 12,5 38,7 0,2 -0,4 ANA 80 7,3YR 4,1 0,1 12,5 12,7 14,8 42,3 0,2 0,5 ANA 81 9,9R 3,4 0,4 8,3 8,3 9,4 34,6 1,7 1,2 ANA 82 9,0YR 4,0 0,6 12,1 12,1 12,6 41,4 1,4 4,1 ANA 83 3,8YR 4,0 0,3 11,7 11,8 13,4 40,8 1,0 1,2 ANA 84 3,9YR 3,6 0,4 9,3 9,3 10,4 36,5 1,4 1,7 ANA 85 5,1YR 4,2 0,3 13,0 13,1 14,7 42,9 1,1 1,7 ANA 86 7,2YR 4,0 0,5 12,3 12,3 13,3 41,6 1,5 2,9 ANA 87 8,5YR 3,9 3,3 12,4 11,6 6,9 40,5 7,2 19,9 ANA 88 4,7YR 3,2 1,9 8,3 7,7 6,4 33,3 6,6 9,3 ANA 89 7,7YR 4,1 0,8 12,4 12,4 12,7 41,8 2,1 4,5 ANA 90 7,7YR 3,5 2,2 9,7 9,2 6,9 36,3 5,7 12,7 ANA 91 6,1YR 3,6 1,1 9,9 9,7 9,4 37,2 3,5 6,0 ANA 92 8,1YR 3,9 0,8 11,5 11,4 11,5 40,3 2,2 5,0 ANA 93 6,9YR 4,1 0,9 13,1 12,9 13,1 42,6 2,6 5,0 ANA 94 6,3YR 4,2 0,5 13,4 13,4 14,6 43,3 1,5 2,7 ANA 95 6,0YR 3,2 1,0 7,8 7,6 7,4 33,1 3,4 5,4 ANA 96 7,8YR 4,0 1,4 12,5 12,2 11,1 41,5 3,6 8,4 ANA 97 6,0YR 3,3 1,5 8,1 7,8 6,9 33,5 4,7 7,7 ANA 98 7,7YR 3,4 2,6 9,1 8,5 5,9 35,1 6,6 14,6 ANA 99 7,0YR 3,7 1,0 10,5 10,3 10,1 38,3 2,9 5,5 ANA 100 5,3YR 3,7 1,3 10,3 9,9 9,4 37,7 4,2 6,5 ANA 101 5,3YR 3,9 0,4 11,3 11,3 12,6 40,2 1,4 2,1 ANA 102 6,7YR 3,7 1,5 10,2 9,9 8,9 37,6 4,3 8,1 ANA 103 5,2YR 4,2 1,1 13,9 13,6 13,5 43,6 3,7 5,9 ANA 104 4,6YR 4,2 1,3 13,5 13,0 12,6 42,8 4,5 6,6 ANA 105 0,7YR 3,8 2,0 11,9 10,9 10,0 39,3 8,7 7,6 ANA 106 7,6YR 3,7 2,8 10,8 10,1 6,7 38,0 7,2 16,1 ANA 107 6,6YR 3,7 3,1 10,9 9,9 6,4 37,7 8,8 17,0 ANA 108 8,4YR 3,2 1,3 7,7 7,5 6,8 33,0 3,1 7,3 ANA 109 8,5YR 3,3 1,3 8,3 8,1 7,2 34,2 3,2 7,9 ANA 110 4,3YR 3,7 2,6 11,0 10,0 6,4 37,8 9,1 12,9 ANA 111 7,8YR 4,1 3,6 13,5 12,4 7,2 41,8 8,6 21,1 ANA 112 6,6YR 3,7 2,2 11,0 10,4 8,0 38,5 6,4 12,4 ANA 113 2,3B 4,2 0,4 12,9 13,4 16,4 43,4 -1,4 -1,1 ANA 114 9,9YR 2,9 1,0 6,1 6,0 5,6 29,5 1,9 6,1

Page 73: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

57

0.32 0.34 0.36 0.38 0.400.32

0.34

0.36

0.38

0.42

x

y

7.5YR

7.5R

10R

5YR

10YR2.5Y5Y7.5Y10Y

2

1

3

2.5YR

Value = 3

1

2

3

Figura 36. Coordenadas de cromaticidade para as amostras de minérios de ferro.

A coloração de um determinado material depende diretamente das proporções

dos minerais presentes, o que acarreta variações significativas na graduação da cor

(Chroma) (da Costa et al. 2009). Por exemplo, um aumento na proporção de martita e

goethita tem o efeito de aumentar proporcionalmente o valor de chroma, por outro lado

observou-se uma diminuição no valor de Chroma quando houve o aumento no valor de

especularita. No caso do parâmetro Value (luminosidade) não se observou uma variação

significativa. Um fato que pode aumentar ou diminuir esse parâmetro é a existência de

minerais que não apresentam bandas características na região do visível, por exemplo, o

quartzo e a magnetita. (da Costa et al. 2009).

Page 74: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

58

5.6.3 – Análises Quimiométricas

5.6.3.1 – PCA A primeira etapa da análise quimiométrica é a Análise dos Componentes

Principais (PCA) (Wold, 1987), com a finalidade de substituir as variáveis originais,

isto é, os espectros obtidos pela técnica de reflectância difusa, por um novo conjunto de

variáveis chamado de componentes principais (CPs).

A principal característica dos CPs, é que eles são os resultados das combinações

lineares das variáveis originais. Desta forma se concentra as informações importantes

em poucas variáveis, diminuindo a dimensão dos dados, sem perder as informações

químicas (Ferreira 2002).

Na análise de PCA não se trabalha com a matriz resposta, isto é, com a matriz

que contenha as análises químicas, por exemplo, valores de concentração, e sim com a

matriz que contenha somente os sinais instrumentais (espectros), valores de intensidade

medidos pelos equipamentos, variáveis originais, por exemplo, comprimento de onda.

A análise por PCA é um algoritmo de análise exploratório dos dados, na qual

garanti que em função dos seus espectros, ou seja, da suas variáveis originais, quais

amostras são semelhante, quais amostras são heterogênea (amostras diferentes).

Os dados coletados nas medidas de reflectância difusa resultaram em uma matriz

X contendo 113 linhas (amostras) e 4360 colunas para o equipamento CARY (dados de

absorbância de 320 a 2500 nm, intervalo de 0,5 nm), 2180 colunas para o ASD (dados

de 350 a 2500 nm, intervalo de 1 nm) e 900 para o TENSOR 27 (dados de 4000 a 400

cm-1, inervalo de 4 cm-1). Como auxilio do algoritmo NIPALS (Martens e Naes, 1989),

pode-se reduzir as matrizes da forma mostrada na Equação 5:

X = TP + E1 (Equação 5)

Onde T é a matriz escores e apresenta as coordenadas das amostras nos possíveis

eixos das componentes. R é a matriz loadings e contém informações sobre como as

variáveis originais estão co-relacionadas às componentes principais. E E1 matriz

residual. (Teófilo, 2007)

Na construção da nova matriz de dados, cria-se um conjunto de novas variáveis

linearmente independentes para descrever os dados. Cada novo vetor base é expresso

Page 75: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

59

em termos da combinação linear das antigas variáveis. Os novos eixos, que são

representados pelas componentes principais, são ortogonais entre si e ordenados em

termos da quantidade de variância explicada pelos dados, sendo que o primeiro vetor

encontra-se na direção de maior variância (Strang, 1976).

T é uma nova matriz reduzida, consistindo em 113 linhas, entretanto com 10

colunas, porém sem perda significativa de informação, ou seja, mantém as informações

químicas relevantes, retendo virtualmente as informações espectrais significativas,

descartando as demais, por exemplo, o ruído do sinal, informações redundantes.

Isto devido à existência de variáveis que apresentam redundância entre si, e

portanto são consideradas colineares e esta alta colinearidade indica que é possível

encontrar novas bases que melhor representa as informações presentes nos dados

definidos pelas medidas. Assim, o novo conjunto de eixos de coordenadas no qual se

projetaram as amostras é mais informativo.

Na análise por componentes principais (PCA) um pré-processamento nos dados

foi necessário para atribuir pesos equivalentes aos dados espectrais das amostras. A

PCA mostrou que com seis componentes principais é possível descrever 99,99% dos

dados, sendo 98,29% da variância total descrita pela primeira componente principal

(Figura 37).

Figura 37. Representação gráfica dos componentes principais versus a porcentagem da variância.

Page 76: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

60

5.6.3.2 - PLSR O algoritmo PLSR (Regressão por Quadrados Mínimos Parciais) é uma análise

de construção de modelos de calibração multivariada. Nas análises pelo algoritmo

através de calibração multivariada que foi realizada utilizando as informações do

espectro como um todo, assim podendo construir um modelo de regressão, relacionado

às propriedades de interesse.

O PLS é uma técnica baseada em fatores, que estabelece uma relação entre

matrizes de dados. Uma matriz que representa as variáveis independentes (matriz de

dados experimentais) e um que representa as variáveis dependentes (matriz das

respostas experimentais). De forma simultânea as matrizes são decompostas em uma

soma de variáveis latente (novos eixos de coordenadas). (da Silva, 2007)

A análise PLSR, correlaciona à matriz Y que contém 113 linhas e 1 coluna

(sendo trabalhadas 7 colunas, por se tratar de análises sobre Fe total, hematita, goethita,

magnetita, especularita, martita e quartzo) e a matriz T (113 X 10) da análise dos

componentes principais (PCA), segundo a Equação 6:

Y = TB + E2 (Equação 6)

Onde B é a matriz dos coeficientes e E2 é a matriz residual.

A partir da matriz B, que é o resultado da conversão dos dados espectrais

obtidos, através de distintos equipamentos (CARY 5000, ASD e TENSOR 27 (MIR)),

utilizando diferentes comprimentos de onda (região do visível, infravermelho próximo e

infravermelho médio), juntamente do software quimiométrico PARLES, obteve-se um

modelo com capacidade de predizer o conteúdo mineral para uma nova amostra. Para

exemplificar na Figura 38 e na Equação 7 está representado um caso, para a

determinação de ferro para as seguintes condições: equipamento CARY 5000 no

comprimento de onda de 319 a 800 nm.

Page 77: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

61

Figura 38. Representação gráfica da regressão utilizada para predizer do conteúdo mineral de

novas amostras, na região visível do espectro (319 a 800 nm).

(%) Fe = B0 + B319 * (log 1/R)319 + B320 * (log 1/R)320 + B321 * (log 1/R)321 + . . . +

B800* (log 1/R)800 (Equação 7)

Onde B0 é o valor médio dos coeficientes da regressão e apresenta valor igual a 12, 19

Bx coeficientes da regressão em dados comprimentos de onda variando de 319 a

800 nm, apresentado por um valor numérico.

(log 1/R)x absorbância nos comprimentos de onda especifico variando de 319 a

800 nm.

Os valores dos coeficientes que são representados pelos máximos e mínimos na

Figura acima são os comprimentos de onda de interesse, pois são realmente os

comprimentos de onda que mais influenciam na regressão, isto é, são os que mais

influenciam nos resultados para os cálculos das minerais existentes em novas amostras.

Uma vantagem do método PLSR é que os parâmetros do modelo construído não

se alteram de uma maneira significativa quando se são adicionadas ou retiradas novas

Page 78: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

62

amostras do conjunto de calibração (Geladi e Kowalski, 1986). Essa característica é

importante, pois permite que seja possível trabalhar com sistemas em escalas industriais

cujas características dos materiais nem sempre são mantidas da mesma maneira durante

todo o processo, portanto, é possível acrescentar novas amostras sem alterar os

parâmetros do modelo criado (Parreira, 2003).

5.6.3.3 – Correlações As curvas de reflectância utilizadas para a obtenção das possíveis correlações

dos minerais nas amostras foram obtidas em três equipamentos (CARY, ASD e

TENSOR 27).

Através dos teores de ferro total via absorção atômica, de magnetita por

suscetibilidade magnética, de hematita e goethita por espectroscopia Mössbauer,

especularita e martita por microscopia ótica e quartzo pela diferença mineralógica

(Tabela 14), e das curvas de reflectância difusa, obteve-se modelos de calibração,

similares ao mostrado na equação 7 para previsão de concentração para novas amostras.

A análise quimiométrica foi realizada pelo programa PARLES (Viscarra Rossel, 2008)

através de do método de calibração cruzada um a um, para o conjunto de amostras. Este

programa foi produzido pelo professor Viscarra Rossel, da Universidade de Sydney,

Austrália

Tabela 14. Composição mineralógica e química das amostras.

Variáveis (%) Amostras Fe total Hematita Especularita Martita Goethita Quartzo Magnetita ANA 1 55 52 * * 30 17 1 ANA 2 62 58 25 33 33 5 4 ANA 3 64 89 * * 2 8 1 ANA 4 65 76 45 31 19 -1 6 ANA 5 66 72 40 32 10 8 10 ANA 6 65 85 84 1 9 6 0 ANA 7 35 49 49 0 1 50 0 ANA 8 37 51 50 1 2 46 0 ANA 9 25 34 34 0 2 64 0 ANA 10 61 70 * * 5 6 19 ANA 11 21 29 28 1 1 70 0 ANA 13 4 5 5 0 1 94 0 ANA 14 63 82 * * 6 10 2 ANA 15 57 74 69 5 8 17 1 ANA 16 64 88 * * 4 8 0 ANA 17 66 74 65 9 5 9 12 ANA 18 61 75 57 17 4 12 9 ANA 19 59 81 72 9 5 14 1 ANA 20 64 89 69 20 2 9 0 ANA 21 47 58 26 32 10 30 2

Page 79: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

63

Variáveis (%) Amostras Fe total Hematita Especularita Martita Goethita Quartzo Magnetita ANA 22 64 90 * * 2 5 3 ANA 23 45 56 35 22 9 35 1 ANA 24 67 89 51 38 7 2 1 ANA 25 36 47 42 5 5 48 1 ANA 26 63 88 79 9 3 7 2 ANA 27 32 40 37 4 7 52 1 ANA 28 64 87 73 14 5 6 2 ANA 29 32 41 * * 6 54 0 ANA 30 67 86 80 6 11 2 1 ANA 31 34 44 33 11 5 50 1 ANA 32 61 78 63 15 11 10 2 ANA 33 56 76 59 17 4 19 2 ANA 34 49 67 35 32 4 26 3 ANA 35 58 78 58 21 5 15 2 ANA 36 60 71 * * 16 12 1 ANA 37 50 58 49 9 10 28 4 ANA 38 47 67 67 0 1 33 0 ANA 39 36 51 51 0 0 48 0 ANA 40 68 96 96 0 1 3 0 ANA 41 68 93 93 0 4 3 0 ANA 42 66 87 76 11 7 3 3 ANA 43 67 95 95 0 0 4 1 ANA 44 55 0 0 0 0 24 76 ANA 45 57 0 0 0 0 32 68 ANA 46 64 91 91 0 0 9 0 ANA 47 22 30 30 0 2 68 0 ANA 48 38 55 55 0 0 45 0 ANA 49 27 39 39 0 0 61 0 ANA 50 49 70 70 0 0 30 0 ANA 51 64 91 91 0 0 9 0 ANA 52 33 45 45 0 2 53 0 ANA 53 43 60 60 0 1 38 0 ANA 54 57 78 76 1 5 17 1 ANA 55 66 78 23 55 7 8 7 ANA 56 65 76 35 40 8 11 5 ANA 57 65 78 40 38 7 11 5 ANA 58 66 74 41 33 12 8 7 ANA 59 42 54 52 2 7 39 1 ANA 60 34 45 45 1 4 50 0 ANA 61 56 14 14 0 73 12 0 ANA 62 56 24 3 21 63 11 2 ANA 63 63 88 87 0 2 10 1 ANA 64 55 66 0 66 0 23 11 ANA 65 40 53 53 0 4 43 0 ANA 66 41 52 52 0 6 41 0 ANA 67 47 41 40 1 29 27 3 ANA 68 35 47 47 0 3 50 0 ANA 69 62 78 22 55 8 10 5 ANA 70 58 29 1 28 60 10 1 ANA 71 48 23 1 23 50 25 2 ANA 72 58 61 58 3 24 13 2 ANA 73 35 35 28 7 10 49 6 ANA 74 39 42 42 0 7 43 7 ANA 75 59 13 0 13 78 8 1 ANA 76 47 49 7 42 20 31 0 ANA 77 38 44 * * 11 44 1 ANA 78 43 44 20 24 14 37 4 ANA 79 48 68 30 39 1 30 1

Page 80: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

64

Variáveis (%) Amostras Fe total Hematita Especularita Martita Goethita Quartzo Magnetita ANA 80 44 60 45 15 4 36 1 ANA 81 42 58 11 47 2 40 0 ANA 82 45 50 33 17 15 34 0 ANA 83 47 66 33 33 1 32 0 ANA 84 56 72 24 48 8 20 0 ANA 85 47 55 48 7 14 31 0 ANA 86 49 56 28 28 16 28 1 ANA 87 46 14 * * 57 23 5 ANA 88 53 23 2 21 59 18 0 ANA 89 43 40 32 8 24 33 2 ANA 90 51 31 0 31 47 22 1 ANA 91 47 41 5 37 28 30 1 ANA 92 45 34 26 8 34 31 1 ANA 93 35 21 16 5 27 45 7 ANA 94 31 34 23 11 11 54 2 ANA 95 59 54 0 54 33 11 2 ANA 96 43 17 0 17 49 31 3 ANA 97 55 49 2 46 33 17 1 ANA 98 60 9 3 7 84 6 0 ANA 99 53 39 7 32 40 20 0 ANA 100 52 34 2 32 44 21 0 ANA 101 54 55 39 16 25 20 1 ANA 102 50 22 9 13 55 20 3 ANA 103 57 82 82 0 0 18 0 ANA 104 57 80 80 0 1 19 0 ANA 105 69 97 97 0 1 1 0 ANA 106 68 94 94 0 4 2 0 ANA 107 67 78 23 55 7 8 7 ANA 108 62 74 36 38 8 14 4 ANA 109 68 79 53 26 9 7 4 ANA 110 63 71 37 33 10 12 8 ANA 111 39 50 49 1 7 43 1 ANA 112 38 48 46 2 7 45 0 ANA 113 54 77 76 0 1 22 1 ANA 114 65 81 5 76 2 10 6

* Amostras não analisadas por microscopia ótica.

O método de validação cruzada utilizado no trabalho foi realizado da seguinte

forma: foi retirada uma amostra por vez e com as amostras restantes foi construído o

modelo de calibração e posteriormente a amostra retirada teve seu valor previsto pelo

modelo de calibração. Este procedimento é repetido até que todas as amostras tenham

sido previstas. Foram também determinados os valores para o erro médio de validação

(RMSECV) e o erro médio de calibração (RMSEC). Portanto todas as amostras em

estudo passam a fazer parte tanto da elaboração da curva de calibração como da curva

de validação do sistema.

Na Tabela 15 estão correlacionados os valores de R2 de calibração (R2C) e R2 de

validação (R2V) e seus respectivos erros médios, obtidos dos cálculos quimiométricos

realizados para diferentes comprimentos de onda, diferentes fases mineralógicas e

diferentes equipamentos.

Page 81: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

65

Tab

ela

15. R

elaç

ão d

os p

arâm

etro

s es

tatís

ticos

obt

ido

s na

s an

ális

es q

uim

iom

étric

as.

AS

D

CA

RY

Com

pone

nte

λ (n

m)

R2 C

RM

SE

C R

2 V

RM

SE

CV

Com

pone

nte

λ (n

m)

R2 C

RM

SE

C R

2 V

RM

SE

CV

Esp

ecul

arita

35

0-80

0 0,

83 20

,0

0,64

30

,7

Esp

ecul

arita

32

9-80

0 0,

73 21

,7

0,65

25

,8

35

0-25

00

0,85

16,3

0,

65

25,3

329-

2500

0,

79 20

,7

0,68

25

,8

Mar

tita

350-

800

0,58

15,1

0,

10

21,2

M

artit

a 32

9-80

0 0,

57 17

,2

0,37

20

,2

35

0-25

00

0,84

10,9

0,

47

17,3

329-

2500

0,

70 13

,9

0,42

17

,2

Qua

rtzo

35

0-80

0 0,

84 12

,1

0,69

16

,0

Qua

rtzo

32

9-80

0 0,

52 13

,1

0,44

15

,3

35

0-25

00

0,77

11,1

0,

47

15,0

329-

2500

0,

63 11

,3

0,52

13

,7

Fer

ro

350-

800

0,81

5,6

0,62

8,

3 F

erro

32

9-80

0 0,

75 6,

4 0,

66

7,4

35

0-25

00

0,82

5,4

0,59

8,

3

329-

2500

0,

78 6,

0 0,

69

7,1

Hem

atita

35

0-80

0 0,

85 12

,1

0,71

16

,7

Hem

atita

32

9-80

0 0,

80 10

,8

0,76

13

,7

35

0-25

00

0,83

9,7

0,66

15

,3

32

9-25

00

0,82

9,9

0,73

12

,3

Goe

thita

35

0-80

0 0,

94 4,

9 0,

83

7,8

Goe

thita

32

9-80

0 0,

91 6,

1 0,

88

7,5

35

0-25

00

0,96

3,6

0,92

5,

9

329-

2500

0,

94 4,

6 0,

92

6,6

Mag

net

ita

350-

800

0,56

7,3

0,13

9,

5 M

agn

etita

32

9-80

0 0,

62 6,

9 0,

32

8,9

35

0-25

00

0,90

3,9

0,71

6,

2

329-

2500

0,

83 4,

7 0,

72

6,0

Page 82: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

66

MIR

C

AR

Y/M

IR

Com

pone

nte

λ (n

m)

R2 C

RM

SE

C R

2 V

RM

SE

CV

Com

pone

nte

λ (n

m)

R2 C

RM

SE

C R

2 V

RM

SE

CV

Esp

ecul

arita

25

00-4

0000

0,8

9 15

,3

0,81

21

,1

Esp

ecul

arita

32

9-40

000

0,88

16

,1

0,81

20

,5

Mar

tita

2500

-400

00

0,70

12

,8

0,47

19

,4

Mar

tita

329-

4000

0 0,

67

12,6

0,

46

16,0

Qua

rtzo

25

00-4

0000

0,

86

6,4

0,74

9,

3 Q

uart

zo

329-

4000

0 0,

85

6,9

0,70

9,

6

Fe

2500

-400

00

0,87

4,7

0,75

7,

1 F

e 32

9-40

000

0,86

4,8

0,76

6,

3

Hem

atita

25

00-4

0000

0,

90 7,

3 0,

75

11,8

H

emat

ita

329-

4000

0 0,

91 7,

2 0,

81

10,3

Goe

thita

25

00-4

0000

0,

94 4,

9 0,

84

9,7

Goe

thita

32

9-40

000

0,94

5,0

0,81

8,

7

Mag

net

ita

2500

-400

00

0,70

5,2

0,47

8,

3 M

agn

etita

32

9-40

000

0,87

4,0

0,71

5,

9

AS

D/M

IR

AS

D/M

IR

Esp

ecul

arita

35

0-40

000

0,87

15

,7

0,80

20

,1

Hem

atita

35

0-40

000

0,90

7,3

0,80

10

,5

Mar

tita

350-

4000

0 0,

68

12,6

0,

44

16,0

G

oeth

ita

350-

4000

0 0,

94 5,

0 0,

81

8,9

Qua

rtzo

35

0-40

000

0,83

6,

9 0,

69

9,7

Mag

net

ita

350-

4000

0 0,

88 4,

0 0,

70

6,1

Fe

350-

4000

0 0,

86 4,

7 0,

76

6,3

Page 83: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

67

O valor médio de calibração foi de 0,80, contudo as melhores correlações

encontradas foram às obtidas no equipamento ASD portátil para martita R2C= 0,84,

goethita R2C= 0,96 e magnetita R2C= 0,90, no MIR para especularita R2

C= 0,89, para o

ferro R2C= 0,87 e para o quartzo correlação de R2

C= 0,89, já para a hematita a melhor

correlação foi em CARY/MIR com R2C= 0,91.

O mineral para o qual se obteve a melhor correlação em todos os equipamentos

(CARY, ASD, TENSOR 27) e em todos os comprimentos de onda estudado foi a

goethita, com correlações de R2C= 0,91 a R2C= 0,96. Portanto, na média 94% dos

valores são explicados pela curva, provavelmente devido à curva de reflectância exibir

bandas mais definidas.

Foi observado que para alguns minerais os melhores modelos de calibração

obtidos, ou seja, os modelos mais robustos de calibração são encontrados quando se

seleciona uma dada região espectral, isto é, regiões específicas, se comparada com os

modelos obtidos quando se empregam o espectro todo. (Spiegelman et al 1998).

Na região em que os óxidos de ferro têm uma resposta espectral constituída por

bandas largas, à maior resolução é obtida com o aparelho CARY 5000, equipado com

uma esfera de reflectância, em comparação com o equipamento portátil ASD.

Entretanto, o ASD forneceu melhores correlações e apresenta uma grande vantagem em

relação ao equipamento CARY 5000: por se tratar de um equipamento portátil, as

análises podem ser realizadas in situ, diretamente no campo e com uma maior rapidez.

As correlações encontradas no estudo para o ferro, hematita, goethita, especularita,

martita, quartzo e magnetita estão mostradas na Figuras 39, 40, 41, 42, 43, 44 e 45

respectivamente.

Page 84: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

68

5.6.3.3.1 – Ferro Total

Figura 39. Representação gráfica das correlações para ferro total, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 85: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

69

5.6.3.3.2 – Hematita

Figura 40. Representação gráfica das correlações para hematita, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 86: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

70

5.6.3.3.3 – Goethita

Figura 41. Representação gráfica das correlações para goethita, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 87: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

71

5.6.3.3.4 – Especularita

Figura 42. Representação gráfica das correlações para especularita, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 88: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

72

5.6.3.3.5 – Martita

Figura 43. Representação gráfica das correlações para martita, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 89: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

73

5.6.3.3.6 – Quartzo

Figura 44. Representação gráfica das correlações para quartzo, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 90: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

74

5.6.3.3.7 – Magnetita

Figura 45. Representação gráfica das correlações para magnetita, valores preditos de calibração

(azul) e validação (vermelho) versus valores medidos.

Page 91: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

75

O teste de validação cruzada foi mais restritivo com vista a avaliar a exatidão do

método proposto. Como esperado, os valores das duas estatísticas de validação (R2V e

SEV) foram menores que os parâmetros estatísticos de calibração (R2C e SEC), por se

tratar a calibração de uma correlação que se leva em conta todas as amostras.

Segundo Malley et al. (2004), os valores de calibração para minerais pode ser

dividido em quatro categorias. Quando se obtém valores de calibração acima de R2C

>0,95, o caso da goethita, considera-se que a calibração foi excelente, valores entre

R2C= 0,90 a 0,95, houve uma calibração bem sucedida, por exemplo para hematita, para

os valores de R2C entre 0,80 a 0,89 é considerada calibração moderadamente bem

sucedida, caso do quartzo, ferro total, da especularita e da martita. Entretanto a maioria

das correlações encontradas para a martita é moderadamente útil, por apresentar valores

no intervalo de R2C = 0,7 a 0,8.

Exceto para a magnetita, todas as calibrações se enquadram nestas quatro

categorias. Entretanto isso foi observado devido a duas amostras terem teores elevados

de magnetita, o que os torna discrepantes com relação às demais amostras. A

inexistência de amostras contendo teores de magnetita em uma ampla faixa de

concentração é a causa dos baixos valores de correlação. Portanto, sugere-se que a

quantificação da magnetita seja feita a partir de medidas de susceptibilidade magnética.

Page 92: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

76

6 – CONCLUSÃO

Estudos de caracterização mineral são de suma importância para a área

industrial, tanto para a venda do minério de ferro, como para o estudo da melhor rota de

beneficiamento que o minério será direcionado, logo é preciso à identificação e

quantificação das fases mineralógicas existentes.

A técnica atualmente utilizada para a identificação de minerais é a difração de

raios X, entretanto a quantificação das fases por esta técnica é grandemente afetada

pelos efeitos de stress e orientação preferencial (textura).

A microscopia ótica é a técnica de quantificação mais utilizada nas empresas,

entretanto possui uma desvantagem em relação à espectroscopia de reflectância difusa:

é uma análise demorada que requer cerca de 2 horas entre a preparação da amostra e a

análise e entrega dos resultados.

A técnica de reflectância difusa é uma análise rápida e barata, que demanda

cerca de 5 minutos para se obter um espectro no equipamento CARY. Entretanto requer

apenas cerca de 30 segundos para a obtenção do espectro no equipamento ASD e

TENSOR 27. Além de rápida, é uma análise fácil de realizada, não há a necessidade de

preparação anterior das amostras, se trata de uma análise não destrutiva, e é necessária

pouca quantidade de material para ser analisado.

Todos os equipamentos apresentaram resultados interessantes, porém o

espectrômetro portátil (ASD) leva certa vantagem por poder ser utilizado diretamente

no campo, in situ, além de requerer menor tempo de análise.

Todos os minerais estudados apresentaram correlações acima de 80%, exceto a

martita que foi de 79%, sendo que a goethita apresentou a melhor correlação (96%),

para todos os equipamentos.

Os modelos de calibração podem ser melhorados e ficarem mais robustos ao se

escolher para a análise comprimentos de onda específicos, ou seja, uma parte do

espectro, frente ao modelo de calibração quando se usa o espectro todo.

Embora se tenha utilizado um número limitado de amostras (113) a metodologia

proposta é bastante dinâmica e permite a introdução de outras amostras simplesmente

remodelando as curvas de calibração, fazendo assim um modelo de calibração mais

robusto.

A influência de contaminantes, como caulinita, carbonatos e muscovita nas

curvas de regressão não foram avaliadas nestes minérios de ferro, por se tratar

Page 93: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

77

geralmente de pequenas quantidades dessas fases. No entanto, sua influência nos

espectros de reflectância no intervalo visível pode ser notada.

Nossos resultados, juntamente com outros obtidos por outras técnicas (absorção

atômica, microscopia ótica, espectroscopia Mössbauer), mostram que a reflectância

difusa é uma técnica muito promissora para a possível identificação e quantificação das

fases mineralógicas de diversos tipos de minérios.

Page 94: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

78

7- REFERÊNCIAS BIBLIOGRÁFICAS

BANCROFT, G.M., Mössbauer Spectroscopy: An Introduction for Inorganic Chemists

and Geochemists, John Wiley & Sons, New York, 1973.

BARNES, R.J., DHANOA, M.S. e LISTER, S.J. Standard normal variate

transformation and de-trending of near-infrared diffuse reflectance spectra. Applied

Spectroscopy, 43, 1989, p. 772–777.

BARRÓN, V.; MELLO, J.W.V. e TORRENT, J. Caracterização de óxidos de ferro em

solos por espectroscopia de Reflectância Difusa. In: NOVAIS, R.F.; ALVAREZ V.,

V.H. & SCHAEFER, C.E.G.R., eds. Tópicos em ciência do solo. Viçosa, Sociedade

Brasileira de Ciência do Solo, 2000. v.1, p.139-162.

BARRÓN V. e TORRENT J. Diffuse Reflectance Spectroscopy of Iron Oxides.

Encyclopedia of Superce and Colloid Science, 2002, p. 1438-1446.

BARRÓN, V. e TORRENT, J. Use of the Kubelka-Munk theory to study the influence

of iron oxides on soil color. Journal Soil Science, 1986, v.37, p. 499-510.

BARRÓN, V., Influencia de los óxidos de hierro en el color de los solos. Tese de

doutorado. 1985. Universidade de Córdoba. Espanha

BARRÓN, V., MONTEALEGRE, L., Iron oxides and coloro f triassic sediments:

Aplication of the Kubelka-Munk theory, American Journal of science, 286, 1986, p.

792-802

BRAVO, L.; NEUMANN, R. Correção de efeitos de orientação preferencial em

amostras policristalinas, através de procedimentos não matemáticos, para a otimização

da aplicação do método de Rietveld. XVI Jornada de Iniciação Científica, CETEM, Rio

de Janeiro, 2008.

Page 95: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

79

BEN-DOR, E., e BANIN, A., Diffuse reflectance spectra of smectite minerals in the

near infrared and their relationship to chemical composition. Sciences Geologiques

Bulletin, 1990, 43,117-128.

BEN-DOR, E., BANIN, A., Near-infrared analysis as a rapid method to simultaneously

evaluate several soil properties. Soil Science Society of America Journal, 59, 1995,

p.364– 372.

BEN-DOR, E., Quantitative remote sensing of soil properties. 2002. Advances

Agronomy, 75. p. 173-243.

BROWN, S.D. Chemical systems under indirect observation: Latent properties and

chemometrics. Applied Spectroscopy., Baltimore, 49, 12, 1995, p.14A-31A.

CHANG, C.-W., LAIRD, D.A., MAUSBACH, M.J., HURBURGH Jr., C.R., Near-

infrared reflectance spectroscopy—principal components regression analysis of soil

properties. Soil Science Society of America Journal 65, 2001, p.480– 490.

CORNELL, R. M. e SCHWERTMANN, U. The Iron Oxides. VCH Publischers, New

York, 1996.

CORNELL R.M., e SCHWERTMANN U., The Iron Oxides, 2ª edição., Wiley/VCH,

Weinheim, 2003.

da COSTA, G. M., RESENDE, V. G. e TORÍBIO, N.M., Quantitative phase analysis of

iron ore concentrates. Revista da Escola de Minas, 2002, 55, 263-266.

da COSTA, G. M., BARRÓN, V., FERREIRA, C. M., TORRENT, J., The use of diffuse

reflectance spetroscopy for the characterization of iron ores, Minerals Engineering, 22,

2009, p. 1245-1250

Page 96: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

80

da SILVA, G. A., Utilização de métodos quimiométricos em cromatografia gasosa com

microextração em fase sólida. UNICAMP. Campinas, São Paulo, 2007. (Tese de

doutorado).

DANA, J.D. Manual de Mineralogia. Rio de Janeiro: 1a Edição. Livros Técnicos e

Científicos Editora S.A., 1978, p. 642.

Departamento Nacional de Produção Mineral – DNPM – Sumário Mineral. Anuário

Mineral Brasileiro 2008 (ano base 2007). Disponível em: www.dnpm.gov.br

DE GRAVE, E. e VAN ALBOOM, A., Physical Chemistry Minerals, 1991,v.18, p. 337

DEARING, J., Environmental Magnetic Susceptibility: using Bartington MS2 System,

Chi Publishing. Kenilworth, 1999.

DONSKOI, E., SUTHERS J.J., CAMPBELL T. e RAYNLYN T., Modelling and

optimization of hydrocyclone for iron ore fines beneficiation— using optical image

analysis and iron ore texture classification. International Journal of Mineral Processing,

2008, 86, 106-119.

DONSKOI, E., SUTHERS, S.P., FRADD, S.B., YOUNG, J.M., CAMPBELL, J.J.,

RAYNLYN, T.D. and CLOUT, J.M.F., Utilization of optical image analysis and

automatic texture classification for iron ore particle characterization. Minerals

Engineering, 2007, 20, 461-471.

FERREIRA, C.M., Método de Caracterização Tecnológica de Minério - Diretrizes

para aplicação a Minérios de Ferro “Sinter Feed” e “PelIet Feed”. Anais do Works.

Geol. Estr. Mim. Ferro, 1993,– SBG Bol. 12-p. 374-375.

FERREIRA, M.M.C. Multivariate QSAR. Journal of the Brazilian Chemical Society.,

São Paulo, 13, 6, 2002, p.742-753.

Page 97: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

81

GELADI, P. e KOWALSKI, B.R., Partial least-squares regression: a tutorial.

Analytica Chimica Acta, 1986, v.185, p. 1-17.

JANIK, L.J., MERRY, R.H., SKJEMSTAD, J.O., Can mid infra-red diffuse reflectance

analysis replace soil extractions?, Australian Journal of Experimental Agriculture 38

(7), 1998, p.681– 696.

JENKINS R. e SNYDER R.L., Introduction to X-ray Powder Diffractometry. John

Wiley & Sons, Inc., New York, 1996.

McBRATNEY, A.B., MENDONCA SANTOS, M.L, MINASNY, B., On digital soil

mapping. Geoderma 117, 2003, p.3– 52.

MCCARTY, G.W., REEVES III, J.B., REEVES, V.B., FOLLETT, R.F., KIMBLE,

J.M., Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon

measurements. Soil Science Society of America Journal 66, 2002, p.640– 646.

MADARI, B.E.; REEVES III, J.B.; MACHADO, P.L.O.A.; GUIMARÃES, C.M.;

TORRES, E. e MCCARTY, G.W., Mid- and near-infrared spectroscopic assessment of

soil compositional parameters and structural indices in two Ferralsols. 2006.

Geoderma, 136. p.245-259.

MALLEY, D. F., MARTIN, P. D. e BEN-DOR, E., Application in analysis of soils. In:

Near-Infrared Spectroscopy in Agriculture, ed. C.A. Roberts, J. Workman and J.B.

Reeves. Soil Science Society of America, Madison, WI, 2004, p. 729–784.

MARTENS, H. e NAES, T., Multivariate calibration, 1989, John Wiley and Sons,

Chichester

MORRIS, R.V.; LAUER, H.V.; GIBSON, E.K.; NACE, G.A. e TEWART, C., Spectral

and other physiochemical properties of submicron powders of Hematite (α-Fe2O3),

Maghematite (γ-Fe2O3), Magnetite (Fe3O4), Goethite (α-FeOOH), and Lepidocrocite

(γ-FeOOH). 1985. J. Geophys. Res. 90. p.3126-3144.

Page 98: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

82

MUNSELL, A.H., Color Notation, Munsell Color Comp., Baltimore, 1941.

NEUMANN R., SCHNEIDER C.L. e NETO A.A., Caracterização Tecnológica de

Minérios, Tratamento de Minérios. CETEM/CNPq, Rio de Janeiro, RJ. 2004, Cap. 3, p.

55-109. 4a edição.

PARREIRA, T. F., Utilização de métodos quimiométricos em dados de natureza

multivariada. UNICAMP, Campinas, São Paulo, 2003. (Dissertação de mestrado).

PÖLLMANN, U.K. e ANGÉLICA, R.S., O refinamento de Rietveld como um método

para o controle de qualidade de minérios de ferro. Revista da Escola de Minas, 2002,

55, 111-114.

PORPHÍRIO, N. H. e BARBOSA, M. I. M., Caracterização Mineralógica de Minérios.

In: A.B. Luz, L. Costa, M. Possa e S. Almeida (Eds.), Tratamento de Minérios.

CETEM/CNPq, Rio de Janeiro, RJ. 1995, Cap. 3, p. 61-103. 1a edição.

POSPÍŠIL, J., HRDÝ, J. HRDÝ JR., J., Basic methods for measuring the reflectance

coloro f iron oxides. Science Direct, Optik 118, 2007, p. 278-288

REEVES III, J.B., MCCARTY, G.W.e MEISINGER, J.J., Near infrared reflectance

spectroscopy for the analysis of agricultural soils. Journal of Near Infrared

Spectroscopy,1999, 7, 179–193.

ROSIÈRE, C. A. e CHEMALE, F. Jr., Textural and structural aspects of iron ores from

Iron Quadrangle, Brazil. In Pagel, M. & Leroy, J. L. (eds.). Source, Transport and

Deposition of Metals, Amsterdam, Balkema, 1991, 485 – 488.

ROSIÈRE, C. A., CHEMALE, F. Jr. e GUIMARÃES, M.L.V. Um modelo para a

evolução microestrutural dos minérios de ferro do Quadrilátero Ferrífero. Parte I -

estruturas e recristalização. Geonomos, 1(1), 1993, p. 65-84

ROSIÈRE, C. A., VIEIRA, C. B., SECHADRI, V., Caracterização microestrutural e

textural de minérios de ferro para controle de processo em altos-fornos com ênfase em

Page 99: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

83

geometalurgia e engenharia dos materiais, Anais XXVII Seminario de Redução de

Minério de Ferro ABM, 1996, Santos – SP, p. 175-184

ROSIÈRE C.A. e CHEMALE Jr. F., Brazilian iron formations and their geological

setting. Revista Brasileira de Geociências, 2000, 30, 274-278.

RUSSELL, J.D. e FRASER, A.R., Infrared Methods. Clay Mineralogy: Spectroscopic

and Chemical Determinative Methods. Cap 2. Editora Chapman e Hall. 1994. UK. p. 11

– 67.

SANTOS L.D. e BRANDÃO P.R.G., Morphological varieties of goethite in iron ores

from Minas Gerais, Brazil. Minerals Engineering, 2003, 16, p. 1285-1289.

SANTOS L.D., BRANDÃO P.R.G. e SAMPAIO D.A., Mineralogical and

morphological characterization of iron ore types from Minas Gerais, Brazil - influences

on the specific surface area of concentrates. Minerals and Metallurgical Processing,

2005, 22, p. 116- 120.

SAVITZKY, A. e GOLAY, M.J.E. Smoothing and differentiation of data by simplified

least squares procedures. Analytical Chemistry, 36, 1964, p.1627–1639.

SCHEINOST, A.C. e SCHWERTMANN, U., Color identification of iron oxides and

hidroxysulfates: use and limitations. Soil Science Society of America. 1999, v.63 (5), p.

1463-1471

SCHWERTMANN, U., Relations between iron oxides, soil color and soil formation.

1993. p.51-69.

SELLITTO, V.M.; FERNANDES, R.B.A.; BARRÓN, V. e COLOMBO, C.,

Comparing two different spectroscopic techniques for the characterization of soil iron

oxides: Diffuse versus bi-directional reflectance. 2009. Geoderma, 149. p.2-9.

Page 100: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

84

SHENK, J.S. e WESTERHAUS, M.O., Calibration the ISI way. In: Near Infrared

Spectroscopy: The Future Wave, ed. A.M.C. Davies and P.C. Williams. NIR

Publications, Chichester, UK, 1996, p. 198–202.

SHIBUSAWA, S., IMADE ANOM, S.W., SATO, S., SASAO, A., HIRAKO, S., Soil

mapping using the real-time soil spectrophotometer. In: GRENIER, G.,

BLACKMORE, S. (Eds.), ECPA 2001, Third European Conference on Precision

Agriculture, vol. 1. Agro Montpellier, 2001, p. 497– 508.

SPIEGELMAN, C. H.; MCSHANE, M. J.; COTÉ, G. L.; GOETZ, M. J.; MOTAMEDI,

M. & YUE, Q. L. Theoretical justification of wavelength selection in PLS calibration:

development of a new algorithm. Analytical Chemistry. Vol. 70, 1998, p. 35-44.

STRANG, G., Linear Algebra and its Applications, Academic Press, Nova York, 2ª

edição.1976.

STUCKI, J.W., GOODMAN, B.A. e SCHWERTMANN, U., Iron in soils and Clay

minerals. D. Reidel Publishine Company, Holland, 1985.

TEÓFILO, R.F., Métodos quimiométricos em estudos eletroquímicos de fenóis sobre

filmes de diamante dopado com boro. UNICAMP. Campinas, São Paulo, 2007. (Tese de

doutorado)

TORRENT, J. e BARRÓN, V., Laboratory measurement of soil color: theory and

practice. In: BIGHAM, J.M. & CIOLKOSZ, E.J., eds. Soil color. Madison, Soil Science

Society of America, 1993. p.21-33.

TORRENT, J. e BARRÓN, V., The visible diffuse reflectance spectrum in relation to

the color and crystal properties of hematite, Clays and Clay Minerals, 51, 3, 2003,

p.309–317,

TORRENT, J. e BARRÓN, V., Diffuse Reflectance Spectroscopy. In : Ulery, A.L.,

Drees, L.R. (Editora), Methods of Soil Análisis. Parte 5. Mineralogical Methods. Soil

Science Society of America, SSSA Book Series no. 5. 2008, p. 367-387.

Page 101: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

85

VANDENBERGHE, R.E.,Mössbauer Spectroscopy and Applications in Geology, ITC

Internacional Training Centre for Post-Graduate Soil Scientists, Gent, Belgica, 2a

edição, 1991

VISCARRA ROSSEL, R.A.,WALTER, C., FOUAD, Y., Assessment of two reflectance

techniques for the quantification of field soil organic carbon. In: STAFFORD, J.,

WERNER, A. (Eds.), Precision Agriculture. Fourth European Conference on Precision

Agriculture. Wageningen Academic Publishers, Berlin, 2003, p. 697– 703.

VISCARRA ROSSEL, R.A.; WALVOORT, D.J.J.; MCBRATNEY, A.B.; JANIK, L.J.

e SKJEMSTAD, J.O., Visible, near infrared, mid infrared or combined diffuse

reflectance spectroscopy for simultaneous assessment of various soil properties.

Geoderma, 131, 2006, p.50-75.

VISCARRA ROSSEL, R.A., ParLeS: Software for chemometric analysis of

spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 90, 2008, p.72-

83.

VISCARRA ROSSEL, R.A. e LARK, R.M., Improved analysis and modelling of soil

diffuse reflectance spectra using wavelets. European Journal of Soil Science, 60, 2009,

p.453-464.

WECKHUYSEN, B. M., SCHOONHEDT, R. A., Recent progress in diffuse reflectance

spectroscopy of supported metal oxide catalysts, Catalysis Today, 49, 1999, p. 441-451

WOLD, S., MARTENS, H. e WOLD, H. The multivariate calibration method in

chemistry solved by the PLS method. In: Proceedings of the Conference on Matrix

Pencils, Lecture Notes in Mathematics (eds A. Ruhe & B. Kagstrom), 1983, p. 286–

293. Springer-Verlag, Heidelberg.

WOLD, S., Principal Component Analysis, Chemometrics and Intelligent Laboratory Systems, 2, 1987, p. 37-52

Page 102: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

86

WYSZECKI, G. e STILES, W.S., Color Science: Concepts and Methods, Quantitative

Data and Formulae. 2nd ed. 1982, John Wiley & Sons, New York.

Page 103: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

87

ANEXOS

Anexo I

Tabela 1. Relação dos minerais identificados nas amostras por difração de raios X.

AMOSTRAS MINERAIS IDENTIFICADOS ANA 01 Hematita; Goethita ANA 02 Hematita; Goethita; Magnetita ANA 03 Hematita; Quartzo ANA 04 Hematita; Goethita; Magnetita ANA 05 Hematita; Goethita; Magnetita; Quartzo ANA 06 Hematita; Goethita ANA 07 Hematita; Quartzo; Kaolinita ANA 08 Hematita; Quartzo; Kaolinita ANA 09 Hematita; Quartzo ANA 10 Hematita; Goethita; Magnetita; Quartzo ANA 11 Hematita; Quartzo ANA 13 Hematita; Quartzo ANA 14 Hematita; Goethita; Quartzo ANA 15 Hematita; Quartzo ANA 16 Hematita; Goethita; Quartzo; Muscovita ANA 17 Hematita; Magnetita ANA 18 Hematita; Magnetita; Quartzo ANA 19 Hematita; Quartzo ANA 20 Hematita; Quartzo ANA 21 Hematita; Goethita; Quartzo; Kaolinita ANA 22 Hematita; Goethita ANA 23 Hematita; Goethita; Quartzo ANA 24 Hematita; Goethita ANA 25 Hematita; Quartzo ANA 26 Hematita; Goethita ANA 27 Hematita; Goethita; Quartzo ANA 28 Hematita; Goethita; Quartzo ANA 29 Hematita; Quartzo ANA 30 Hematita; Goethita; Quartzo ANA 31 Hematita; Goethita; Quartzo ANA 32 Hematita; Goethita; Quartzo ANA 33 Hematita; Goethita; Quartzo ANA 34 Hematita; Goethita; Quartzo ANA 35 Hematita; Quartzo ANA 36 Hematita; Goethita; Quartzo ANA 37 Hematita; Goethita; Quartzo ANA 38 Hematita; Quartzo ANA 39 Hematita; Quartzo ANA 40 Hematita; Quartzo ANA 41 Hematita ANA 42 Hematita; Goethita ANA 43 Hematita ANA 44 Hematita; Magnetita; Quartzo ANA 45 Hematita; Magnetita; Quartzo ANA 46 Hematita; Quartzo ANA 47 Hematita; Quartzo ANA 48 Hematita; Quartzo ANA 49 Hematita; Quartzo ANA 50 Hematita; Quartzo ANA 51 Hematita; Quartzo ANA 52 Hematita; Quartzo

Page 104: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

88

AMOSTRAS MINERAIS IDENTIFICADOS ANA 53 Hematita; Quartzo ANA 54 Hematita; Goethita; Quartzo ANA 55 Hematita; Goethita; Magnetita ANA 56 Hematita; Goethita; Magnetita ANA 57 Hematita; Goethita; Magnetita; Quartzo ANA 58 Hematita; Goethita; Magnetita ANA 59 Hematita; Goethita; Quartzo ANA 60 Hematita; Goethita; Quartzo ANA 61 Hematita; Goethita; Quartzo ANA 62 Hematita; Goethita; Quartzo; Kaolinita ANA 63 Hematita ANA 64 Hematita; Magnetita ANA 65 Hematita; Quartzo ANA 66 Hematita; Quartzo ANA 67 Hematita; Goethita; Quartzo ANA 68 Hematita; Quartzo ANA 69 Hematita; Goethita; Kaolinita ANA 70 Hematita; Goethita; Magnetita; Quartzo ANA 71 Hematita; Goethita; Magnetita; Quartzo ANA 72 Hematita; Goethita; Magnetita; Quartzo ANA 73 Hematita; Goethita; Quartzo; Kaolinita ANA 74 Hematita; Quartzo ANA 75 Hematita; Goethita; Quartzo ANA 76 Hematita; Goethita; Quartzo ANA 77 Hematita; Goethita; Quartzo ANA 78 Hematita; Goethita; Quartzo ANA 79 Hematita; Quartzo ANA 80 Hematita; Goethita; Quartzo ANA 81 Hematita; Quartzo ANA 82 Hematita; Goethita; Quartzo ANA 83 Hematita; Quartzo ANA 84 Hematita; Goethita; Quartzo ANA 85 Hematita; Goethita; Quartzo ANA 86 Hematita; Goethita; Quartzo ANA 87 Hematita; Goethita; Quartzo ANA 88 Hematita; Goethita; Quartzo ANA 89 Hematita; Goethita; Quartzo ANA 90 Hematita; Goethita; Quartzo ANA 91 Hematita; Goethita; Quartzo ANA 92 Hematita; Goethita; Quartzo; Muscovita ANA 93 Hematita; Goethita; Quartzo ANA 94 Hematita; Goethita; Quartzo ANA 95 Hematita; Goethita; Quartzo ANA 96 Hematita; Goethita; Quartzo ANA 97 Hematita; Goethita; Quartzo ANA 98 Hematita; Goethita; Quartzo ANA 99 Hematita; Goethita; Quartzo ANA 100 Hematita; Goethita; Quartzo ANA 101 Hematita; Goethita; Quartzo ANA 102 Hematita; Goethita; Quartzo ANA 103 Hematita; Quartzo ANA 104 Hematita; Quartzo ANA 105 Hematita ANA 106 Hematita; Goethita ANA 107 Hematita; Goethita; Magnetita ANA 108 Hematita; Goethita; Magnetita; Quartzo ANA 109 Hematita; Goethita ANA 110 Hematita; Goethita; Magnetita ANA 111 Hematita; Goethita; Quartzo

Page 105: AUTORA: ANA CLÁUDIA CARIOCA ORIENTADOR: Prof. Dr. …‡ÃO...Em primeiro lugar agradeço a Deus pelas bênçãos concedidas na minha vida, pois tudo o que consegui foi o Senhor que

89

AMOSTRAS MINERAIS IDENTIFICADOS ANA 112 Hematita; Goethita; Quartzo ANA 113 Hematita ANA 114 Hematita; Magnetita