auxetic metamaterials fin

105
http://www.auxetic.info Physics of Disordered Systems ‘10 Joseph N. Grima 23 rd -27 th May 2010 Auxetic Metamaterials Faculty of Science University of Malta

Upload: fernandoromo13

Post on 21-Jan-2016

52 views

Category:

Documents


4 download

DESCRIPTION

description

TRANSCRIPT

Page 1: Auxetic Metamaterials Fin

http://www.auxetic.info

Physics of Disordered Systems ‘10

Joseph N. Grima

23rd-27th May 2010

Auxetic Metamaterials

Faculty of ScienceUniversity of Malta

Page 2: Auxetic Metamaterials Fin

http://www.auxetic.info 2

Acknowledgements

• Co-workers: – Brian Ellul– Daphne Attard– Ruben Gatt

• $$$$– University of Malta– Malta Council for Science & Technology– Malta Government Scholarship Scheme

• Organisers of Metamaterials European Summer School

Page 3: Auxetic Metamaterials Fin

http://www.auxetic.info 3

The Maltese Islands

• 126 sq. miles• ~400,000 people

St. Thomas’ BayGolden bay

Blue Lagoon

Page 4: Auxetic Metamaterials Fin

http://www.auxetic.info 4

History

Mdina – The Silent City

Mnajdra Temples

Valletta City

St. John’s Co-cathedral

Page 5: Auxetic Metamaterials Fin

http://www.auxetic.info 5

University of Malta … since 1592

• Founded as Collegium Melitense by Papal Decree in 1592• Public university since 1768 by Grand Master Pinto de

Fonseca

1780

Page 6: Auxetic Metamaterials Fin

http://www.auxetic.info 6

The University now …

• Msida• ~10,000 students• The ‘home’ of the auxetics group

Page 7: Auxetic Metamaterials Fin

http://www.auxetic.info 7

Siggiewi – My home town

Page 8: Auxetic Metamaterials Fin

http://www.auxetic.info

Introduction to auxetics

Page 9: Auxetic Metamaterials Fin

http://www.auxetic.info 9

Poisson’s ratios

PULL

PULL

+ve Poisson’s ratio → materials get thinner when stretched

v lateral strainPoisson's ratio, = -axial strain

extensionstrain = original length

Page 10: Auxetic Metamaterials Fin

http://www.auxetic.info 10

Common values

Material Poisson’s ratio

Rubbers 0.5

Lead 0.45

Aluminium 0.33

Common steels 0.27

Cellular solids e.g polymer foams 0.1 - 0.4

Cork 0.0

Page 11: Auxetic Metamaterials Fin

http://www.auxetic.info 11

But…

• … Poisson’s ratios can also be negative

-1 ≤ν ≤ 0.5. . . from the classical theory of elasticity (for isotropic materials)

Page 12: Auxetic Metamaterials Fin

http://www.auxetic.info 12

Auxetics

PULL

PULL

-ve Poisson’s ratio → materials get fatter when stretched

Page 13: Auxetic Metamaterials Fin

http://www.auxetic.info 13

Length scale

log (size, m)Molecular auxeticsSintered ceramics

HoneycombsNatural biomaterials

Microporous polymersFoamsComposites

Macrostructures e.g. Magnox Reactor Core, egg rack, etc.

-10(Å)

-8 -7 -6(μm)

-5 -4 -3(mm)

-9(nm)

-2(cm)

-1 0(m)

1

log (size, m)-10 -8 -7 -6 -5 -4 -3-9 -2 -1 0 1

Page 14: Auxetic Metamaterials Fin

http://www.auxetic.info 14

Length scale

log (size, m)Molecular auxeticsSintered ceramics

HoneycombsNatural biomaterials

Microporous polymersFoamsComposites

Macrostructures e.g. Magnox Reactor Core, egg rack, etc.

-10(Å)

-8 -7 -6(μm)

-5 -4 -3(mm)

-9(nm)

-2(cm)

-1 0(m)

1

log (size, m)-10 -8 -7 -6 -5 -4 -3-9 -2 -1 0 1

Page 15: Auxetic Metamaterials Fin

http://www.auxetic.info 15

Length scale

log (size, m)Molecular auxeticsSintered ceramics

HoneycombsNatural biomaterials

Microporous polymersFoamsComposites

Macrostructures e.g. Magnox Reactor Core, egg rack, etc.

-10(Å)

-8 -7 -6(μm)

-5 -4 -3(mm)

-9(nm)

-2(cm)

-1 0(m)

1

log (size, m)-10 -8 -7 -6 -5 -4 -3-9 -2 -1 0 1

Page 16: Auxetic Metamaterials Fin

http://www.auxetic.info 16

Length scale

log (size, m)Molecular auxeticsSintered ceramics

HoneycombsNatural biomaterials

Microporous polymersFoamsComposites

Macrostructures e.g. Magnox Reactor Core, egg rack, etc.

-10(Å)

-8 -7 -6(μm)

-5 -4 -3(mm)

-9(nm)

-2(cm)

-1 0(m)

1

log (size, m)-10 -8 -7 -6 -5 -4 -3-9 -2 -1 0 1

natrolite

Page 17: Auxetic Metamaterials Fin

http://www.auxetic.info 17

What gives rise to auxeticity

• Correct co-operation between:

–The material’s internal structure (geometry)

–The way the internal structure deforms when loaded (deformation mechanism)

Page 18: Auxetic Metamaterials Fin

http://www.auxetic.info 18

Auxetic mechanisms (1)

Re-entrant honeycombs

( )

( ) ( )( )

112

221

1 tan

sin tan

cos

XXl

h l

ν θν

θθ

θ

= = −

= −−

Auxetic: 0o < θ < 90o

Conventional: 90o < θ < 180o

Page 19: Auxetic Metamaterials Fin

http://www.auxetic.info 19

Auxetic mechanisms (2)

Dilating mechanisms

Page 20: Auxetic Metamaterials Fin

http://www.auxetic.info 20

Auxetic mechanisms (3)

Rotating Rigid / Semi-Rigid Units

Poisson’s ratio will depend on:

(1) Shape of the rigid unit

(2) Degree of aperture

(3) Connectivity

(4) Extent of rigidity of the unit

Page 21: Auxetic Metamaterials Fin

http://www.auxetic.info 21

Rotating Quadrilaterals

Page 22: Auxetic Metamaterials Fin

http://www.auxetic.info 22

…more examples

• Rotating rigid units– quadrilaterals

Squa

res ν = -1

Page 23: Auxetic Metamaterials Fin

http://www.auxetic.info 23

…more examples

• Rotating rigid units– quadrilaterals

Rect

angl

es

Squa

res ν = -1

Type I Type II

Page 24: Auxetic Metamaterials Fin

http://www.auxetic.info 24

…more examples

• Rotating rigid units– quadrilaterals

Rect

angl

es

Squa

res ν = -1

Type I Type II

Rhom

bi

β

α

Page 25: Auxetic Metamaterials Fin

http://www.auxetic.info 25

…more examples

• Rotating rigid units– quadrilaterals

Rect

angl

es

Squa

res ν = -1

Type I Type II

Rhom

bi

β

α

Para

llelo

gram

s

Page 26: Auxetic Metamaterials Fin

http://www.auxetic.info 26

Others … The Chirals, Anti-chirals

anti-tetrachiral

Page 27: Auxetic Metamaterials Fin

http://www.auxetic.info 27

… and more

• Egg-rack mechanism

Page 28: Auxetic Metamaterials Fin

http://www.auxetic.info 28

Properties / Applications

• Auxetic nails

Gets shorter & thinner whilst ‘going in’

Gets longer & fatter whilst ‘going out’

Page 29: Auxetic Metamaterials Fin

http://www.auxetic.info 29

Properties / Applications

Auxetic materials are harder to indent…

...In auxetics, the material tends to go towards the point of impact to become denser

Page 30: Auxetic Metamaterials Fin

http://www.auxetic.info 30

Properties / Applications

Synclastic behaviour…

conventional auxetic

… ability to form dome shaped surfaces

Page 31: Auxetic Metamaterials Fin

http://www.auxetic.info 31

Properties / Applications

• Smart filters

PULL PULL

Page 32: Auxetic Metamaterials Fin

http://www.auxetic.info 32

Page 33: Auxetic Metamaterials Fin

http://www.auxetic.info 33

Properties and applications

• Smart dressings

Page 34: Auxetic Metamaterials Fin

http://www.auxetic.info 34

Other Properties

• An increased shear stiffness

• Higher plane fracture toughness

Page 35: Auxetic Metamaterials Fin

http://www.auxetic.info 35

Historical note

• First Report: A negative Poisson’s ratio was first reported in single crystals of iron pyrites and was attributed to crystal twinning [Voigt, 1928].

• This was followed by some isolated reports mostly in the 1970s and 1980s

Page 36: Auxetic Metamaterials Fin

http://www.auxetic.info

Macro auxetics … an example

Page 37: Auxetic Metamaterials Fin

http://www.auxetic.info 37

(a) (b)

(c) (d)Y

X

Perforated sheets

Page 38: Auxetic Metamaterials Fin

http://www.auxetic.info 38

Experiment on Carpet Fabric

Page 39: Auxetic Metamaterials Fin

http://www.auxetic.info 39

(a)

(b)

Y

X

Y

X

Page 40: Auxetic Metamaterials Fin

http://www.auxetic.info 40

s = 0.1 s = 1 s = 2 s = 3 s = 4 analytical

(b)(a)

(c) (d)o o o o

o o o o o o o o

o o o o

Page 41: Auxetic Metamaterials Fin

http://www.auxetic.info 41

MicroscaleAuxetics

… FOAMS

Page 42: Auxetic Metamaterials Fin

http://www.auxetic.info 42

Process

• First manufactured by Rod Lakes, University of Wisconsin, Madison, (R. Lakes, Science, 235 (1987) p. 1038-1040.)

• Produced from commercially available conventional foams through a process involving:– Volumetric compression of ~30% in volume– Heating to the polymer’s softening temperature– Cooling whilst remaining under compression

Page 43: Auxetic Metamaterials Fin

http://www.auxetic.info 43

Typical Procedure

Starting from: Reticulated 30 ppi polyester polyurethane

• Cut conventional foam in the shape of a cuboid of size 35 mm x 35 mm x 105 mm long;

• Press sample into a mould of dimensions 25 mm x 25 mm x 75 mm (28.6 % strain along each axis);

• Heat at 200 °C for 10 minutes, Remove from mouldStretch Replace in the mould.

• Cool to room temperature• Heat for 1 hour at 100 °C

x 2

Taken from: Smith, Grima, Evans, Acta Mater. 48 (2000) p.4349-4356.

Technique adapted from: Chan and Evans, J. Mater. Sci., 32 (1997) p.

5945-5953.

Page 44: Auxetic Metamaterials Fin

http://www.auxetic.info 44

Before …

Page 45: Auxetic Metamaterials Fin

http://www.auxetic.info 45

… and after

Page 46: Auxetic Metamaterials Fin

http://www.auxetic.info 46

New approach

• Uses solvent instead of heat

• Process involves– Wetting foam with appropriate solvent– Compressing the foam volumetrically by 30%– Allowing the foam to dry well

Page 47: Auxetic Metamaterials Fin

http://www.auxetic.info 47

Typical Process

• Starting from: Reticulated 30 ppi polyurethane foam (Dongguan Dihui Foam Sponge, China)

• Cut conventional foam in the shape of a cylinder of diameter 40mm and length 84mm

• Wet the foam with acetone• Remove excess solvent• Press sample into a mould of diameter 26 mm and length

55mm (~35 % strain along each axis);• Allow the sample to dry completely before removing from

mould

Page 48: Auxetic Metamaterials Fin

http://www.auxetic.info 48

Result

JN Grima, D Attard, R Gatt and RN Cassar, Adv. Eng. Mater., 21 (2009)

Page 49: Auxetic Metamaterials Fin

http://www.auxetic.info 49

Measurements

0

0.04

0.08

0.12

0.16

0.2

0 0.1 0.2 0.3 0.4 0.5

0

0.04

0.08

0.12

0.16

0 0.1 0.2 0.3 0.4

ν = -0.34

ν = -0.36

Page 50: Auxetic Metamaterials Fin

http://www.auxetic.info 50

Foams – The Models

Page 51: Auxetic Metamaterials Fin

http://www.auxetic.info 51

Auxetic foam

Microstructure in auxetic foams

Conventional foam

JN Grima, A Alderson and KE Evans, J. Phys. Soc. Jpn, 74 (2005) 1341.

Page 52: Auxetic Metamaterials Fin

http://www.auxetic.info 52

Re-entrant structures

Uniaxial

loading

Uniaxial

loading

Compression/heating process

conventional

auxetic

LJ Gibson and MF Ashby, Cellular Solids, Cambridge Uni. Press, 1997.IG Masters and KE Evans, Composite Struct, 35 (1996) 403.KE Evans, A Alderson and FR Christian, J. Chem. Soc. Faraday Trans., 91 (1995) 2671.

Page 53: Auxetic Metamaterials Fin

http://www.auxetic.info 53

3D Re-entrant structures

dodecahedron foam models

tetrakaidecahedronfoam models

conventional Re-entrant

(KE Evans, MA Nkansah and IJ Hutchinson, Acta Metall. Mater., 2 (1994) 1289)

(JB Choi, RS Lakes, J Compos. Mater., 29 (1995) 113.)

Page 54: Auxetic Metamaterials Fin

http://www.auxetic.info 54

Missing rib model

Uniaxial

loading

Uniaxial

loading

Compression/heating process

CW Smith, JN Grima and KE Evans, Acta Mater., 48 (2000) 4349.

conventional

auxetic

Page 55: Auxetic Metamaterials Fin

http://www.auxetic.info 55

Rotating rigid units

(a)

(idealised form …rotating triangles model)

Uniaxial

loading

Uniaxial

loading

Compression/heating process

conventional

auxetic

JN Grima, A Alderson and KE Evans, J. Phys. Soc. Jpn, 74 (2005) 1341.

Page 56: Auxetic Metamaterials Fin

http://www.auxetic.info 56

Later on … The evidence

• In situ three-dimensional X-ray microtomography of an auxetic foam under tension, S.A. McDonald, N. Ravirala, P.J. Withers, A. Alderson, Scripta Mater. (2009) p. 232-235 which says:– X-ray microtomography has the potential to unambiguously

identify the predominant deformation mechanisms responsible for the auxetic response of polymeric foams. It has been performed in situ on an auxetic polyurethane foam subjected to incrementaluniaxial tensile loading. A Poisson’s ratio of −0.20 measured from localized microstructural changes observed during the tomographic sequence compares well with the bulk value of −0.21 obtained by videoextensometry. Evidence obtained by digital image correlation for straightening of bent ribs and rotation of junctions connecting ribs during straining is presented.

Page 57: Auxetic Metamaterials Fin

http://www.auxetic.info

Synthesized ‘molecular level’ Auxetics: LCPs

Page 58: Auxetic Metamaterials Fin

http://www.auxetic.info 58

Anselm C. Griffin’s LCP

PULLPULL

molecular level equivalents ….

O(H2C)10OO O(H3C)10O O

x

concept ….

Page 59: Auxetic Metamaterials Fin

http://www.auxetic.info 59

Other possible auxetic polymers

Grima et al., Chem. Comm. (2000)

Evans et al., Nature (1991)

Page 60: Auxetic Metamaterials Fin

http://www.auxetic.info 60

Other possible polymers …

Ox1Ox2

Ox1

Ox3Ox2

OHOH

OHOH

OHOH

OHOH

OHOH

OHOH

OHOH

OHOH

n

n

n

n

OHOH

OHOH

OHOH

OHOH

OHOH

OHOH

OHOH

OHOH

n

n

n

n

Ox1

Ox2

Ox1

Ox2 Ox1

Ox3

(a)

(b) (c)

Ox3

Grima et al., Chem. Comm. (2004)

Page 61: Auxetic Metamaterials Fin

http://www.auxetic.info 61

Auxeticity in Naturally Occurring minerals

Page 62: Auxetic Metamaterials Fin

http://www.auxetic.info 62

Case Study (i) - Cristobalite

• Meta-stable, crystalline silica

• Has a low temperature phase (α-cristobalite) and a high temperature phase (β-cristobalite)

Page 63: Auxetic Metamaterials Fin

http://www.auxetic.info 63

-180 -135 -90 -45 0 45 90 135 180-0.6-0.5-0.4-0.3-0.2-0.10.0

Maximum auxetic behaviour in the (1 0 0) and (0 1 0) planes (yz, xz) at c. 45o to the major axes.

A. Yeganeh-Haeri et al., Science, 257 (1992) 650

α− Cristobalite:mechanical properties

Page 64: Auxetic Metamaterials Fin

http://www.auxetic.info 64

Tetrahedra rotate relative to each other @ two distinct local axis without changing shape

. . . rotation of SiO4 tetrahydra

Keskar & Chelikowsky

a

c b

DTM RTM 1 + 2

tetrahedra expand / shrink without changing relative orientation

Alderson et al.CTM

Deformation mechanisms: Rotating tetrahedra

Page 65: Auxetic Metamaterials Fin

http://www.auxetic.info 65

z

y. . . Rotating rectangles as viewed

in the (100) Plane (yz-plane)

Deformation mechanisms –2D model

Page 66: Auxetic Metamaterials Fin

http://www.auxetic.info 66

z

y

0.0 -0.1 -0.3 -0.50.0-0.1

-0.3

-0.5

0.0-0.1-0.3-0.5 0.0-0.1

-0.3

-0.5

0

45

90

135

180

225

270

315

Deformation mechanisms –2D model

. . . Rotating rectangles as viewed in the (100) Plane (yz-plane)

Page 67: Auxetic Metamaterials Fin

http://www.auxetic.info 67

. . . Rotating Rectangles mechanism taking place in the (100) plane

Rotating rectangles model: Molecular Modelling

Page 68: Auxetic Metamaterials Fin

http://www.auxetic.info 68

x

y

zx

y

zx

y

z

A rigid ‘columnar structurue’, with a ‘rectangular’ projection in yz-plane

Soft Si – O – Si bonds representing the hinges

y

x

x

z

y

z

y

x

x

z

y

z

y

x

x

z

y

z

Rotating Rectangles model:Molecular Modelling

Page 69: Auxetic Metamaterials Fin

http://www.auxetic.info 69

z

y

α-cristobalite

β-cristobalite

Loss of NPR for the α→β transition:an explanation

pull

pull

stress-induced phase transition

Page 70: Auxetic Metamaterials Fin

http://www.auxetic.info 70

. . . Conventional behaviourin β-cristobalite in the (100) plane

Loss of NPR for the α→β transition:an explanation

Page 71: Auxetic Metamaterials Fin

http://www.auxetic.info 71

. . . Rotating squares mechanism taking place in the (001) plane

NPR in ‘ordered’ β-cristobalite – an explanation

Page 72: Auxetic Metamaterials Fin

http://www.auxetic.info 72

Case study (ii) - Zeolites

• Why look at zeolites ?– Zeolites have highly geometric nanostructures, i.e.

there is the possibility of auxetic behaviour

– Very little experimental data is available on the single crystalline mechanical properties of zeolites

Page 73: Auxetic Metamaterials Fin

http://www.auxetic.info 73

Zeolites … early studies [1999]

THO (Thomsonite)

Na4Ca8[Al20Si20O80] . 24 H2O

Force-fieldBurchart1

BKS2

Universal3

CVFF4

νxy νyx

(1) Burchart, PhD. Thesis, Delft. Univ. Tech, (1992) (2) Van Beest et. al., Phys. Rev. Lett., 64 (1990) 1955

(3) Rappe et al., J. Am. Chem. Soc. 114 (1992) 10046(4) Cerius2 User Guide, MSI Inc., San Diego, USA (1996)

-0.55-0.33-0.33-0.46

-0.55-0.53-0.40-0.46

J.N. Grima et al., Adv. Mater, 12 (2000) p.1912xz

y

Page 74: Auxetic Metamaterials Fin

http://www.auxetic.info 74

THO: deformations

Page 75: Auxetic Metamaterials Fin

http://www.auxetic.info 75

Natrolite (NAT): Deformation

Page 76: Auxetic Metamaterials Fin

http://www.auxetic.info 76

0.0 0.1 0.20.00.10.2 0o

30o

60o90o

120o

150o

180o

210o

240o

270o300o

330o

PositiveNegative

[010

]

[100]

σ

C. Sanchez-Valle et al., J. App. Phys.,98 (2005) p.053508

J. N. Grima et al., J. App. Phys., 101 (2007) 086102.

NAT: deformation

Page 77: Auxetic Metamaterials Fin

http://www.auxetic.info 77

Conclusions …

• Auxeticity is a very useful property;

• There are various types of auxetics … model structures, polymers, foams, zeolites, etc. etc.

• Can be explained by ‘geometry-deformation mechanism’ based models;

• Nature can teach us how to ‘make’ auxetics.

Page 78: Auxetic Metamaterials Fin

http://www.auxetic.info 78

• Negative Thermal Expansion

• Negative compressibility

Other thermo-mechanical metamaterials

p

p

Page 79: Auxetic Metamaterials Fin

http://www.auxetic.info 79

Negative Thermal Expansion: NTE

1V

VV T

α ∂=

∂1

L

LL T

α ∂=

NTE

Cooling … systems get larger

Heating … systems get smaller

e.g. water near its freezing point

Page 80: Auxetic Metamaterials Fin

http://www.auxetic.info 80

Applications

• Achieve any pre-desired thermal expansion• Use as a ‘filler’ between two expanding strips

• Ensure that gap remains in diffraction gratings / sensors

Page 81: Auxetic Metamaterials Fin

http://www.auxetic.info 81

Problem …

•NTE materials are usually produced on a small scale and are very expensive

Solution ????

Page 82: Auxetic Metamaterials Fin

http://www.auxetic.info 82

Case Study 1:NTE in triangular systems

Concept: the flattening of a triangle

heat

αS2 >> αS1

αS2 > αS3 > αS1

heat

(b)

(a)

[1] LJ Vandeperre, A Howlett, & WJ Clegg, Int. Conf. on Modern Materials and Technologies, Florence (2002).[2] LJ Vandeperre & WJ Clegg, MRS Symposium Proceedings, 785 (2003) D11.4.[3] D Cao, F Bridges, GR Kowah & AP Ramirez, Phys. Bev. B, 68 (2003) 014303.[4] CW Smith et al., Auxetic & Related Systems II & III, Poznan (2005); Exeter (2006)

Page 83: Auxetic Metamaterials Fin

http://www.auxetic.info 83

Implementations (1)…

Page 84: Auxetic Metamaterials Fin

http://www.auxetic.info 84

Implementations (2)…

J.N. Grima, Proc. Royal Soc. A, (2007)

If three sides are made from different materials, the system may shear

Page 85: Auxetic Metamaterials Fin

http://www.auxetic.info 85

( ) ( ) ( )2 2 2 2 2 2 2 2 21111 1 2 3 S1 2 1 3 S2 3 1 2 S3 2 2

2 11

2 2 4 4 42 11 S2 1 S1 2 S2 3 S3 2 2

2 11

12

1 22

l l l l l l l l ldT l X

l X l l ll X

εα α α α

α α α α

⎡ ⎤= = + + + + +⎣ ⎦

⎡ ⎤− + + +⎣ ⎦

2222 S2dT

εα α= =

( ) ( )2 21 S1 S2 3 S3 S212

12 2111 2

12 2

l ldT dT X l

α α α αε γα α− − −

= = = =

( ) ( ) ( ) ( ) ( )2 211 12 22cos 2 sin cos sinα ζ α ζ α ζ ζ α ζ= + +

( )2

211 22 11 2212max/ min 2 2

α α α αα ζ α+ −⎛ ⎞= ± +⎜ ⎟⎝ ⎠

Model for generalised form

Page 86: Auxetic Metamaterials Fin

http://www.auxetic.info 86

Implementation (3) …

Maximizing the effect … use of gases Gas

Page 87: Auxetic Metamaterials Fin

http://www.auxetic.info 87

Implementation (4)…

• Clegg & Vandeperre

A 2D network which can generate isothermal NTE(squares can be hexagons or triangles)

Page 88: Auxetic Metamaterials Fin

http://www.auxetic.info 88

Implementation

• Also possible with triangles & hexagons …

heat

Page 89: Auxetic Metamaterials Fin

http://www.auxetic.info 89

Is this important??? …New Scientist

29 March 2007

Bill Clegg, University of Cambridge … A mathematical tool that makes designing the strut-based structures easier could be useful in a variety of engineering situations, he adds: "Thermal expansion is an enormous problem, particularly when you have layers of different material that expand differently, or when the gaps between electrodes are important, like in fuel cells or oxygen sensors."

Page 90: Auxetic Metamaterials Fin

http://www.auxetic.info 90

…CORDIS focus Newsletter

May 2007

Page 91: Auxetic Metamaterials Fin

http://www.auxetic.info 91

NPR & NTE

Can a system exhibit both NPR and NTE?

YESYES

… For example the rotating triangles system

Page 92: Auxetic Metamaterials Fin

http://www.auxetic.info 92

Auxeticity from ‘Rotating Triangles’ geometry

Negative Poisson’s ratio

J.N. Grima, et al., J. Phys. Soc. Jpn., 76 (2007) 025001

NPR & NTE

Page 93: Auxetic Metamaterials Fin

http://www.auxetic.info 93

cold hot

J.N. Grima, et al., J. Phys. Soc. Jpn., 76 (2007) 025001

NPR & NTE

Page 94: Auxetic Metamaterials Fin

http://www.auxetic.info 94

Case Study 2: Bi-materials

Heating a bi-material with components having different thermal expansion coefficients will cause a curvature

Same thing will apply if they have different moduli, etc.

Page 95: Auxetic Metamaterials Fin

http://www.auxetic.info 95

Implementation …

• Use with anti-tetrachiral (of other similar systems)

Page 96: Auxetic Metamaterials Fin

http://www.auxetic.info 96

Result … NTE / NPR

e.g.: NTE (verified with ANSYS)

Material 1 Material 2

Young’s modulus (psi): 1.20 x 105 1.20 x 105

Poisson’s ratio: 0.3 0.3

Coefficient of Thermal Expansion: 5 x 10-7 0.00011

Page 97: Auxetic Metamaterials Fin

http://www.auxetic.info 97

Case Study 3: NTE in composites with Needle-Like inclusions

ii MAMAengineering & research(Ing. Michael Attard)

Page 98: Auxetic Metamaterials Fin

http://www.auxetic.info 98

Case Study 3: NTE in composites with Needle-Like inclusions

ii MAMAengineering & research

J.N. Grima et al., Comp. Sci. Tech. (2010)

Page 99: Auxetic Metamaterials Fin

http://www.auxetic.info 99

Case Study 3: NTE in composites with Needle-Like inclusions

Page 100: Auxetic Metamaterials Fin

http://www.auxetic.info 100

Alternative ‘multi-layered’ systems

(c)

Material A: Stiff, high CTE Material B: Soft, high Poisson’s ratio, low CTE

heatheat

J.N. Grima et al., Phys. Stat. Sol. RRL (2010)

Page 101: Auxetic Metamaterials Fin

http://www.auxetic.info 101

Negative compressibility, NC

• Compressibility is a measure of the relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.

• Normally: System gets larger under negative pressure (partial vacuum)

• Negative compressibility: systems get smaller under negative pressure

1 1 pK V V

β ∂= = −

∂ Normally negative

Page 102: Auxetic Metamaterials Fin

http://www.auxetic.info 102

Negative Compressibility

• Bimaterials also bend when subjected to a change in pressure if constituent materials have different Young’s moduli and/or Poisson’s ratio

R. Gatt & JN Grima, Scripta Mater. (2007)R. Gatt & JN Grima, Phys. Stat. Sol RRL. (2007)

Page 103: Auxetic Metamaterials Fin

http://www.auxetic.info 103

Also in triangular systems …

D. Attard et al. Phys. Stat. Sol. B (2008)

Page 104: Auxetic Metamaterials Fin

http://www.auxetic.info 104

Conclusions

• There are various thermo-mechanical metamaterials, including auxetic metamaterials, NTE and NC systems

• Some of these systems can be ‘constructed; based on very simple models and concepts;

• Thermo-mechanical metamaterials can have some very interesting applications;

• NPR / NTE / NC can co-exist, and when they do, results are very interesting.

Page 105: Auxetic Metamaterials Fin

http://www.auxetic.info

Thank You !

Thank you !www.auxetic.info