azimuthally sensitive buda-lund hydrodynamic model and fits to spectra, elliptic flow and ashbt

38
1 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009 Azimuthally Sensitive Azimuthally Sensitive Buda-Lund Hydrodynamic Buda-Lund Hydrodynamic Model and Fits to Spectra, Model and Fits to Spectra, Elliptic Flow and asHBT Elliptic Flow and asHBT András Ster 1, , M.Csanád 2 , T.Csörgő 1 , B. Tomasik 3 1 MTA KFKI RMKI, Budapest, Hungary MTA KFKI RMKI, Budapest, Hungary, 2 ELTE University, Budapest, Hungary ELTE University, Budapest, Hungary, 3 Univ. Mat. Bela, Banska Bystrica, Slovakia Univ. Mat. Bela, Banska Bystrica, Slovakia Buda-Lund hydro model Buda-Lund hydro model Observables Observables Review of old central hydro results Review of old central hydro results New non-central hydro results New non-central hydro results Conclusion Conclusion

Upload: psyche

Post on 23-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT. András Ster 1, , M.Csanád 2 , T.Csörgő 1 , B. Tomasik 3. 1 MTA KFKI RMKI, Budapest, Hungary , 2 ELTE University, Budapest, Hungary , 3 Univ. Mat. Bela, Banska Bystrica, Slovakia. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

1 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Azimuthally Sensitive Buda-Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Lund Hydrodynamic Model and

Fits to Spectra, Elliptic Flow Fits to Spectra, Elliptic Flow and asHBTand asHBT

András Ster1, , M.Csanád2, T.Csörgő1, B. Tomasik3

1MTA KFKI RMKI, Budapest, HungaryMTA KFKI RMKI, Budapest, Hungary, 2ELTE University, Budapest, HungaryELTE University, Budapest, Hungary,

3Univ. Mat. Bela, Banska Bystrica, SlovakiaUniv. Mat. Bela, Banska Bystrica, Slovakia

• Buda-Lund hydro model Buda-Lund hydro model • Observables Observables • Review of old central hydro resultsReview of old central hydro results• New non-central hydro resultsNew non-central hydro results• ConclusionConclusion

Page 2: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

2 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

The Buda-Lund hydro modelThe Buda-Lund hydro model

• General form of a particle emission General form of a particle emission functionfunction

• With (Boltzmann) probability distribution With (Boltzmann) probability distribution for fluidsfor fluids

)(),(),( 4 xdppxfxdpxS

qsxT

xxT

xup

xdpgxdpxS

)()(

)(

)(exp

)(

2),( 3

4

Page 3: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

3 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

The Buda-Lund hydro modelThe Buda-Lund hydro model

hypersurfacehypersurface

flow fieldflow field

chemical potentialchemical potential

temperaturetemperature

)(

)(

)(

)(

xT

x

xu

x

must comply with the must comply with the 5 5 differential equationsdifferential equations of of fluid dynamics: fluid dynamics:

- continuity - continuity - momentum conservation- momentum conservation - energy conservation- energy conservation

Page 4: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

4 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

The Buda-Lund hydro modelThe Buda-Lund hydro model

• Equations of non-relativistic inviscid fluid Equations of non-relativistic inviscid fluid dynamicsdynamics

• Not closed, EoS needed, for exampleNot closed, EoS needed, for example

Page 5: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

5 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

The Buda-Lund hydro modelThe Buda-Lund hydro model

• 3D expansion with axial or ellipsoidal 3D expansion with axial or ellipsoidal symmetrysymmetry

• Local thermal equilibriumLocal thermal equilibrium

• Analytic expressions for the observables Analytic expressions for the observables

• Reproduction known exact hydro Reproduction known exact hydro solutions (nonrelativistic, hubble and solutions (nonrelativistic, hubble and bjorken limits)bjorken limits)

• Core-halo picture (long lived Core-halo picture (long lived resonances)resonances)

M. Csanád, T.Csörgő, B. Lörstad: Nucl.Phys.A742:80-94,2004; nucl-th/0310040

5 model principles 5 model principles

Page 6: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

6 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

The Buda-Lund Hydro ModelThe Buda-Lund Hydro ModelBuda-Lund form of hydro fields:Buda-Lund form of hydro fields:

in several cases parametric solutions of in several cases parametric solutions of hydrodynamicshydrodynamics

see M. Csanád’s talksee M. Csanád’s talk

2

2

000

0

0

0

44

2

)()(11

1

)(

1

)(

)(

)sinh,sinh,sinh,()(

)()()(

e

e

s

s

zyx

T

TTs

T

TT

TxT

sTxT

x

xu

xdHxuxd

0

0T sT eT 0

Page 7: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

7 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

2

2

02

2

2

)(

)2(

y

R

rs

G

t

G

tt

R

ru )sinh( t

The Buda-Lund Hydro Model (2)The Buda-Lund Hydro Model (2)• Where (in case of axial symmetry): Where (in case of axial symmetry):

2

2

02/12 2

)(exp

)2(

1)(

H

GR

tu

= Ht rt Ht :transverse Hubble constant

Page 8: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

8 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

The Buda-Lund hydro model (3)The Buda-Lund hydro model (3)

• ObservablesObservables

),()( 4 pxSxdp 1N

2

*

2

2 ),0(~

),(~

1),0(

~),(

~1),(

pS

pQS

pS

pQSpQC

c

c

),(),(),( pxSpxSpxS hc

),(1

)( 4

*

pxSxdp c1N

)exp(1),( 222222*2 llssoo RQRQRQpQC

Page 9: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

9 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Buda-Lund Hydro: ObservablesBuda-Lund Hydro: Observables• Final form of the Invariant Momentum Final form of the Invariant Momentum

Distribution: Distribution:

qsxT

xxupCVE

gN

)(

)()(exp

)2()(

3

p

)(cos hmE t

2)2/3(2 tpar RRV

)2

exp(1

2

*

C

Page 10: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

10 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Buda-Lund Hydro Model: HBT Buda-Lund Hydro Model: HBT radiiradii

• Final form of the HBT radii: Final form of the HBT radii:

]/)/)((1/[ 00222

TETTTuRR sstGt 22

02

/ parR

)/1/( 0222

TE

]/)/)((1/[ 0022

TETTT ee

,0

]/1/[)( 02

0 Tmyy t

]/))((/[ 00 ssttGtx TTTuETpRur

0yr

Page 11: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

11 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

N. M. Agababyan et al, EHS/NA22 , PLB 422 (1998) 395T. Csörgő, hep-ph/001233, Heavy Ion Phys. 15 (2002) 1-80

Buda-Lund fits to NA22 h+pBuda-Lund fits to NA22 h+p

Page 12: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

12 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Emission function from NA22 Emission function from NA22 h+ph+p

Page 13: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

13 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fits to SPS Pb+PbBudaLund fits to SPS Pb+Pb

A. Ster, T.Csörgő, B. Lörstad , Nucl.Phys. A661 (1999) 419-422, nucl-th/9907338

NA49 NA44

Page 14: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

14 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Emission function from SPS Emission function from SPS Pb+PbPb+Pb

Page 15: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

15 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009A. Ster, et al., Acta Phys.Polon. B35 (2004) 191-196, nucl-th/0311102

BudaLund fits to RHIC Au+Au BudaLund fits to RHIC Au+Au

Page 16: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

16 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Emission function from RHIC Emission function from RHIC Au+AuAu+Au

Page 17: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

17 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

M. Csanád, et al., J.Phys.G30: S1079-S1082, 2004, nucl-th/0403074

http://www.kfki.hu/~csorgo/budalund/budalund1.5.qm04.tar.gz

BudaLund fits to RHIC Au+AuBudaLund fits to RHIC Au+Au

Page 18: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

18 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Emission function from RHIC Emission function from RHIC Au+AuAu+Au

Page 19: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

19 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Buda-Lund fit resultsBuda-Lund fit results BL v1.5parameters

RHI C 200 GeVAu+Au

RHI C 130 GeVAu+Au

Pb+PbSPS

h+pSPS

T0 [MeV] 196 13 214 7 139 6 140 3<ut> 1.6 0.2 1.0 0.1 0.55 0.06 0.20 0.07

RG [fm] 13.5 1.7 28.0 5.5 7.1 0.2 0.88 0.13Rs [fm] 12.4 1.6 8.6 0.4 28 21 1.4 0.3

Tsurf [MeV] 0.5 T0 0.5 T0 0.5T0 0.5T00 [fm/ c] 5.8 0.3 6.0 0.2 5.9 0.6 1.4 0.1 [fm/ c] 0.9 1.2 0.3 1.2 1.6 1.5 1.3 0.3

3.1 0.1 2.4 0.1 2.1 0.4 1.36 0.02Tevap [MeV] 117 12 102 11 87 24 -

0 [MeV] -2 14 63 11

0K [MeV] 16 19 98 19

0p-[MeV] 97 28 315 27

B [MeV] 61 52 77 38 0 fixed 0 fixed2/ NDF 114/ 208=0.55 158/ 180=0.9 342/ 277=1.2 642/ 683=0.9

CL 100 % 88 %

21

t

tt

u

u

Page 20: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

20 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fits to RHIC BudaLund fits to RHIC preliminary p+ppreliminary p+p

T. Csörgő, et al., Heavy Ion Physics, hep-ph/0406042

Page 21: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

21 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Emission function from RHIC Emission function from RHIC p+pp+p

Page 22: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

22 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BL v1.5parameters

RHI C 200 GeV(prel) p+p

RHI C 130 GeVAu+Au

Pb+PbSPS

h+pSPS

T0 [MeV] 289 8 214 7 139 6 140 3<ut> 0.04 0.26 1.0 0.1 0.55 0.06 0.20 0.07

RG [fm] 1.2 0.3 28.0 5.5 7.1 0.2 0.88 0.13Rs [fm] 1.13 0.16 8.6 0.4 28 21 1.4 0.3

Tsurf [MeV] 0.5 T0 0.5 T0 0.5T0 0.5T00 [fm/ c] 1.1 0.2 6.0 0.2 5.9 0.6 1.4 0.1

[fm/ c] 0.1 0.5 0.3 1.2 1.6 1.5 1.3 0.3 3.0 fixed 2.3 0.4 2.1 0.4 1.36 0.02

Tevap [MeV] 90 42 102 11 87 24 -2/ NDF 89/ 71 158/ 180 342/ 277 642/ 683

BudaLund fit resultsBudaLund fit results

Page 23: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

23 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fits to NA49 data BudaLund fits to NA49 data (preliminary HBT, work in (preliminary HBT, work in

progress)progress)

Page 24: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

24 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fits to NA49 data BudaLund fits to NA49 data (preliminary HBT, work in (preliminary HBT, work in

progress)progress)

Page 25: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

25 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fit results of NA49 BudaLund fit results of NA49 datadata BudaLund

parameters158 AGeV 80 AGeV 40 AGeV 30 AGeV 20 AGeV

T0 [MeV] 143 7 109 7 106 4 107 7 86 3Te [MeV] 141 5 105 3 103 2 101 3 86 2

Ht [c/ fm] 0.099 0.003 0.104 0.004 0.111 0.003 0.110 0.005 0.106 0.004Hl [c/ fm] 0.155 0.005 0.129 0.005 0.123 0.003 0.120 0.004 0.107 0.002

RG [fm] 7.1 0.2 7.9 0.4 9.8 0.7 9.8 0.9 12.1 1.7Rs [fm] 18.7 2.0 24.5 3.8 21.5 1.8 20.7 3.0 25.5 2.7

[fm/ c] 3.3 0.3 4.1 0.4 3.9 0.3 3.7 0.3 3.2 0.3 1.5 0.2 1.4 0.2 1.2 0.1 1.1 0.1 1.0 0.1

0- [MeV] 88 7 109 10 79 6 77 9 88 6

0K- [MeV] 61 16 151 21 122 12 128 20 163 12

0K+[MeV] 137 16 236 21 224 12 230 21 257 12

0p [MeV] 403 29 593 38 635 22 642 38 700 21

2/ NDF 198 / 126 ! 129 / 128 200 / 116 ! 160 / 116 128 / 95

Gt RH tu lH/10

Page 26: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

26 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

source parameter excitation functionssource parameter excitation functions

Page 27: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

27 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Models with acceptable results:

nucl-th/0207016 Buda-Lund / core-halo model. T.Csörgő. A. Ster, Heavy Ion Phys. 17 (2003) 295-312.nucl-th/0204054 Multiphase Trasport model (AMPT). Z. Lin, C. M. Ko, S. Pal.nucl-ex/0307026 Blast wave model. F. Retiére for STAR.nucl-th/0205053 Hadron cascade model. T . Humanic.

nucl-th/0208068 3D hydro model. T. Hirano, & T.Tsuda.hep-ph/0209054 Hadron model. W.Broniowski, A. Baran W. Florkowski.

Other interesting models:

Some other hydro Some other hydro modelsmodels

Page 28: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

28 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Femptoscopy of QGPFemptoscopy of QGP

BudaLund fits indicate:

scaling of HBT radii

BudaLund prediction (1995): each R2 ~ 1 / mt

Page 29: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

29 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

• BudaLund model describes BudaLund model describes single particle single particle distributions, rapidity distributions, HBT distributions, rapidity distributions, HBT correlation function radiicorrelation function radii w/o puzzle in the w/o puzzle in the following reactions: following reactions:

h+p @SPS, p+p @RHIC, Pb+Pb @SPS,h+p @SPS, p+p @RHIC, Pb+Pb @SPS,

Au+Au @RHIC Au+Au @RHIC

• Rings of fire in h+p @SPS and p+p @RHICRings of fire in h+p @SPS and p+p @RHIC

Fireballs in Pb+Pb @SPS and Au+Au @RHICFireballs in Pb+Pb @SPS and Au+Au @RHIC

• T < TT < Tc c in h+p and Pb+Pb @SPSin h+p and Pb+Pb @SPS

T > TT > Tc c in p+p and Au+Au @RHIC ; Tin p+p and Au+Au @RHIC ; Tc c

(=172±3MeV) (=172±3MeV)

Conclusions on central Conclusions on central collisionscollisions

Page 30: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

30 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

asBuda-Lund fits toasBuda-Lund fits to non-central RHIC data non-central RHIC data

)2cos()p(21d

)p(2

N

Model extensions to ellipsoidal symmetryModel extensions to ellipsoidal symmetryfor elliptic flow:for elliptic flow:

calculate 2nd harmonic coefficient of anisotropy:calculate 2nd harmonic coefficient of anisotropy:

Page 31: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

31 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fits toBudaLund fits to non-central RHIC data non-central RHIC data

Exact non-relativistic result for Exact non-relativistic result for elliptic flowelliptic flow::

IInn: modified Bessel : modified Bessel

functionsfunctions

Effective temperatures in Effective temperatures in reaction plane and in perp. reaction plane and in perp.

For detailed calculations see: M. Csanád et al., hep-ph/0801.4434v2

Page 32: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

32 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund fits toBudaLund fits to non-central RHIC data non-central RHIC data

Model extensions to ellipsoidal symmetryModel extensions to ellipsoidal symmetry for asHBT radii:for asHBT radii:

X=Rx ,Y=Ry

We found that „a” is different in each direction

Page 33: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

33 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

asBuda-Lund fits toasBuda-Lund fits to non-central RHIC data non-central RHIC data

Model extensions to ellipsoidal symmetryModel extensions to ellipsoidal symmetryfor azimuthally integrated spectra:for azimuthally integrated spectra:

2)2/3(2 tpar RRV

Calculate the volume term for ellipsoids :Calculate the volume term for ellipsoids :

replaced R2t by Rx*Ry

Page 34: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

34 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

asBudaLund fits to asBudaLund fits to non-central RHIC datanon-central RHIC data

Page 35: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

35 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

asBuda-Lund fit resultsasBuda-Lund fit results of non-central RHIC data of non-central RHIC data

BudaLundsource

parameters

RHIC 200 AGeVcentral

(0-30% )

RHIC 200 AGeVnon-central(20-30% )

T0 [MeV] 196 13 179 7Te [MeV] 117 12 119 7

HX[c/ fm] 0.118 0.013 0.150 0.002HY [c/ fm] 0.111 0.001HZ [c/ fm] 0.172 0.008 0.187 0.005

RX [fm] 13.5 1.7 7.8 0.3RY [fm] 7.2 0.2

RXS [fm] 12.4 1.6 12.2 0.9RYS [fm] 12.5 0.8

[fm/ c] 0.9 1.2 2.7 0.2 3.1 0.1 2.5 0.3

0 [MeV] -2 14 40 8

0

K [MeV] 16 19 55 13

0p [MeV] 97 28 178 22

2/ NDF 114 / 208 261 / 152(CL w/ o radii ~10% )

Page 36: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

36 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

BudaLund geometrical pictureBudaLund geometrical picture of non-central RHIC reactions of non-central RHIC reactions

Rx

Ry

Rx > Ry

Schematic view 20-30% ~ b = 8-12 fm

Page 37: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

37 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

Universal v2 scaling Universal v2 scaling predicted by BudaLund predicted by BudaLund

model (2003)model (2003)

Page 38: Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic Flow and asHBT

38 A. Ster, RMKI, Hungary WPCF’09, CERN, 14/10/2009

• asBuda-Lund model describes asBuda-Lund model describes single particle single particle distributions, elliptic flow and asHBT distributions, elliptic flow and asHBT correlation function radiicorrelation function radii of 20-30% centrality of 20-30% centrality data of 200 GeV Au+Au reactions at RHIC.data of 200 GeV Au+Au reactions at RHIC.

• We find that T drops to 179 MeV from ~200 We find that T drops to 179 MeV from ~200 MeV of central collisions.MeV of central collisions.

• The source at freeze-out was found to be The source at freeze-out was found to be slightly extended in the reaction plane (slightly extended in the reaction plane (RRx x >>

RRyy), in agreement with M. Csanád’s conclusion), in agreement with M. Csanád’s conclusion

ConclusionConclusion