b b0(sin t p),cos p - bingweb

26
The appearance of the Berry phase for the precession of nuclear spin with spin 1/2 Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: February 08, 2017) Here we use the spin-echo method which is used for the r.f. spin echo of nuclear magnetic resonance. We learned this method from a book of M.H. Levitt, Spin Dynamics Basic of Nuclear Magnetic Resonance). We present an exact solution the time dependence of the spin state of the nuclear spin, and discuss the adiabatic change of the nuclear spin. We solve the example 10.1 and problem 10.2 of the textbook of D.J. Griffiths (Introduction to Quantum Mechanics). We use the Mathematica for solving the problem. 1. Introduction In order to understand the adiabatic approximation, we consider the time dependent behavior of a nuclear spin (spin 1/2) in the presence of a magnetic field whose magnitude ( 0 B ) is constant, but whose direction sweeps out a cone, of opening angle of the magnetic field at constant angular frequency . Note that the angle is fixed. The magnetic field is expressed by ) cos ), sin( sin ), cos( (sin 0 p p t t B B , where B 0 is the magnitude of the magnetic field and p is the phase.

Upload: others

Post on 11-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: B B0(sin t p),cos p - Bingweb

The appearance of the Berry phase for the precession of nuclear spin with spin 1/2

Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton

(Date: February 08, 2017)

Here we use the spin-echo method which is used for the r.f. spin echo of nuclear magnetic resonance. We learned this method from a book of M.H. Levitt, Spin Dynamics Basic of Nuclear Magnetic Resonance). We present an exact solution the time dependence of the spin state of the nuclear spin, and discuss the adiabatic change of the nuclear spin. We solve the example 10.1 and problem 10.2 of the textbook of D.J. Griffiths (Introduction to Quantum Mechanics). We use the Mathematica for solving the problem. 1. Introduction

In order to understand the adiabatic approximation, we consider the time dependent behavior

of a nuclear spin (spin 1/2) in the presence of a magnetic field whose magnitude ( 0B ) is constant,

but whose direction sweeps out a cone, of opening angle of the magnetic field at constant

angular frequency . Note that the angle is fixed. The magnetic field is expressed by

)cos),sin(sin),cos((sin0 pp ttB B ,

where B0 is the magnitude of the magnetic field and p is the phase.

Page 2: B B0(sin t p),cos p - Bingweb

Fig. Magnetic field sweeps around in a cone, at the constant angular frequency . The case

with 0 (rotation of nuclear spin around the z axis in counter clockwise.

((Gyromagnetic ratio of nuclear spin))

Proton (neutron); nuclear spin

Page 3: B B0(sin t p),cos p - Bingweb

Fig. T

The gyro

where I

μ̂

where σ̂

H

where

The definition

omagnetic ra

gnI

II

μ

I is the angu

Iμ ˆˆ I ,

is the Pauli

ˆ2

1

ˆ

[si

ˆ

ˆˆ

1

1

0

z

z

I

I

B

H

BI

cos11 B

n of the sign

atio is define

g NnN

I

I

ular moment

σI ˆ2

i operator. Th

[cos2

1

[cos(

cos(in

2

2 t

t

s , 2

n for the gyro

d by

cm

eg

pn 2

tum. So the m

he Hamilton

ˆ)s(

sinˆ)

sinˆ)

xp

xp

xp

t

I

I

sin0B

omagnetic ra

magnetic mo

nian is given

sin(

]ˆ)n(

sin(

yp

p

t

It

t

atio . (Lev

oment of the

n by the Zeem

]ˆ)

]

ˆcosˆ)

yp

zy II

vitt, 2008)

e nuclear spin

man energy a

]z

n is given by

as

y

Page 4: B B0(sin t p),cos p - Bingweb

2. Spin recession (Classical theory)

The magnetic moment of nuclear spin with angular momentum zI -s given by

zI I

When a static magnetic field is applied along the z axis, the Hamiltonian has the form of the Zeeman energy, given by

BIμ BH I ,

Page 5: B B0(sin t p),cos p - Bingweb

We consrotation)

d

d

When the

I

leading to

d

d

or

I

where

sider the eq

dt

d μτ

L

( BII

dt

d

e magnetic f

0zI ,

o the equatio

)( yx iIIdt

d

yx IiII 0 e

cos1 B

quation of m

B IB

) .

field is applie

yx BII ,

on

y BIiBI

Bti )exp(

motion for t

B ,

ed along the

, yI

( xx IBiI

tieI 10

the angular

e +z axis,

xBI

)yiI

(counter clo

momentum

ockwise for

m (Newton’s

0 ).

s second laww for

Page 6: B B0(sin t p),cos p - Bingweb

Fig. Precession of nuclear spin with the angular frequency( 0 B ) for 0 . (Clockwise

direction). (Levitt, 2008). 3. Spin precession using quantum mechanics

The time evolution operator is defined by )ˆexp(ˆ tHi

T

. When a static magnetic field is

applied along the z axis (in the absence of the r.f. field), the Hamiltonian is given by

zz IBIH ˆsinˆˆ100

where

sin01 B and zzI ̂2

1ˆ .

The state vector at the time t is related to the state vector at the time 0t through the time evolution operator as

)()ˆ2

exp(

)()ˆexp(

)0()ˆexp(

)0()ˆexp()(

11

11

1

0

tt

i

tIti

ttIi

ttHi

t

z

z

z

Here we define the rotation operator as

)2

exp(0

0)2

exp()ˆ

2exp()(ˆ

i

ii

R zz .

This means that spin rotates around the z axis through the angle t1 . The r.f. field is given by

)sin()cos([sin)( 0 pypxRF ttBt eeB ,

(counter-clockwise for 0 )

Page 7: B B0(sin t p),cos p - Bingweb

)]sin(ˆ)cos(ˆ[

)(ˆˆ

2 pypx

RFL

tItI

tH

BI

Note that

sin02 B ,

is the nutation angular frequency. 4. State vector in the rotation frame and Laboratory frame

xRx z )(ˆ' ,

')(ˆ xRx z .

Here we use the notations

Rxx ' Rotating frame

Lxx ' Laboratory frame

Then we have

LzRxRx )(ˆ'

This relationship may be generalized. Any spin state, viewed from the rotating frame, is related to the spin state, viewed from the fixed frame through

)(ˆ zRR ,

RzR )(ˆ

Note that for simplicity we use the notation of L

.

Now we consider the Schrödinger equation in the laboratory frame,

Page 8: B B0(sin t p),cos p - Bingweb

Ht

i ˆ

or

tiRR

ti

Rt

it

i

zz

zR

)(ˆ)](ˆ[

)(ˆ

Here we note that

)ˆexp()ˆexp()(ˆzzz IiJ

iR

where

zzz IJ ̂2

ˆˆ ,

The derivative of )(ˆ zR with respect to t;

)(ˆˆ

)ˆexp(ˆ

)ˆexp()(ˆ

zz

zz

zz

RIi

Iidt

dIi

Iit

Rt

where

dt

d, t

Thus we have the Schrödinger equation in the rotating frame

Page 9: B B0(sin t p),cos p - Bingweb

RR

RzLzz

RzLzRz

Lzzz

zzzR

H

RHRI

RHRI

HRRI

tiRRI

ti

ˆ

)](ˆˆ)(ˆˆ[

)(ˆˆ)(ˆˆ

ˆ)(ˆ)(ˆˆ

)(ˆ)(ˆˆ

The Schrödinger equation in the rotating frame is given by

RRRH

ti ˆ

with the Hamiltonian in the rotating frame,

)(ˆˆ)(ˆˆˆ zLzzR RHRIH

5. Rotating-frame Hamiltonian

In the presence of a static field along the z axis, the Hamiltonian is given by

zzIH ˆ2

ˆˆ 110

with

zzI ̂2

cos1 B

The Hamiltonian due to the AC (r.f.) magnetic field in the x-y plane is

)sinˆcosˆ(

)]sin(ˆ)cos(ˆ[ˆ

2

2

pypx

pypxRF

II

tItIH

where

P Pt ,

Page 10: B B0(sin t p),cos p - Bingweb

Then the resulting Hamiltonian is

)]sin(ˆ)cos(ˆ[ˆ

ˆˆˆ

21

0

pypxz

RFL

III

HHH

The Hamiltonian in the rotating frame is

)(ˆˆ)(ˆˆ)(

)(ˆ)(ˆ]sinˆcosˆ)[(ˆ)(ˆˆ)(

)(ˆ]sinˆcosˆ)[(ˆ)(ˆˆ)(ˆˆ

)(ˆˆ)(ˆˆˆ

21

21

21

PzxPzz

PzPzPyPxPzPzz

zPyPxzzzzz

zLzzR

RIRI

RRIIRRI

RIIRRIRI

RHRIH

where

xpzpypxpz IRIIR ˆ)(ˆ]sinˆcosˆ)[(ˆ

)(ˆ)(ˆ)(ˆ zPzPz RRR

)(ˆ)(ˆ)(ˆ zPzPz RRR

((Formula))

ypxppzxpz IIRIR ˆ)sin(ˆ)cos()(ˆˆ)(ˆ

ypxppzypz IIRIR ˆ)cos(ˆ)sin()(ˆˆ)(ˆ

or

)(ˆ]ˆ)sin(ˆ))[cos((ˆˆpzypxppzx RIIRI

)(ˆ]ˆ)cos(ˆ)sin()[(ˆˆpzypxppzy RIIRI

Note that these relations can be checked using the Mathematica.

Page 11: B B0(sin t p),cos p - Bingweb

Thus we have

)(ˆˆ)(ˆˆˆ20 PzxpzzR RIRIH

Note that

10 ,

t , pp t ,

pp .

0 is the resonance offset. Note that the time dependence has vanished from this expression.

This is the point of the rotating frame. It transforms a time-dependent quantum-mechanical problem into a time-independent one. The Hamiltonian in the rotation-frame is

)ˆsinˆ(cosˆˆ20 ypxpzR IIIH .

6. Off-Resonance effect

For 010 (resonance condition), the rotating-frame Hamiltonian is given by

)ˆsinˆ(cosˆˆ20 ypxpzR IIIH

with 0p . The state vector in the rotating-frame is

ReffoffRtRt )0()(ˆ)(

where

eff

eff

effeff

eff

i

eff

eff

i

eff

eff

eff

zypxpeffoff

t

ittei

teit

it

ItiIItitR

p

p

)2

sin()

2cos()

2sin(

)2

sin()

2sin(

)2

cos(

]ˆ)ˆsinˆ(cosexp[)(ˆ

02

20

02

Page 12: B B0(sin t p),cos p - Bingweb

where

212

22

02

2 eff

Now we start with

ReffRtRt

p)0()(ˆ)( , and )())((ˆ)( ttRt zR

Thus we get

)0()]0([ˆ)(ˆ)()]([ˆ zeffz RtRttRp

The state vector in the laboratory frame is given by

)0()]0([ˆ)(ˆ)]([ˆ)( zeffz RtRtRtp

Note that

)ˆexp()(ˆzz IiR

where

t

ti

eff

eff

effti

eff

eff

ti

eff

eff

ti

eff

eff

eff

zeffz

et

it

et

i

et

iet

it

RRtR

p

p

p

20)2(

22

]2(2220

)]2

sin()2

[cos()2

sin(

)2

sin()]2

sin()2

[cos(

)]0([ˆ)(ˆ)]([ˆ

When 1 (on resonance), 2 eff and 00

Page 13: B B0(sin t p),cos p - Bingweb

ti

ti

ti

ti

zeffz

et

et

i

et

iet

RRtR

p

p

p

22

11

22)2(

22

)2(2222

)2

cos()2

sin(

)2

sin()2

cos(

)]0([ˆ)(ˆ)]([ˆ

((Mathematica))

Page 14: B B0(sin t p),cos p - Bingweb

Clear "Global` " ;

x PauliMatrix 1 ;

y PauliMatrix 2 ;

z PauliMatrix 3 ;

Rx : MatrixExp2

x ;

Ry : MatrixExp2

y ;

Rz : MatrixExp2

z ;

Roff : MatrixExp 2 tCos

2x

Sin

2y

0 t

2z ;

s1 Roff p . 22 02eff ,

1

22 02

1

eff

FullSimplify;

s1 MatrixFormClear "Global` " ;

x PauliMatrix 1 ;

y PauliMatrix 2 ;

z PauliMatrix 3 ;

Rx : MatrixExp2

x ;

Ry : MatrixExp2

y ;

Rz : MatrixExp2

z ;

Roff : MatrixExp 1 tCos

2x

Sin

2y

0 t

2z ;

s1 Roff p . 12 02 eff,1

12 02

1

eff

FullSimplify;

s1 MatrixForm

Page 15: B B0(sin t p),cos p - Bingweb

7. The form of )(t with initial condition

2sin

2cos

)0(

Suppose that the initial condition is given by

2sin

2cos

)0(

Then we have

2

1

20)2(

22

]2(2220

20)2(

22

)2(2220

2sin)]

2sin()

2[cos(

2cos)

2sin(

2sin)

2sin(

2cos)]

2sin()

2[cos(

2sin

2cos

)]2

sin()2

[cos()2

sin(

)2

sin()]2

sin()2

[cos(

)0()]0([ˆ)(ˆ)]([ˆ)(

ti

eff

eff

effti

eff

eff

ti

eff

eff

ti

eff

eff

eff

ti

eff

eff

effti

eff

eff

ti

eff

eff

ti

eff

eff

eff

zeffz

et

it

et

i

et

iet

it

et

it

et

i

et

iet

it

RtRtRt

p

p

p

p

p

Page 16: B B0(sin t p),cos p - Bingweb

where

122

02

02

2 2eff ,

cos010

coscos 001 B , sinsin 002 B

00 B

Suppose that 0P . The matrix elements can be simplified as

ti

eff

eff

eff

ti

eff

eff

eff

ti

eff

eff

eff

eff

eff

ti

eff

eff

ti

eff

eff

eff

et

it

et

it

et

it

it

et

iet

it

20

200

200

22201

2cos)]

2sin()()

2[cos(

2cos)]

2sin(

)cos1()

2[cos(

}2

sinsin)2

sin(2

cos)]2

sin()2

{[cos(

2sin)

2sin(

2cos)]

2sin()

2[cos(

ti

eff

eff

eff

ti

eff

eff

eff

ti

eff

eff

effeff

eff

ti

eff

eff

effti

eff

eff

ti

eff

eff

effti

eff

eff

et

it

et

it

et

itt

i

et

it

et

i

et

it

et

i

20

200

2020

2020

20212

2sin)]

2sin()()

2[cos(

2sin)]

2sin(

)cos1()

2[cos(

]2

sin)2

sin(2

sin)2

cos(2

cos2

sin)2

sin(2

[

]2

sin)2

sin(2

sin)2

[cos(2

cossin)2

sin(

2sin)]

2sin()

2[cos(

2cos)

2sin(

Then we have

Page 17: B B0(sin t p),cos p - Bingweb

ti

effeff

eff

ti

eff

eff

eff

ett

i

et

it

t

20

20

2

1

2sin)]

2cos()

2sin()([

2cos)]

2sin()()

2[cos(

)(

Note that

1*22

*11

((Proof))

]2

sin)cos(

2[cos

2cos 2

2

200022*

11

tt eff

eff

eff

]2

sin)cos(

2[cos

2sin 2

2

200022*

22

tt eff

eff

eff

2sin]

2sin

)cos(

2cos

)cos([

2cos

]2

sin)cos(

2[cos

2sin

]2

sin)cos(

2[cos

2cos

222

2000

22

20002

22

200022

22

200022*

22*

11

t

t

tt

tt

eff

eff

eff

eff

eff

eff

eff

eff

eff

eff

where

10 , 21

20

2 2 eff , cos01

Her we get

20

2000 )()cos( , 2

02

000 )()cos(

Thus we have

Page 18: B B0(sin t p),cos p - Bingweb

2

022

0

220

220

220

220

22000

22000

cos2

)2

sin2

(cos2

2sin)(

2cos)(

2sin)cos(

2cos)cos(

eff

This leads to the relation

12

sin2

cos 22*22

*11

tt effeff

8 Calculation of 1 and 2 We note that

ti

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

et

it

it

et

it

it

it

et

it

it

20

20

201

)]2

sin(2

sinsin)2

sin(2

cos)cos(

2cos)

2[cos(

)]2

sin(2

sinsin)2

sin(2

coscos)2

sin(2

cos2

cos)2

[cos(

)]2

sin()2

sinsin2

cos(cos)2

sin(2

cos2

cos)2

[cos(

ti

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

et

it

it

et

it

it

it

et

it

it

20

20

202

)]2

sin(2

cossin)2

sin(2

sin)cos(

2sin)

2[cos(

)]2

sin(2

sincos)2

sin(2

cossin)2

sin(2

sin2

sin)2

[cos(

)]2

sin()2

sincos2

cos(sin)2

sin(2

sin2

sin)2

[cos(

where we use the trigonometry law

2sin

2sin

2coscos)

2cos(

2cos

Page 19: B B0(sin t p),cos p - Bingweb

and

2sin

2cos

2cossin)

2sin(

2sin

Then we have

)()2

sin(sin

)()]2

sin()cos(

)2

[cos()(

2

20

tet

i

tet

it

t

tieff

eff

tieff

eff

eff

where

2sin

2cos

)(

tie

t ,

2cos

2sin

)(

tie

t

The equation is exactly the same as Eq.(10.33) of Griffiths book. The probabilities of finding the

system in the states )(t and )(t are evaluated as

)cos(])cos(

1[2

1]

)cos(1[

2

1

)2

(sin)cos(

)2

(cos

)]2

sin()cos(

)2

[cos(

)()(

2

20

2

20

22

202

2

0

2

t

tt

ti

t

ttP

eff

effeff

eff

eff

eff

eff

eff

eff

)2

(sin)sin

()()( 222 tttP eff

eff

respectively. In the adiabatic region 0eff , P reduced to zero. Then we have

Page 20: B B0(sin t p),cos p - Bingweb

)()]2

sin()cos(

)2

[cos()( 20 tet

it

tt

ieff

eff

eff

In the adiabatic process ( 0 ),

0 eff ,

we have

})]cos1([2

exp{

]2

)(exp[

)()]2

sin()2

[cos()(

0

2

ti

ti

tet

it

t

eff

tieffeff

where

cos

)cos1(

cos21

cos21

0

00

00

02

0

2

0

eff

The first factor )2

exp( 0ti is the dynamical phase. The remaining factor is

])cos1(2

exp[)exp( ti

i ,

with the Berry’s phase,

)cos1(2

1 .

Page 21: B B0(sin t p),cos p - Bingweb

The solid angle is the surface area of the unit sphere, swept by the magnetic field is

)cos1(2sin2

00

dd

The phase of change during the period 2

T corresponds to the Berry phase and is given by

2)cos1()cos1(

2

1 T

The factor 1/2 is related to the value of spin (1/2).

9. Average

Now we calculate the expectation value

Page 22: B B0(sin t p),cos p - Bingweb

)]sin()sin()cos()2

1(sin)cos()cos(

)cos()2

1(cos)cos([sin

2

1

)(ˆ)(2

002

000

00022

2

tttt

tt

ttI

effeffeff

effeff

eff

x

)sin()cos()cos()2

1(sin)sin()cos(

)cos()2

1(cos)sin([sin

2

1

)(ˆ)(2

002

000

00022

2

tttt

tt

ttI

effeffeff

effeff

eff

yy

)]}cos()44()(4[cos

)2

1(cos)]3cos()2cos(44[2{

16

1

)(ˆ)(2

220

20

220

20

200002

t

t

ttI

effeffeff

eff

eff

zz

Note that

sinˆ0

txI

0ˆ0

tyI

cosˆ0

tzI

10. The form of )(t with initial condition

2cos

2sin

)0(

Suppose that the initial condition is given by

Page 23: B B0(sin t p),cos p - Bingweb

2cos

2sin

)0(

We note that this state can be rewritten as

)2

sin(

)2

cos(

2cos

2sin

)0(

Then we have

)2

sin(

)2

cos(

)]2

sin()2

[cos()2

sin(

)2

sin()]2

sin()2

[cos(

)0()]0([ˆ)(ˆ)]([ˆ)(

20)2(

22

)2(2220

ti

eff

eff

effti

eff

eff

ti

eff

eff

ti

eff

eff

eff

zeffz

et

it

et

i

et

iet

it

RtRtRt

p

p

p

The form of )(t with initial condition

2cos

2sin

)0(

can be obtained from the form of

)(t with initial condition

2sin

2cos

)0(

by replacing by . Thus we have

ti

effeff

eff

ti

eff

eff

eff

ett

i

et

it

t

20

20

2

1

2cos)]

2cos()

2sin()([

2sin)]

2sin()()

2[cos(

)(

Here we note that

Page 24: B B0(sin t p),cos p - Bingweb

ti

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

et

it

it

et

it

it

it

et

it

it

20

20

201

)]2

sin(2

cossin)2

sin(2

sin)cos(

2sin)

2[cos(

)]2

sin(2

sincos)2

sin(2

cossin)2

sin(2

sin2

sin)2

[cos(

)]2

sin()2

sincos2

cos(sin)2

sin(2

sin2

sin)2

[cos(

ti

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

eff

eff

ti

eff

eff

eff

eff

eff

et

it

it

et

it

it

it

et

it

it

20

20

202

)]2

sin(2

sinsin)2

sin(2

cos)cos(

2cos)

2cos([

)]2

sin(2

sinsin)2

sin(2

coscos)2

sin(2

cos2

cos)2

cos([

)]2

sin()2

sinsin2

cos(cos)2

sin(2

cos2

cos)2

[cos(

Using the basis given by

2sin

2cos

)(

tie

t ,

2cos

2sin

)(

tie

t

)(t can be rewritten as

)()2

sin(sin

)()]2

sin()cos(

)2

[cos()(

2

20

tet

i

tet

it

t

tieff

eff

tieff

eff

eff

In the adiabatic process ( 0 )

00 cos eff ,

Page 25: B B0(sin t p),cos p - Bingweb

})]cos1([2

exp{

]2

)(exp[

)()]2

sin()2

[cos()(

0

2

ti

ti

tet

it

t

eff

tieffeff

where cos0 eff and is the angle of the direction of the magnetic field from the z axis.

The first factor )2

exp( 0ti is the dynamical phase. The remaining factor is

])]cos1(2

exp[)exp( ti

i

with the Berry’s phase,

)cos1(2

1

The solid angle is the surface area of the unit sphere, swept by the magnetic field is

)cos1(2sin2

00

dd

The phase of change during the period 2

T corresponds to the Berry phase and is

2)cos1()cos1(

2

1 T

The factor 1/2 is related to the value of spin (1/2).

Page 26: B B0(sin t p),cos p - Bingweb

11. Summary

The Berry phase for a closed loop increases by the same amount no matter how one goes around it, provided only that one never go so fast as to invalidate the adiabatic approximation. For this reason, it is called a geometric phase. REFERENCES D.J. Griffiths, Introduction to Quantum Mechanics, second edition (Cambridge, 2017). E.S. Abers, Quantum Mechanics (Pearson, 2004). M.H. Levitt, Spin Dynamics Basic of Nuclear Magnetic Resonance, second edition (John Wiley & Sons, 2008).