bachelor thesis 302511

70
SIEMENS WIND POWER AND THE U.S. MARKET FOR WIND ENERGY AN ANALYSIS OF ENVIRONMENTAL FACTORS IMPACTING A TURBINE MANUFACTURER by Jan Thore Sieck Exams No. 302511 Bachelor Thesis For The Program Of Business Administration Characters (Excluding Spaces, Including Figures): 108.285 Supervisor: Sylvia Grewatsch Department: AU School of Business and Social Science Date Of Submission: 01.05.2014

Upload: s-k

Post on 06-Dec-2015

231 views

Category:

Documents


0 download

DESCRIPTION

porter's five forces wind energy

TRANSCRIPT

SIEMENS  WIND  POWER  AND  THE  U.S.  MARKET  FOR  WIND  ENERGY  

-­‐  AN  ANALYSIS  OF  ENVIRONMENTAL  FACTORS  IMPACTING  A  TURBINE  MANUFACTURER  

 by  Jan  Thore  Sieck  

Exams  No.  302511  

 

 

 

 

   

 

 

 

 

 

Bachelor  Thesis  For  The  Program  Of  Business  Administration  

Characters  (Excluding  Spaces,  Including  Figures):  108.285  

Supervisor:  Sylvia  Grewatsch  

Department:  AU-­‐  School  of  Business  and  Social  Science  

Date  Of  Submission:  01.05.2014  

 

 

ABSTRACT    

This   thesis   is   going   to   examine   the  wind   turbine  manufacturer   Siemens  

Wind   Power,   and   its   position   in   the   American   market   for   wind   energy.     The  

investigation  focuses  on:    

1.    How  a  turbine  manufacturer  is  affected  by  its  market  settings?    

2.   What   market   scanning   tools   are   able   to   assist   companies   in   their  

strategic  decision  process?  

 

In  order  to  be  able  to  answer  these  questions  a  qualitative  approach  was  

used.   To   cover   the   wide   range   of   information   different   sources   were   utilized.  

Academic   literature   such   as   books   and   journals   and   non-­‐academic   sources  

including  web  news,   homepages   and   other   online   data   archives   have   been   the  

main  sources.  For  the  analytical  portion  of  the  paper,  PESTEL  analysis,    Porters  5  

Forces   framework,   and   SWOT   analysis   were   used,   since   the   interplay   of   the  

analyses  was  able  to  answer  the    questions  to  the  expected  degree.  

 

  By  the  use  of  the  three  tools  it  was  discovered  that  the  American  market  

for   wind   energy   is   tremendously   impacted   by   its   surroundings.   Especially  

government  interaction,  the  economic  situation,  and  vertical  integration  are  key  

characteristics  that  are  impacting  wind  turbine  manufacturers  in  the  U.S.  and  are  

of   major   influence   on   Siemens   Wind   Power´s   success.   Furthermore,   the  

interrelation  between  different  factors  has  shown  to  have  a  tremendous  impact,  

which  also  was  the  rationale  behind  the  use  of  three  different  analytical  tools.    

 

     

Table  of  Contents  

1.  INTRODUCTION  .............................................................................................................  1  1.1  RESEARCH  QUESTION  ........................................................................................................  1  1.2  PROBLEM  STATEMENT  .....................................................................................................  1  

2.  RESEARCH  DESIGN  ........................................................................................................  2  3.  SIEMENS  ...........................................................................................................................  5  3.1  SIEMENS  ENERGY  ................................................................................................................  5  3.2  SIEMENS  WIND  POWER  .....................................................................................................  5  3.2.1  DANREGN  A/S  &  BONUS  ENERGY  ........................................................................................  5  3.2.2  SIEMENS  WIND  POWER  ...........................................................................................................  6  3.2.3  CURRENT  SIEMENS  WIND  POWER  AND  THE  PRESENCE  IN  THE  U.S.  ................  7  

4.  The  American  Electricity  Market  .............................................................................  8  4.1  RENEWABLE  ENERGY  IN  AMERICA  AND  THE  CAUSES  FOR  ITS  GROWTH  ........  9  4.2  RENEWABLE  ENERGY  SOURCES  IN  THE  U.S  ..............................................................  10  4.2.1  HYDROELECTRIC  .......................................................................................................................  11  4.2.2  BIOMASS  ........................................................................................................................................  11  4.2.3  GEOTHERMAL  .............................................................................................................................  12  4.2.4  SOLAR  ..............................................................................................................................................  13  

4.3  WIND  POWER  .....................................................................................................................  13  5.  SIEMENS  WIND  POWER  IN  THE  AMERICAN  MARKET  ....................................  15  5.1  ENVIRONMENTAL  SCANNING  ........................................................................................  16  

6.  PESTEL  ANALYSIS  .......................................................................................................  17  6.1  CRITIQUE  ..............................................................................................................................  19  6.2  PESTEL  ANALYSIS  SIEMENS  WIND  POWER  ...............................................................  20  6.2.1  POLITICAL  .....................................................................................................................................  20  6.2.2  ECONOMIC  ....................................................................................................................................  23  6.2.3  SOCIAL  ............................................................................................................................................  25  6.2.4  TECHNOLOGICAL  .......................................................................................................................  29  6.2.5  ENVIRONMENTAL  .....................................................................................................................  33  6.2.6  LEGAL  ..............................................................................................................................................  35  

7.  PORTERS  FIVE  FORCES  .............................................................................................  38  7.1  CRITIQUE  ..............................................................................................................................  42  7.2  PORTERS  FIVE  FORCES  SIEMENS  WIND  POWER  .....................................................  43  7.2.1  RIVALRY  AMONG  COMPETING  FIRMS  .............................................................................  43  7.2.2  POTENTIAL  ENTRY  OF  NEW  COMPETITORS  ................................................................  46  7.2.3  THREAT  OF  SUBSTITUTES  ....................................................................................................  47  7.2.4  BARGAINING  POWER  OF  SUPPLIERS  ...............................................................................  49  7.2.5  BARGAINING  POWER  OF  CONSUMERS  ............................................................................  52  

8.  SWOT  ANALYSIS  .........................................................................................................  53  8.1  CRITIQUE  ..............................................................................................................................  54  8.2  SWOT  ANALYSIS  SIEMENS  WIND  POWER  .................................................................  55  8.2.1  STRENGTH  ....................................................................................................................................  55  8.2.2  WEAKNESSES  ..............................................................................................................................  56  8.2.3  OPPORTUNITIES  ........................................................................................................................  57  8.2.4  THREATS  .......................................................................................................................................  58  

9.  CONCLUSION  ................................................................................................................  59  Bibliography  .....................................................................................................................  61    

  1  

1.  INTRODUCTION  

  Since   its   discovery,   the   demand   for   electricity   has   increased  

tremendously  and  today  a  life  without  it   is  unimaginable.  To  cover  the  growing  

request   of   electricity,   different   energy   sources   are   utilized   with   the   major  

contribution   coming   from   the   so-­‐called   non-­‐renewable   sources.   These   sources  

are  not  only  highly  dependent  on  natural  scarce  resources  but  are  also  the  main  

contributor  to  the  contemporary  climate  change.    

  In  order   to   combat   these   issues,  more   and  more   focus   is   going   towards  

renewables   as   an   energy   source.   The  wind   energy   industry   had   an   impressive  

development  during   the   last  decade  and   is   the  most  utilized   renewable  energy  

source  worldwide.    

  In  the  following  paper,  the  reader  is  going  to  learn  more  about  the  factors  

that  are  influencing  a  manufacturers  decision  process.  The  case  company  that  is  

used  is  Siemens  Wind  Power,  a  subsidiary  of  Siemens.    

1.1  RESEARCH  QUESTION  

I  am  analyzing   the  business  environmental   factors  surrounding  Siemens  

Wind  Power  in  the  U.S.,  because  I  want  to  find  out  how  a  turbine  manufacturer  is  

affected   by   its   environmental   settings,   in   order   to   understand   how  

environmental-­‐scanning   tools   are   able   to   assist   companies   in   their   strategic  

decision  process.  

1.2  PROBLEM  STATEMENT  

  The   purpose   of   this   study   is   to   analyze   how   Siemens   Wind   Power   is  

affected  by  the  business  market  climate  in  the  U.S.  In  order  to  be  able  to  evaluate  

the   impact   of   the   company’s   environment,   three   different   scanning   tools  were  

chosen.    

 

  During  the  history  of  wind  energy,  the  market  always  was  tremendously  

affected  by  its  surrounding  conditions.  Especially  the  U.S.  has  been,  and  still  is,  a  

market  that  to  high  degree  is  shaped  by  external  market  influences.  Throughout  

the   last   years   until   today   the   factors,   which   are   covered   with   the   chosen  

  2  

analytical   tools,  were   in  different  ways   taking   a  noteworthy   impact   on   turbine  

manufacturers  success.  

The   market   factors   and   their   changes   were   facing   manufacturers   with  

many  difficulties  in  maintaining  a  profitable  business.  For  Siemens  this  resulted  

in  huge  losses,  which  were  forcing  the  company  to  lay  off  workers,  while  at  the  

same  time,  management  was  sensing  the  need  for  restructuring  the  company.    

   

  This   paper   is   going   to   analyze   the   American   market   in   regard   to   the  

political,  economical,  social,  technological,  environmental,  and  legislative  factors,  

which  are  going  to  be  of  the  major  concern  in  the  PESTEL  analysis.  The  Porters  

Five  Sources  framework  is  directing  its  attention  to  the  rivalry  among  competing  

firms,  the  potential  threat  of  new  competitors,  the  threat  of  substitute  products,  

the  bargaining  power  of  suppliers,  and  the  bargaining  power  of  consumers.  Last  

but   not   least,   the   SWOT   analysis   is   used   to   evaluate   Siemens'   Wind   Power  

strength,  weaknesses,  opportunities,  and  threats.    

2.  RESEARCH  DESIGN      What   is  very  common   for  an  economic  research   is   the  qualitative  study,  

which   was   also   chosen   for   this   paper (Blumberg et al., 2008).   The   qualitative  

study,  in  comparison  to  the  quantitative,  was  better  able  to  answer  the  ‘how’  of  

our   question   since   especially   the   interplay   of   different   market   factors   were  

contributing  to  the  actual  situation  of  the  company.    

The   paper   in   itself   is   majorly   formal,   starting   out   with   a   descriptive  

account   of   the   situation,   followed   by   the   analysis,   and   ending   with   the  

conclusion.  However,  it  was  not  possible  to  totally  keep  the  study  formal  and  one  

might  discover   tendencies   into   the   exploratory   study,   since   additional   areas  of  

investigation  were  discovered  along  the  way.    

Since   the   purpose   of   the   paper   was   to   answer   both   “how   a   turbine  

manufacturer  is  affected  by  its  environmental  settings”  and    “how  environmental  

scanning   tools  are  able   to  assist  companies   in   their  strategic  decision  process”,  

the  causal  study  was  chosen (Blumberg et al., 2008).  However,  the  reader  is  also  

  3  

able  to  discover  characteristics  of  the  descriptive  study  since  the  first  part  of  the  

study  focuses  on  finding  out  who,  what,  where.    

 

In  order  to  be  able  to  answer  the  research  question  different  information  

sources  were  needed,  ranging  all  the  way  from  secondary  sources  to  qualitative  

interviews.   The   secondary   sources   that   were   utilized   were   governmental  

homepages,   company  homepages,   homepages   from   independent   organizations,  

academic   journals,   news   homepages,   and   academic   books   of   the   management  

and  marketing  literature.    

The   first  part  of   this  paper,  which   is  majorly  descriptive  and  deals  with  

our   case  company  and   the  American  energy  market,  was  written  by   the  use  of  

information  that  were  found  on  homepages  from  governmental  institutions  and  

company  homepages.  To  gather  information  about  the  American  energy  market,  

data   that  was   provided   by   governmental   institutions  was   used   as   the   primary  

source.  Additionally  a  variety  of  independent  organizations  were  able  to  provide  

information   regarding   the   market   and   the   different   energy   sources.    

Furthermore   different   history   and   political   academic   sources   were   used   as   a  

source  for  the  U.S.  historical  political  development  for  renewables.  

Information,   concerning   the   different   analytical   tools,   was   obtained  

through   the   use   of   strategy   and   marketing   books,   and   with     additional  

supplementation   via   articles   found   in   a   variety   of   academic   marketing   and  

management  journals.  Especially  in  this  part  of  the  paper,  a  collection  of  different  

sources  was  needed  to  broaden  the  writer’s  knowledge,  while  on  the  other  hand  

allowing  taking  a  critical  viewpoint  towards  each  theory  applied.    

The   widest   range   of   information   was   needed   for   the   analytical   part.  

Besides  the  analytical  part  being  the  biggest,  it  on  the  other  hand  is  the  broadest.  

In   addition   to   the   already  mentioned   sources,   the   analytical   part  was   supplied  

with  information  from  news  homepages  and  interviews.    

 

The  two  interviews  that  were  held  in  Springfield,  Illinois,  have  both  been  

qualitative.  The  first  interview,  which  was  held  with  Stan  Komperda,  who  is  the  

Director   of   Development   for   American   Wind   Energy   Management   Corp.,   was  

about   the   developer   and   his   part   in   the   supply   chain   and,   additionally,   about  

  4  

some  factors  of  the  American  market  for  wind  energy.  The  interview  was  chosen  

to   be   semi-­‐structured   to   give   the   interviewee   enough   freedom   to   decide   how  

much   to   go   in   depth   with   each   question   and   what   direction   to   choose.   This  

freedom   was   additionally   helping   the   interviewer   to   discover   what   a   wind  

developer  regards  as  important  and  what  not.  

The  second  interview  was  a  focus  group  interview.  The  group  consisted  of  

three   people   namely   Christopher   Nickell,   who   is   the   Director   of   Site  

Establishment   for   AWEM   Corp,   Stan   Komperda,   and   Kyle   Barry,   who   is   an  

independent   lawyer   dealing  with   legal   issues   in   regard   to   the   development   of    

wind  farms.  The  interview  was  about  legal  issues  concerning  the  development  of  

a  wind  project   and   the   three   different   personalities  were   chosen   to  widen   the  

discussions   horizon.   During   the   interview   process   the   interviewer   tried   to  

interact   as   little   as   possible   to   keep   the   different   arguments   continuing.  

However,  this  was  not  always  possible  and  an  interaction  to  keep  the  discussion  

going  was  needed  from  time  to  time.    

Both   interviews  were   able   to   provide   the   needed   data   and   at   the   same  

interesting  viewpoints.    

 

However,  during  the  research  process  the  writer  several  times  was  facing  

problems,  although  minor.  Especially  the  use  of  news  homepages  turned  out  to  

be   problematic   since   the   published   information   not   always   was   reliable.   To  

tackle  this  problem,  at  least  to  some  extent,  the  given  data  was  compared  with  as  

many  sources  as  possible.    

Another  problem  that  was  to  be  handled  was  the  fact  that  Siemens  Wind  

Power  not  was  willing   to   give   interviews   in   regard   to   their   contemporary   and  

future  strategy.  This  resulted  in  an  increased  focus  towards  the  information  that  

could  be  gathered.  

   Furthermore,  the  fact  that  a  recorder  was  used,  to  record  the  interviews,  

gave   the   impression   that   some   sentences   were   shortened   to   get   to   the   point  

faster.   Additionally   the   participants   of   the   focus   group   interview   were   not  

familiar  with   the   interview   style,  which   resulted   in   some   answers   to   be   given  

directly  to  the  interviewer.    

  5  

Additionally,  and  that  has  been  one  of  the  most  influential  problems,  was  

the  fact  that  this  paper  was  limited  to  110.000  signs.  This  limitation  resulted  in  

the  writer  not  being  able  to  discuss  all  of  the  factors  that  were  taking  an  impact  

on  the  case.   It  was   therefore  up  to   the  writer   to  decide  what   factors   to   include  

and  which  not,  which  resulted  in  spending  a  lot  of  time  reading  literature  to  find  

out  how  different  factors  were  taking  an  impact.    

3.  SIEMENS    

Werner   von   Siemens   founded   the   company   in   1847,   starting   out   with  

producing  an  improved  version  of  the  telegraph (Siemens, 2008).  Today  Siemens  

AG   is  a  worldwide  operating  electronics  and  engineering  company,   focusing  on  

the   market   sectors   of   energy,   industry,   healthcare   and   infrastructure   &   cities

(Siemens AG, 2013).   At   its   current   stage   the   company   is   employing   370.000  

people   in   190   countries,   while   generating   yearly   revenue   close   to   105   billion  

Euros (Siemens AG, 2013).    

3.1  SIEMENS  ENERGY  

  Siemens   energy   sector   is   divided   into   different   areas   namely;   energy  

services,   power   generation,   power   transmission   and   wind   power (Siemens,

2013).   The  energy   sources   in   Siemens  product  portfolio   are  wide   ranging   from  

renewables  like  wind,  solar,  and  hydroelectric,  all  the  way  to  the  non-­‐renewable  

sources  like  coal,  and  gas (Siemens, 2013).  In  2013,  Siemens  energy  sector  had  a  

workforce  of  approximately  83,500  and  received  orders  that  were  accounting  to  

28.8  billion  Euros,  generating  a  total  profit  of  1.95  billion  Euros (Siemens, 2013).    

3.2  SIEMENS  WIND  POWER    Siemens   wind   power   has   a   history   of   more   than   30   years   and   is   the  

world’s  oldest  wind  turbine  manufacturer (Siemens Wind Power, 2013).    

3.2.1  DANREGN  A/S  &  BONUS  ENERGY  The  whole   basis   for   the   Siemens  wind  power   sector  was  made   in   2004  

through   an   acquisition   of   Bonus   Energy   (formerly   Danregn   Vindkraft   A/S).  

Danregn  started  its  wind  turbine  business  in  1980,  with  producing  15  turbines,  

each  with   a   capacity   of   25-­‐30   kW (Bonus Energy, 2003).   A   year   later,   Danregn  

  6  

founded   the   company   Danregn   Vindraft,   which   was   now   producing   a   55   kW  

turbine   that   was   to   be   exported   to   the   USA   in   collaboration   with   Difko   A/S

(Bonus Energy, 2003).   Due   to   the   boom   on   the   American   market,   Danregn  

Vindkraft   decided   to   establish   a   service   company   in   the  U.S  while   at   the   same  

time   changing   its   name   to   Bonus   A/S   in   1983 (Bonus Energy, 2003).   In   1985  

Bonus   stopped   selling   turbines   on   the   American   market   due   to   the   cuts   of  

governmental   support   under   the   Reagan   administration (Sherlock, 2011).  

However   the   company   was   still   maintaining   its   presence   by   carrying   out  

retrofitting   activities   on   turbines  made  by  other  manufacturers (Bonus Energy,

2003).  During  the  time  after  1985,  Bonus  A/S  was  nearly  exclusively  focusing  on  

their   Danish   domestic   market,   with   directly   developing   new   technologies   for  

offshore  wind  projects (Bonus Energy, 2003).   In  1991  Bonus  A/S  participated  in  

the  world's   first   offshore  wind  park   in  Vindeby,  Denmark (Siemens, 2012).   The  

Vindeby  offshore  wind  park   consisted  of  11   turbines  with  a   total   capacity  of  5  

MW (Siemens, 2012).      

3.2.2  SIEMENS  WIND  POWER  In   2004   Siemens   entered   the  wind   industry  market   by   acquiring  Bonus  

A/S (Siemens, 2008).    After  the  acquisition,  Siemens  rapidly  continued  investing  

into   their   new  wind   business,   since   they   saw   a   high   potential   in   the   industry

(Siemens, 2008).  In  2005  Siemens  bought  one  of  Bonus  Energy's  former  partners,  

AN   Windenergie   GmbH,   which   was   dealing   with   sales   and   services (Siemens,

2008).  One  year  later  Siemens  bought  a  former  blade  factory,  LM  Glassfiber,  while  

at  the  same  time  investing  into  new  offices,  warehouses  and  production  facilities  

at  its  headquarters  in  Brande (Siemens, 2008).  The  new  acquisitions  were  made  

to   better   control   quality,   delivery,   production,   etc.   However,   Siemens   did   not  

only  invest  domestically.  In  2007  Siemens  opened  a  blade  factory  in  Iowa  (USA),  

which  was   consisting  of  different   facilities   for  warehousing  and  manufacturing

(Siemens, 2008).  The  reason  for  directly  investing  into  the  market  was  caused  by  

the   fact   that   the   American   growth   rate   started   to   increase   and   that   corporate  

owned  facilities  were  able  to  decrease  transportation  cost  and  at  the  same  time  

increasing   delivery   speed (Siemens, 2010).   During   the   time   between   2005   and  

2010  the  American  market  had  an  average  growth  rate  of  more  than  35%  and  in  

these   five   years   Siemens   installed   a   capacity   of   3.6   GW,  which  was   enough   to  

  7  

supply   more   than   one   million   households   with   clean   and   renewable   energy

(Siemens, 2010).  

 

During   the   last  years,   Siemens  presence  on   the   international  market   for  

wind  energy  has  grown  tremendously.  At  the  end  of  2010  Siemens  again  directly  

invested   into   foreign  markets,  with   its   first   rotor  blade  manufacturing  plant   in  

China  and  Canada,  and  a  new  nacelle  production  in  Kansas (Siemens, 2010).    The  

investment  was   caused   by   new   orders   in   these  markets,   while   analysis   at   the  

same  time  were  predicting  enormous  growth  rates  for  the  wind  turbine  industry

(Miller, 2013).   In   2011   Siemens   again   decided   to   invest   into   the   expansion   of  

their  wind  business.    One  Hundred  Fifty  million  Euros  were  to  be  invested  into  

their   R&D   center   in   Aalborg   and   Brande (Siemens, 2011).   Additionally,   this  

money  was  used  to  expand  the  headquarters  in  Brande,  since  the  facilities  were  

too  small  to  accommodate  the  growing  number  of  employees (Siemens, 2011).    

 

The   fact   that   both   the  wind   power   and   the   solar   &   hydro   sectors   have  

grown  dramatically,   lead   to   the  decision  of   realigning   the   renewables  business  

into  two  independent  units (Siemens, 2011).  This  was  caused  by  the  fact  that  both  

the  wind  and  solar   industry  were  on  different  stages  of   their  development  and  

because   the   workforce   has   grown   more   than   10   times   since   2004   (Siemens,

2011).  The  realignment  was  made  to  better  customize  the  strategies  for  the  two  

different   industries  and  was,   additionally,   the  main   reason   to   replace   the  wind  

power  headquarter  to  Hamburg,  Germany (Siemens, 2011).    

3.2.3  CURRENT  SIEMENS  WIND  POWER  AND  THE  PRESENCE  IN  THE  U.S.  Today   the   Siemens  Wind   Power   sector   accounts   for   more   than   10.000  

employees  of  which  more  than  1.500  directly  are  employed  in  the  U.S. (Siemens,

2013).  To  the  present  day  Siemens  has  installed  a  total  of  more  than  13.000  wind  

turbines   with   approximately   4.800   of   them   generating   clean   and   renewable  

energy   in   the   American   market (Siemens, 2013).   In   total,   their   turbines   are  

accounting  for  a  capacity  of  more  than  22.000  MW  globally,  with  close  to  8.500  

MW  in  the  U.S. (Siemens, 2013).    

 

  8  

At  its  current  stage,  Siemens  Wind  Power  has  10  locations  in  the  U.S.  The  

American   headquarters   for   the   wind   power   business   is   located   in   Orlando,  

Florida,  and  was  established  in  2005 (Siemens, 2013).  Through  the  headquarters  

in  Orlando,   they  manage   a   nacelle   assembling   facility   in  Hutchinson,   Kansas,   a  

rotor   blade   manufacturing   facility   in   Fort   Madison,   Iowa,   a   research   and  

development   center   in   Boulder,   Colorado,   an   offshore   office   in   Boston,  

Massachusetts,   a   distribution   center   in   Wichita,   Kansas,   and   four   different  

service   locations   in   Orlando,   Houston,   Texas,   Goldendale,   and   Woodward

(Siemens, 2013).  All  of   these   locations  are  relatively  new  and  none  of   them  was  

established  before  2005 (Siemens, 2013).  

 

Siemens  Wind   Powers   contemporary   goal   is   to   drive   down   the   cost   of  

wind  energy  and  thereby  be  not  only  be  competitive  with  other  energy  sources  

but  to  also  to  be  independent  of  subsidies (Siemens, 2013).  The  strategy  to  obtain  

this  goal   is   to  build  highly  efficient,  solid,  and  reliable   turbines  that  are  easy  to  

install  and  are  able  to  supply  reliably  for  long  timeframes (Siemens, 2013).    

4.  The  American  Electricity  Market  

The  United   States   is   currently   the  biggest   producer   of   electricity   and   at  

the   same   time   its   largest   consumer.   In   2013   U.S   electricity   consumption  

accounted  to  4.05  million  MWh,  which  was  supplied  by  energy  sources  such  as  

coal,   gas,   nuclear,   renewable   energy   sources   and   oil. (U.S. Energy Information

Administration, 2014).    

 

The   biggest   electricity   sources   used   in   America   are   coal   with   39%,  

followed  by  natural  gas  accounting  for  27,5%,  nuclear  for  19,5%,  and  renewables  

and   other   sources   accounting   for   12,8%   and   1,2%   respectively (U.S. Energy

Information Administration, 2014).      

The   biggest   consumer   group   of   the   supplied   energy   is   the   residential  

sector   with   37%,   the   commercial   sector   with   36%,   the   industrial   sector   with  

26,5%,   and   the   transportation   sector   that   accounts   for   less   than   0.5% (U.S.

Energy Information Administration, 2014).  

  9  

 

 Figure   1.   EIA,   Feb   2014,   Electric   Power   Monthly,  http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01  

 

Figure   1   shows   how   the   supply   by   the   different   energy   sources   has  

changed  during  the  time  between  2003  and  2013.  The  most  noteworthy  increase  

was   made   by   the   sector   of   renewables   (excluding   hydroelectric).   Starting   out  

with  supplying  around  80.000  MWh  in  2003,  which  was  equal  to  approx.  2%  of  

the   total   energy   supply,   the   renewable   sector   (excluding   hydroelectric)   has  

increased   its   supply   to   270.000   MWh,   equal   to   6%   of   the   U.S   total   supply   of  

electricity.    

 

The  following  part  is  going  to  look  more  detailed  at  the  American  market  

in  regard  to  the  renewable  energy  sector,  while  directly  putting  increased  focus  

towards  the  wind  energy.  

4.1  RENEWABLE  ENERGY  IN  AMERICA  AND  THE  CAUSES  FOR  ITS  GROWTH  

The   first   step   to   push   renewables   was   made   in   the   1960s,   where   The  

National  Environmental  Policy  Act   for   the   first   time  recognized  the   importance  

of   protecting   the   national   environment (GENESLAW, 1995).   Air   pollution   and  

the  use  of   scarce  natural   resources  where   the  main   causes   for   the  Congress   to  

impose  responsibilities  on  the  federal  government (GENESLAW, 1995).    

In   the   1970s   the   U.S   Environmental   Protection   Agency   (EPA)   was  

established  due  to  the  continuing  damages  that  were  made  to  American  natural  

  10  

areas (EBSCO HOST, 2014).  The  goal  of  the  EPA  was  to  reduce  the  dependency  

on  natural  resources  like  fossil  fuels,  and  to  develop  energy  sources  with  a  long-­‐

term  sustainable  future (EBSCO HOST, 2014).    

In  1973  the  oil  embargo  came  and  the  U.S  were  pressured  since  they  were  

not   able   to   cover   their   domestic   demand   with   their   own   production (Eckhart,

2012).   This   lead   to   calls   for   energy   independency  while   creating  programs  and  

policies   that   were   supporting   clean   and   renewable   energy   sources (Eckhart,

2012).  However,   the   support   for   renewables   and   its   research  and  development  

were   slashed   with   the   Reagan   Administration   in   1981 (Sherlock, 2011).   In  

addition  to  the  bad  political  situation  for  renewable  energy  sources,  the  oil  and  

natural   gas   prices   declined   tremendously   between   1985-­‐1986   which   made   it  

even  harder  for  renewables  to  develop (Eckhart, 2012).    

In   1992,   the   Energy   Policy   Act   (EPACT)   was   carried   into   effect,   which  

contained   titles  such  as   the   ‘Independent  Power’   that  was  eliminating   the  49%  

ownership-­‐rule  that  said  that  utility  companies  were  not  allowed  to  hold  a  major  

part   in   the  energy  plants   that  were   supplying   them (Eckhart, 2012).  These  new  

laws  were   the  basis   for   the  modern  energy  structure   the  U.S.  has   today,  where  

big   companies   own   energy   plants   such   as   wind   farms,   coal   power   plant,   or  

nuclear  power  plant  etc. (Eckhart, 2012).      

From  2000-­‐2010,  30  of  the  50  American  states  adapted  to  some  form  to  

the  ‘Renewable  Portfolio  Standard’,  which  requires  an  increase  in  production  for  

energy  supplied  by  renewable  energy  sources (IHS, 2010; Eckhart, 2012).  The  30  

states  targeted  a  goal  of  20%  of  all  energy  being  supplied  by  renewables  by  2020

(IHS, 2010).  

4.2  RENEWABLE  ENERGY  SOURCES  IN  THE  U.S  

The   renewable   sector   in   the   U.S   consists   of  

the   hydroelectric   sector,   the   wind   sector,   the  

biomass  sector,  the  geothermal  sector,  and  the  solar  

sector.  Figure  2  shows  all  renewable  energy  sources  

used   in   the   U.S.,   and   the   proportion   of   electricity  

supplied  by  each  of   them,  while   figure  3  shows   the  

change  of  supply  between  2003  and  2010.     Figure  2.  EIA,  Dec  2013,  Annual  Energy  Outlook.  http://www.eia.gov/electricity/annual/pdf/epa.pdf  

  11  

 

Figure   3.   EIA,   Feb   2014,   Net   Generation   from   Renewable   Sources.  http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01_a  

4.2.1  HYDROELECTRIC    

The   biggest   renewable   energy   source   in   the   U.S.   is   hydroelectric.   A  

hydroelectric  power  plant  requires  the  power  of  moving  water  like  rivers,  ocean  

waves,   or   other   streams   of   water (NHA, 2013).   Figure   3,   the   column   of  

‘Hydroelectric  Conventional`,  shows  the  energy  supplied  by  this  sector.  In  2013,  

the   hydroelectric   energy   source   provided   approx.   7%   of   the   total   electricity  

supplied,   while   generating   more   than   55%   of   all   the   electricity   supplied   by  

renewables.    

Not   only   is   hydropower   the   biggest   renewable   source   in   the   U.S,   but  

additionally   one   of   the   cheapest  with   a   price   of   $0.09   per   kW/hr.,  where   only  

power  plant  types  such  as  natural  gas,  wind  and  geothermal  are  able  to  compete

(Eia, 2013).    

By   the   end   of   2012   the   industry   employed   close   to   300.000   workers  

across  the  U.S.  However,  this  renewable  energy  source  has  not  shown  to  develop  

much  during   the   last   years,  which   insiders   say   is   caused  by   the   fact   that  other  

renewable   energy   sources   received   governmental   support   and   the   fact   that  

hydroelectric   power   plants   are   restricted   to   a   limited   amount   of   development  

areas (NHA, 2013).    

4.2.2  BIOMASS  

Leaving   out  wind   energy   to  make   a  more   detailed   description,  we  have  

biomass   as   the   third   biggest   renewable   energy   source.   Biomass   is   biological  

material,   usually   from   organisms   like   plants,   which   in   a   thermal,   chemical,   or  

  12  

biochemical  conversion  produces  energy (Biomass EC, 2014).  Figure  3  shows  the  

net   generations   for   biomass   in   four   different   columns,   all   together   having  

supplied  close  to  60.000  MWh.  in  2013.  With  this  number  the  biomass  sector  has  

supplied  approx.  11%  of  the  total  renewable  energy  generated  in  2013.    

The  price  for  one  kW/hr.  has  been  $0.11  in  2013  and  thereby  supplied  for  

the  same  cost  as  nuclear  power  plants (Eia, 2013).    

By   the   end   of   2011   the   industry   of   biomass   energy   employed   around  

15.500   people   all   over   in   the   U.S,   but,   like   the   hydroelectric   industry,   the  

industry  of  biomass  energy  neither  has  shown  big  growth  rates  during  the   last  

ten   years (Biomass Power, n.d.).   The   net   generation   of   electricity   supplied   by  

biomass  in  2003  was  53.000  MWh.,  while  ten  years  later  it   increased  to  60.000  

MWh (Eia, 2013).   The   only   slow   growth   of   the   biomass   industry   has   different  

causes.  First  of  all  biomass  is  said  to  be  a  carbon  dioxide  neutral  energy  source,  

since  the  process  of  generating  energy  releases  approximately  the  same  amount  

of   carbon   dioxide   that   is   being   recovered   by   the   growth   of   the   plants (NREL,

2014).  Additionally,   it   is  being  criticized   that  areas  where   food  could  be  grown,  

are  utilized  for  plants  that  in  later  stages  are  getting  destroyed  for  the  supply  of  

energy (NREL, 2014).    

4.2.3  GEOTHERMAL  

  The   fourth   biggest   renewable   energy   source   is   geothermal   energy;  

supplying   around   4%   of   the   total   renewable   energy   in   the   U.S.   Geothermal  

energy  uses  magma  that  is  heating  up  water  and  by  that  creating  pressure  which  

is  going  to  drive  electric  generators (Union of Concerned Scientists, 2014).  Plants  

for   geothermal   energy   are  placed   in   areas  where   the   earths’   crust   is   relatively  

thin  and  where  it  is  easier  to  access  the  hot  core (Union of Concerned Scientists,

2014).   When   it   comes   to   employment,   the   sector   of   geothermal   energy   had   a  

workforce  of  approx.  13.500  people  in  2010 (GEA, 2010).    

The  price  for  one  kW/hr.  of  geothermal  energy  is  $0.09  and  by  that  makes  

it  one  of  the  cheapest  energy  sources (Eia, 2013).    

In   2003,   the   geothermal   sector   supplied   around   14.500   MWh   and  

reached,  10  years  later,  16.500,  which  equals  a  growth  of  12%  in  ten  years.    Like  

biomass   and   hydroelectric,   also   geothermal   energy   has   not   shown   big   growth  

  13  

rates  during  the  time  between  2003  and  2013.  The  slow  growth  is  caused  by  the  

fact  that  the  technology  cost  of  geothermal  energy  plants  is  generally  higher  than  

for  example  for  wind  or  solar (EIA, 2011).  Additionally,  geothermal  power  plants  

are  extremely  dependent  on  area  specific  characteristics  and  by  that   limit  their  

growth  possibilities (EIA, 2011).    

4.2.4  SOLAR  

  The   smallest   renewable   energy   source   in   the   U.S.   is   solar   energy.   Solar  

energy  can  be  generated  by  photovoltaic  and  thermal  solar  power  plants (SEIA,

2014).  Figure  3  and  the  columns  of  “Solar  Photovoltaic”  and  “Solar  Thermal”  are  

showing  the  development  of  the  energy  supplied  by  the  solar  industry.  Starting  

out  with  supplying  around  500  MWh   in  2003,   the   industry  now  supplies  more  

than  9.000  MWh.  The  biggest  change  here  was  made  in  the  area  of  photovoltaic,  

starting  with  supplying  2  MWh  in  2003,   to  reaching  a  supply  of  8.300   in  2013.  

The   reason   for   this   enormous   growth   is   not   only   caused   by   governmental  

support,   but   also   the   fact   that   installments   of   photovoltaic   can   be   placed   on  

nearly  every  surface  where  the  sun  is  shining (SEIA, 2014).    

Although  the  development  went  fast  for  solar  energy,  the  price  is  still  not  

competitive  with  other  energy  sources.  The  price  for  one  kW/hr.  of  photovoltaic  

generated  electricity   is  $0.14  and  $0.26  for  thermal  solar  electricity (Eia, 2013).  

One   of   the   main   reasons,   that   are   causing   the   relatively   high   price   of   solar  

energy,  is  the  fact  that,  although  the  industry  is  still  small,  the  total  workforce  is  

unproportionally   large,  with  more   than  100.000  employees  at   the  end  of  2012

(ACORE, 2013).    

4.3  WIND  POWER      

Wind  power  has  a  long  history  in  the  U.S.,  reaching  all  the  way  back  to  the  

18th   century (U.S. Department of Energy, 2014).   In   the   beginning,   the   energy,  

which  was  supplied  by  the  mills,  was  used  for  grinding  corn  and  other  grains  or  

pumping  water,  while  in  the  1930s  it  started  to  be  used  as  an  electricity  source

(Iowa Energy Center, 2014; U.S. Department of Energy, 2014).  The  efficiency  at  that  

time  was  low  and  one  wind  turbine  only  had  the  capacity  of  lighting  one  or  two  

bulbs,   or   operating   a   radio   receiver (Iowa Energy Center, 2014).   However,   the  

demand  for  wind  turbines  was  high  since  many  households  were  not  connected  

  14  

to  the  power  grid (Kaldellis & Zafirakis, 2011).  In  the  1950s  this  changed  and  the  

central   power   grid   was   extended   to   nearly   every   American   household,   which  

resulted  in  a  heavy  decrease  in  demand  for  wind  turbines  and  development  was  

nearly  dormant  for  the  following  20  years (Kaldellis & Zafirakis, 2011).    

 

  In  the  1970s  the  Oil  Embargo  reawakened  the  interest  in  renewables  and  

especially   wind   energy (Sherlock, 2011).   The   fact   that   energy   prices   were  

climbing   and   the   availability   of   conventional   fuels   was   decreasing   resulted   in  

governmental   investments   into   the   development   of   the   wind   energy   industry

(Iowa Energy Center, 2014).   The   input   came   from   the  National  Aeronautics   and  

Space   Administration,   The   National   Science   Foundation,   and   The   U.S.  

Department   of   Energy,   which   all   contributed   to   the   development   of   13  

experimental   turbines   that   were   causative   to   the   basis   of   the   turbines   used  

today,   not   only   in   the  U.S.   but  worldwide (Wind Energy Foundation, 2014; Iowa

Energy Center, 2014).     The   new   technology   increased   the   efficiency   and  

effectiveness   dramatically,   with   turbines   being   able   to   supply   around   700  

households (Iowa Energy Center, 2014).    

The  fast  development  of  the  industry  and  the  governmental   investments  

resulted   in  many  startups  with  more   than  50  different   turbine  suppliers   in   the  

70s (Iowa Energy Center, 2014).   However,   due   to   massive   consolidation,   the  

industry   had   less   than   a   dozen   domestic   suppliers   by   the   end   of   1977 (Iowa

Energy Center, 2014).        

Between  the  time  of  1973  and  1986,  the  whole  structure  of  the  supply  of  

electricity   generated   by   wind   changed   tremendously.   It   now   became   usual  

investing   more   and   more   into   big   wind   farms   instead   of   single   turbine  

production (Iowa Energy Center, 2014; Wind Energy Foundation, 2014; Kaldellis &

Zafirakis, 2011).    

     

Today  wind   energy   is   still   one   of   the   fastest   growing   renewable   energy  

sources.     Looking   at   Figure   3,   we   see   that   the   sector   was   supplying   around  

11.000  MWh  in  2003,  while  it  now  supplies  more  than  167.000  MWh.,  generated  

by   an   installed   capacity   of   60.000  MW (AWEA, 2013).   The   growth   in   these  10  

years   accounts   to   a   total   of  more   than   1500%.  When   looking   at   the   supply   in  

  15  

percentage,  generated  by  wind  power   to   the   renewable   supply   in   total,  we  see  

that  they  contributed  3%  in  2003  and  more  than  32%  in  2013.  In  2012  the  wind  

energy  industry  employed  more  than  75.000  people  all  over  in  the  United  States,  

with  approx.  25.500  working  in  the  area  of  manufacturing (ACORE, 2013).    

Since  1980  the  price  for  one  kW/hr.,  generated  by  wind  turbines,   fell  by  

more  than  90%  and  supplies,  at   its  current  stage,   for  a  cost  between  $0.09  and  

$0.22 (AWEA, 2013).   The   big   variation   of   the   energy   cost,   supplied   by   wind  

energy,   is   caused   by   different   factors.   First   of   all,   wind   turbines   are   showing  

enormous   differences   in   their   efficiency,   which   especially   is   connected   to   the  

turbines  age.  Secondly,  wind  turbines  need  wind  to  produce  and  best  prices  are  

only  secured  when  the  wind  level  stays  constant  and  strong  over  longer  periods

(U.S. Department of Energy, 2014).   Other   factors   that   are   influencing   are   the  

efficiency  of  the  electricity  grid,  the  distance  to  the  supplied  utility  company,  and  

weather   conditions   that   are   resulting   in   deterioration (U.S. Department of

Energy, 2014).    

5.  SIEMENS  WIND  POWER  IN  THE  AMERICAN  MARKET  

The   last   part   gave   an   introduction   to   our   company   and   the   American  

energy  market.  The  following  part  is  going  more  into  depth  and  at  the  same  time  

we   are   switching   from   an   exclusively   descriptive   viewpoint   into   a   more  

analytical  perspective.    

 

Before   starting   with   the   analysis   it   is   important   to   note   that   turbine  

manufacturers  are  extremely  dependent  on  Wind  Developers.  Wind  Developers,  

sometimes  independent,  sometimes  owned  by  utility  companies,  are  companies  

that   are   developing   the   actual   wind   farm,   which   then   is   sold   to   an   investor.  

Generally  wind  developers  have  three  things  they  look  for (Barry, 2014).  

1. Resource:    How  does  the  wind  level  look  like?  

2. Proximity   to   demand:   How   close   are   you   to   your   demanding  

consumers?  

3. Interconnection:   How   to   interconnect   the   wind   farm   and   how  

much  is  to  be  built  by  yourself?  

  16  

 When   a   project   is   developed   these   companies   are   dealing  with   a   wide  

range  of  issues  concerning  the  project  of  a  wind  farm  e.g.  political,  legal,  market,  

economical  etc. (Komperda, 2014).  Important  for  the  turbine  manufacturer  is  the  

fact  that  the  developers  usually  choose  their  own  supplier  that  is  fitting  best  to  

their   needs (Komperda, 2014).   The   factors   influencing   the   decision   which  

supplier   to   choose   are   wide   ranging   but   usually   relate   to   factors   such   as  

technology,   maintenance,   quality,   price,   capability   and   availability (Komperda,

2014).    

During   the   analysis   we   are   going   to   discuss   factors   that   not   always  

directly  are  affecting  our  manufacturer,  Siemens,  but  the  developers,  which  is  the  

section  in  the  supply  chain  getting  the  actual  product  to  the  customer.    

 

  Inside   the   literature   of   strategy   there   are   several   theories,   every   single  

one   using   a   different   approach   to   analyze.   In   this   paper   the   theories   that   are  

being   used   are   to   explain   market   characteristics   and   on   the   other   hand   to  

analyze   our   company   in   regard   to   the   factors   taking   influence   on   strategic  

decisions.  Since  this   is  the  case,  we  are  using  the  PESTEL  analysis,  Porters  Five  

Forces,  and  the  SWOT  analysis.  Before  starting  each  analysis,  the  theory  is  going  

be  explained  and  its  limitations  are  pointed  out.  

5.1  ENVIRONMENTAL  SCANNING  

Since  businesses  are  aiming  at  improving  their  success  and  ensuring  their  

survival,   it   is   important   for  managers   to   acknowledge   the   conditions   in  which  

their  business  is  placed (Pickton & Wright, 1998).  Environmental  scanning  allows  

people   to  discern   information  and  knowledge   form   the  ongoing  environmental  

signals   they   receive   every   day (Slaughter, 1999).   The   environmental   conditions  

should  be  of  enormous  influence  in  the  decision  processes  that  might,  and  mostly  

is,  influenced  by  the  surrounding  settings (Hollensen, 2011).    

When  monitoring  the  environment,  managers  are  able  to  gain  knowledge  

not   only   about   their   business   in   itself,   but   additionally   about   the  

market/industry  in  its  whole (Hollensen, 2011).    

However,  when  using  environmental  scanning  techniques  it  is  important  

to   first   of   all   design   a   scanning   frame,   which   is   going   to   help   the   practicing  

  17  

person   to   decide  what  might   be   of   importance   for   his   business   case (Adler &

Gundersen, 2008).   Complementary   to   the   information   that   is   received  

automatically,   a   good   environmental   scanning   process   always   needs   huge  

amounts  of  data  that  must  be  gathered (Slaughter, 1999).    

 

  Organizations   that   are   not   paying   attention   to   the   wide   range   of  

information   that   is   surrounding   them   often   tend   to   lose   touch   with   vital  

information   about   products,   suppliers,   markets,   competitors   etc. (Hollensen,

2011).   On   the   other   hand,   a   company   that   adapts   to   the   techniques   of  

environmental   scanning   are   able   to   evaluate   their   environment   on   a   regular  

basis,  which  makes  it  possible  not  only  to  perform  good  contemporary  but  in  the  

long  run  as  well,   since  adaptation   to  changes  are  able   to  be  made  earlier   since  

information  is  on  hand (Hollensen, 2011; Adler & Gundersen, 2008).  

 

  The   following   analyses   are   going   to   focus   on   those   environmental  

conditions,  some  internal  and  some  external.  What  is  noteworthy  before  starting  

is  the  fact  that  nearly  all  of  the  factors,  at   least  to  some  extent,   interrelate  with  

each  other (Hollensen, 2011).  Because  this  is  the  case,  the  reader  will  most  of  the  

time   be   able   to   draw   parallels   between   each   the   factors   that   are   analyzed.  

Additionally   it   is   important   to   note   that   not   all   sub-­‐factors   that   are   having   an  

impact  are  discussed  and  only  the  most  influential  were  picked  and  analyzed.    

  While   the   analysis  was  made   the  writer   tried   to   avoid   running   into   the  

problems   that  were   acknowledged   in   the   critique   of   each   applied   theory.   This  

was  mainly  caused  to  increase  the  papers  validity  and  usefulness.    

6.  PESTEL  ANALYSIS  

  The  PESTEL  analysis,  which  is  an  advancement  of  the  PEST  analysis,  is  a  

tool  that  is  commonly  used  in  the  market  scanning  process (Hollensen, 2011).  The  

analysis   is   used   to   analyze   the  macro-­‐environment,   that   is,   analyzing   the  main  

external   and   uncontrollable   factors  which  mostly   are,   influencing   the   decision  

making   process   of   an   organization (Kotter & Schlesinger, 2008; Johnson et al.,

2007).    

  18  

Philip   Kotler,   who   is   an   American   professor,   consultant   and   marketing  

author,  noticed  that  the  PESTEL  analysis  has  shown  to  make  its  user  understand  

an   organizations   business   position,   the   general   causes   for   market   growth   or  

decline,   and   additionally   the   opportunity   and   potential   of   a   business   related  

project (Hollensen, 2011; Kotler et al., 2009).    

 

PESTEL   is   an  abbreviation   for  Political,  Economic,  Social,  Technological,  

Legal,  and  Environmental.  The  analysis   in   itself   is  going  to  examine  each  factor  

and  how  they  are  influencing  the  business  of  the  company (Johnson et al., 2007).  

Let  us  take  a  look  at  the  six  different  factors,  which  are  included  in  the  PESTEL  

analysis,  in  more  detail:  

 

• Political:   The   question   we   want   to   answer   here   is   how   the   political  

situation   of   the   area   where   we   are   dealing   in   might   affect   the  

industry/business.   Factors   that   are   of   interest   here   are   for   example   to  

what  extent  the  government  is  interacting  in  our  industry  e.g.  the  support  

they  are  giving,  the  taxes  they  charge  etc.    

• Economical:  Here  we  might  want  to  find  out  how  the  economic  situation,  

of  the  country  we  are  doing  business  in,  looks  like  and  later  what  factors  

are  influencing  us  as  an  organization.  Factors  that  might  be  of  interest  are  

usually  the  distribution  of  income,  the  inflation  rate,  the  demand/supply  

situation  etc.    

• Social:  A  question  that  might  get  asked  here   is  how  important   is  culture  

and  to  what  extent  is  the  community  shaped  by  it?  The  social  part  of  the  

analysis   covers   factors   such   as   demographics,   religion,   population  

analysis   etc.   The   knowledge   that   is   obtained   here   is   able   to   answer  

questions  about  people’s  habits  and  attitudes  e.g.  higher  energy  demand  

during   the   Christmas   season   in   Christian   countries,   viewpoint   towards  

different  energy  sources.    

• Technological:   Here   we   might   want   to   answer   what   technological  

innovations  might  be  of   importance   in   the   future   and  on  what   level   the  

market  is  right  now.  We  evaluate  how  favorable  the  technology,  that  the  

market   contains,   might   be   for   our   business.   This   of   course   always  

  19  

depends  a  lot  on  our  product  and  high  innovation  in  technology  might  in  

the  end  even  be  unfavorable  e.g.  another  wind  turbine  manufacturer  that  

is  able  to  provided  a  better  turbine  than  we  are.    

• Environmental:  When   talking   about   the   environment   in   the   analysis  we  

refer   to   the   natural   environment   like   climate,   weather,   geographical  

position   etc.,   and   not   the   market   environment   related   to   all   the   other  

factors  as  we  did  it  in  the  last  sections.  In  this  part  of  the  analysis  we  want  

to  know  how  the  environment  fits  to  our  needs  e.g.  are  there  enough  open  

fields  to  build  wind  farms  and  how  does  the  wind  level  look  like.    

• Legal:  We  might  want  to  answer  if  there  are  any  regulatory  or  restrictions  

in   our   industry   or   if   there  might   be   some   in   a   future   outlook.   Although  

this   factor   is  often  criticized   for  being   too  closely  related  to   the  political  

part   of   PESTEL,   it   has   shown   to   provide   a   more   precise   picture   in  

comparison  to  a  PEST  analysis.  When  analyzing  the  legal  part  in  another  

country,   the   company  often   starts   to   face  new  possibilities  while  on   the  

other   side   new   restrictions   e.g.   patents   on   technology,   restrictions   of  

some  materials.    

 

6.1  CRITIQUE    

  Of  course  the  PESTEL  analysis  is  not  perfect  and  the  user  needs  to  keep  its  

limitations  in  mind.    

 

  The   PESTEL   analysis   is   not   mathematics   and   problems   are   to   be  

encountered  when  trying   to  assign  a  value   to   the   findings.  Having  a  qualitative  

tool,  instead  of  quantitative,  results  in  an  evaluation  that  needs  to  be  qualitative  

as   well (Yüksel, 2012).   This   limits   PESTEL   in   being   objectively   or   rationally  

analyzed  which  ravages  in  the  results  not  being  comparable (Yüksel, 2012).    

  Another   problem   is   connected   to   the   fact   that   PESTEL   claims   to   use   a  

holistic  approach.  However,  this  is  not  the  case  and  every  single  factor  is  usually  

measured  and  evaluated   independently,  which  might   result   in   a  picture   that   is  

far  from  reality (Byars, 1991).  However,  since  this  factor  has  shown  to  be  of  such  

  20  

a  significant  influence,  the  modern  use  of  PESTEL  usually  includes  the  interplay  

of  each  factor (Byars, 1991).    

  Additionally  PESTEL  is  said  to  neglect    different  factors  in  different  cases,  

which  may  be  of  different  importance (Byars, 1991).  In  some  industries  political  

interaction   might   to   high   degree   influence   a   company’s   profitability,   while  

technological   factors,   on   the   other   hand,   only   are   taking   minor   impacts.   This  

might  result  in  the  factors  differing  tremendously  in  their  importance  and  their  

actual  impact  on  the  business (Byars, 1991).  

6.2  PESTEL  ANALYSIS  SIEMENS  WIND  POWER  

  Since  we  now  know  the  most  important  facts  about  the  PESTEL  analysis,  

it  is  time  to  use  the  theory  in  practice.  The  following  part  of  this  paper  is  going  to  

start  out  with  analyzing  the  political  aspects  that  are  influencing  Siemens  Wind  

Power.    

6.2.1  POLITICAL  

  During   the   last   decades   federal   and   state   governments   have   had   an  

enormous  impact  on  what  energy  source  is  going  to  succeed  and  which  are  not

(Post, 2013).   In  this   industry  it   is  under  no  circumstances  possible  to  talk  about  

fair   and   total   competition   and   many   detractors   even   say   that   governmental  

actions   like   squeezing   taxpayers,   rigging   regulations   and   taxes,   and  

implementing   must-­‐take   provisions   are   a   discrimination   of   the   market (Post,

2013).  The  following  section  is  going  to  look  at  how  political   intervention  made  

and  is  making  an  impact  on  the  wind  industry.  

 

  In   1978   the   industry   of   wind   energy   for   the   first   time   received  

governmental   support.   At   that   time   it   was   The   Energy   Tax   Act   that   was  

containing   titles   such   as   the   Investment   Tax   Credit   (ITC)   for   wind   energy

(Sherlock, 2011).   During   its   history   the   industry   was   shaped   tremendously   by  

governmental   interactions   like   the   Production   Tax   Credit   (PTC)   or   the  

Renewable   Energy   Standard   (RES) (Sherlock, 2011).   However,   the   most  

important   support   in   the   history   of   wind   energy   in   America   has   been   the  

Production  Tax  Credit    (PTC).  The  PTC  was  first  enacted  in  1992,  as  a  part  of  the  

Energy   Policy   Act (Sherlock, 2011).   At   its   inception,   the   PTC  was   providing   an  

  21  

adjusted   tax  credit  of  1.5  cent  per  kWh   in  comparison  with   its  most  recent  2.2  

cent   credit   before   its   last   expiration   (Sherlock, 2011).   The  PTC  was   granted   for  

the   first   10   years   of   operation   for   energy   that  was   supplied   by  wind   turbines

(Sherlock, 2011).     The   support   was   made   to   increase   investments   into  

development  and  production  of  the  wind  energy  industry,  while  at  the  same  time  

providing  a  basis   for  wind  to  be  competitive  to  other  energy  sources (Sherlock,

2011; AWEA, 2013).    

  Another  way  to   look  at   the  PTC  is   that   it   is  a  governmental   tool   to  price  

carbon  dioxide (Barry, 2014).  At   its  contemporary  point   the  U.S.   is  not  pressing  

charges  on  CO2  that   is  released  into  the  atmosphere,  and  power  plants  such  as  

coal   and  gas   are   releasing   tons  of   it   every  day (Barry, 2014; EPA, 2011).  When  

looking  at  the  PTC  from  another  angle,  it  could  be  argued  that  it  is  a  mechanism  

that  still,  in  some  way,  presses  charges  by  not  providing  the  same  support  to  all  

energy  sources (Barry, 2014).    

 

Currently,   President   Obama   and   the   Democratic   Party   control   the  

Executive   Branch   and   Legislative   Senate   of   the   U.S.   government   with  

Republicans   controlling   the   Legislative   House   of   Representatives.   After   the  

election   in   2009,   the   president,   who   has   expressed   himself   very   favorable  

towards   renewable   energies,   has   insured   the   industry   a   high   degree   of  

governmental  support (Galbraith, 2009).    However,  the  situation  at  that  point  of  

time  was  more  complicated  due   to   the   financial   crisis  hitting   the  U.S.  hard  and  

every   penny   spent   was   to   be   well   considered (Summers, 2009).   The   goal   by  

support  the  wind  industry  was  not  only  caused  by  governmental  pressures  from  

other   countries,   but   additionally   the   American   pursuit   of   fossil   fuel  

independency,   the   creation   of   jobs,   an   increase   in   energy   efficiency,   the  

deceleration  of  the  climate  change,  and  the  environmental  protection  in  general

(Sherlock, 2011).  These  goals  were  financed  by  incentives  that  already  have  been  

of  importance  for  many  years  but  after  the  election  of  Obama,  with  an  increased  

focus  on  tax  credits,  direct  grants,  and  the  renewable  portfolio  standard (NREL,

2008).    

 

  22  

The  PTC,  which  has  been  shown  to  be  the  most  important  governmental  

support   incentive,   had  nine  different   amendments   and   expirations   that   caused  

enormous  

fluctuations   in   the  

installment   of  

capacity   in   the  wind  

energy   industry

(AWEA, 2013).  

Figure   4   shows   the  

annual   installment  

of   wind   energy   in  

megawatt  from  1997  

to   the   third   quarter  

of   2013.   At   the   end  

of  1999,  2003,  and  2012,  we  see  the  impact  of  the  expiration  of  the  PTC,  which  

has  been  significant  every  single  time.  The  effects  are  ranging  from  drops  of  76%  

in  2001  and  2004,  all   the  way   to  drops  of  99%   in  2013.  However,   the  positive  

impacts   are   as   noticeable   as   the   negative   ones.   The   PTC   resulted   in   a   tripled  

investment   between   2007   and   2012   accounting   to   an   annual   average   of   $18  

billion (AWEA, 2013).  The  yearly   installment  since  the  Obama  election   in  2009  

was  ranging  from  5GW  all  the  way  to  12GW (AWEA, 2013).    

Additionally,   the   PTC   made   it   possible   for   manufacturers,   including  

Siemens,  to  produce  the  biggest  part  of  the  needed  components  themselves  and  

domestically   on   the   U.S.  market,  which  was   caused   by   companies   investments  

into   manufacturing   facilities   in   44   states,   all   together   supplying   72%   of   all  

turbine   components (AWEA, 2013).   In   comparison   to   2006,   where  more   than  

77%  of  all  components  were  imported,  the  domestic  production  increased  nearly  

50% (AWEA, 2013).    

 

On   the   other   hand   the   PTC   is   still   said   to   be   extremely   unpredictable,  

which   in   the   end   is   an   enormous   burden   for   the   wind   energy   industry,   since  

investors,   developers,   and   turbine   manufacturers   themselves   are   not   able   to  

foresee   the   situation   in   the   long   term (Brown, 2014).  As  of  December  31.  2013  

Figure  4.  AWEA,  2014,  Federal  Production  Tax  Credit  for  Wind  Energy.  https://www.awea.org/Advocacy/Content.aspx?ItemNumber=797  

  23  

the   PTC   is   expired   and   nobody   knows   when   it   is   going   to   be   reactivated.  

However,   there  have  been  different   future  predictions   expecting   the  PTC   to  be  

renewed.   Ron  Wyden,   a   Democrat   who   chairs   the   Senate   Finance   Committee,  

submitted   a   proposal   in   March   2014,   aiming   at   a   renewal   of   different   tax  

incentives  (Doering, 2014).  Although  the  proposal  did  not   include  the  PTC,  both  

Wyden   and   the   officials   representing   the   wind   industry,   are   expecting   the  

production  tax  credit  to  be  included (Doering, 2014).  Additionally  Chuck  Grassley,  

a   supporter   of   the  PTC   and   Senator,   together  with   bipartisan   support   from  26  

senators   and   118   House   members   are   encouraging   Congressional   leaders   to  

extend  credits  helping  the  creation  of  jobs  and  the  development  of  the  renewable  

energy   industry (Doering, 2014).   This   happened   in   March   2014,   but   with  

uncertain  success,  since  Republicans,  which  are  aiming  at  a  permanent  change  in  

the  country’s  tax  code,  lead  the  House  chamber (Doering, 2014).  

 

6.2.2  ECONOMIC  

  The   next   factor   of   PESTEL   that   is   going   to   be   analyzed   is   the   factor  

regarding   the   economical   conditions   on   the   American   market   that   are  

surrounding   Siemens   Wind   Power.   Before   starting   it   is   noteworthy   that   the  

reader  from  now  on  will  be  able  to  draw  parallels  between  the  different  sections  

of   PESTEL.   Especially   this   part   is   going   to   relate   remarkably   to   the   political  

section   since   governmental   intervention   is   influencing   the   economical  

foundation   for   the  wind   industry  dramatically.    Although  some   factors   that  are  

going  to  be  analyzed  might  seem  to  be  repeated,  the  approaches  are  different  in  

their  nature.  

 

  The   financial   crisis   of   2007   has   been   of   major   influence   in   nearly   all  

industries (Sikorski, 2011).   Still   today  many   countries   are   suffering   due   to   the  

damages  the  financial  crisis  caused  which  resulted  in  decreased  expectations  for  

the  following  years (Sikorski, 2011).  However,  the  situation  in  the  U.S.  was  not  as  

traumatic  and   the   installed  capacity  was  above  manufacturers  and  economist’s  

expectations (AWEA, 2013).  One  reason  for  this  is  that  the  U.S.,  like  many  other  

economies   as   well,   are   supplying   the   market   with   cheap   money   to   keep   the  

  24  

economy   running.   In   the   U.S.   it   is   the   Federal   Reserve   System   (FED)   buying  

assets  such  as  treasury  bonds  or  mortgage-­‐backed  securities  with  newly-­‐created  

money (Aziz, 2013).   To   the   present,   the   FED   has   supplied   several   trillion   of  

dollars  of   liquidity,  which  not  only  resulted  in  a  prevention  of  a  crash  but  even  

the  stock  market  rising  to  new  records (Subramanian, 2013).      

  Although  many  detractors  were  predicting  the  American  inflation  rate  to  

increase   dramatically   with   the   market   being   flooded   with   cheap   money,   the  

inflation  rate  has  shown  to  stay  relative  stable  while  even  showing  tendencies  of  

decreases (U.S. Bureau Of Labor Statistics, 2014; Aziz, 2013).  During  the  last  two  

years   the   inflation  rate  was  staying  relatively  stable  between  1  and  2  per  cent.  

According  to  Milton  Friedman  (1969),  an  inflation  rate  is  “healthy”  when  it  stays  

between  2  and  3  per  cent.  This  percentage  should  be   taken  as  a   target  goal  by  

federal   banks   since   a   too   high   inflation   is   for   example   able   to   decrease  

purchasing  power,  while  on  the  other  hand  a  negative  inflation,  called  deflation,  

might  cause  decreases  in  wages  etc.  (Cogley, 1997).    

 

Next   we   will   examine   the   supply/demand   situation   on   the   American  

market  for  electricity  as  it  relates  to  the  employment  rate.  

Since  the  invention  of  electricity  the  major  sources  always  have  been  non-­‐

renewable.  Today,  no  country  is  dominated  with  supply  by  renewables  and  will  

be  many  more  decades  until  this  is  going  to  be  the  case.  Also,  the  U.S.  is  majorly  

supplied   by   non-­‐renewable   sources,   but   as   already   mentioned,   aiming   at  

increasing   the   renewables   contribution.   At   its   contemporary   point   the   U.S.  

produces   more   energy   than   it   consumes,   but   on   the   other   hand   still   lacks   to  

establish  electrical  grids  in  some  areas,  especially  in  rural  Alaska (AWEA, 2013;

REAP, 2013).   In   2014,  Obama   announced   that   new   investments   into  American  

energy  infrastructure  are  going  to  be  made,  which  not  only  is  going  to  extend  the  

existing  grid  but  also  increase  its  capacity (Holdren, 2014).    

The   development   of   wind   farms,   which   exclusively   are   placed   in   rural  

areas,   has   shown   to   contribute   to   the   development   of   the   American  

infrastructure  for  energy  and  on  the  other  hand  was  able  counteract  the  process  

of  urbanization  by   increasing   rural   job  demand (NREL, 2008).   According   to   an  

outlook   made   by   the   National   Renewable   Energy   Laboratory,   the   industry   of  

  25  

wind   energy   is   expected   to   create  more   than   6.3  million   jobs,   both   direct   and  

indirect,  between  2007  and  2030 (NREL, 2008).  What  however   is   important   to  

note   is   the   fact   that   many   of   these   jobs   are   connected   to   the   construction   or  

manufacturing,  which  are  able  to  decrease  when  the  demand  of  new  turbines  is  

low   and   the  market   starts   to   be   saturated (NREL, 2008).   The   potential   of   job  

creation  are  especially  crucial  when  political  decisions  are  to  be  made.  A  major  

task  of  the  government  is  to  decrease  the  unemployment  rate  and  industries  that  

are  favoring  job  development  are  often  in  a  much  better  position  than  industries  

where  the  level  is  expected  to  stay  constant.    

 

  Siemens   Wind   Power   is,   like   every   other   company,   affected   by   this  

economical  situation  and  was,  during  the  last  years,  profiting  of  the  cheap  money  

on   the   market.   However,   what   has   shown   to   be   of   immense   influence   is   the  

unpredictability   of   the   FED   and   its   monetary   policies.   During   the   last   month  

there   were   several   speculations   about   the   FED   changing   their   policies,   which  

every   single   time   resulted   in   a   decline   of   the   American   stock   index,   the   Dow  

Jones.  The  effect  of  the  unpredictability  of  the  FED,  as  with  the  unpredictability  

of  the  PTC,  faces  investors  with  an  increased  degree  of  risk  and  by  that  decreases  

their  willingness  to  invest  in  long-­‐term  projects  like  the  development  of  a  wind  

farm.  However,  the  fact  that  it  is  able  to  provide  jobs  and  that  the  market  is  far  

from  saturated  still  favors  the  industry.    

6.2.3  SOCIAL  

  The  social  factors  of  a  country  are  one  of  the  factors  showing  the  biggest  

variation   of   importance   in   different   industries.   The  wind   industry,   however,   is  

said   to  be  remarkable   influenced  by  these  conditions  and  the  reason   for   this   is  

going  to  be  found  in  the  following  section.    

 

  Before  starting  it  is  important  to  note  that  the  individual  consumer,  of  the  

energy  supplied  by  a  wind   turbine,   is  not   the  direct  customer  of   the   turbine   in  

itself.  The  wind  developer,  already  introduced  earlier,  is  an  important  part  in  the  

supply  chain  when  it  comes  to  the  social  factors  inside  the  market,  since  they  are  

  26  

deciding  what  turbine  and  manufacturer  to  choose  and  where  to  place  the  wind  

farm.    

 

  The  United  States  of  America  has  a  very  high  demographic  variation  and  

therefore   a   high   variation   of   attitudes   as   well.   In   2013   Charul   Vyas   and   Dave  

Hurst  together  with  Navigant  Research,  published  a  consumer  survey  in  regard  

to   attitudes   towards   energy   and  environment.  The   survey  was   conducted  with  

1.084   U.S.   adults  with   a   sample   balanced   by   nationality   and   demography.   The  

first   part   of   the   survey  was   in   regard   to   different   energy   sources   and   vehicles  

running   on   renewable   sources.   The   servants   had   6   different   possible   choices:  

Very   Favorable,   Favorable,   Neutral,   Don’t   Know,   Somewhat   Unfavorable,   and  

Strongly   Unfavorable.   The   outcomes,   where   only   “Very   Favorable   “   and  

“Favorable”  are  included,  are  represented  in  figure  5.  

 Figure   5,   Vyas;   Hurst,   2013,   Energy   and   Environment   Consumer   Survey.  http://www.navigantresearch.com/wp-­‐assets/uploads/2013/12/WP-­‐EECS-­‐13-­‐Navigant-­‐Research.pdf  

  As  the   figure  shows,  both  the  renewable  energy  sources,  solar  and  wind  

were   favored   by   more   than   70%   of   the   servants.   Wind   and   solar   were  

unfavorable  for  7%  and  6%  respectively,  with  the  rest  having  a  neutral  or  don’t  

know  attitude  towards  the  renewable  energy  sources (Vyas & Hurst, 2013).  

 Solar,   which   scored   a   little   higher   on   the   favor   scale   than   wind,   gives  

more   consumers,   in   comparison   to   wind,   the   opportunity   to   install   their   own  

panels,  by  that  producing  their  own  energy  and  having  the  freedom  of  decision.  

The   customer   thereby  perceives   solar   as   a  more   feasible   energy   source   than   a  

wind  turbine,  which  in  itself  is  too  costly  for  most  people.  Another  factor  that  is  

said  to  increase  peoples  favorability  towards  solar  is  the  fact  that  the  installment  

  27  

of   solar   panels,   at   least   on   rooftops,   does   not   take   enormous   impact   on   the  

overall   impression   of   the   area   and   neither   has   impact   on   the   environment  

surrounding   it (SEIA, 2014).   A  wind   turbine,   on   the   other   hand,   is  much  more  

noticeable,   is   subject   to   more   Not   In   My   Backyard   (NIMBY)   issues,   and  

additionally   has,   a   perceived   impact   on   the   wildlife   lying   inside   the   habitats  

surrounding  its  placement (NWCC, 2010).    

  Figure   6   shows   the  

consumer   favorability   for  

wind   energy   by  

demographics.  First  of  all   it  

is   noticeable   that   peoples  

favorability   towards   wind  

energy   increases   as   their  

education   level   increases.  

Also   income,   which   is  

positively   related   to   the  

degree   of   education,  

increases   people’s  

favorability   towards   wind.  

A   higher   degree   of  

education,   which   generally  

causes   more   long   term  

oriented   decisions,   favors  

the   fact   that   wind   energy  

decreases  the  fossil   fuel  dependency  and  additionally  protects  the  environment  

when  evaluating   in   long  terms.  A  higher   income,  on  the  other  hand,   is  allowing  

people   to   spend  more   on   energy   and   since  most   of   the   renewable   sources,   on  

their   contemporary   level   of   technology   are   not   able   to   provide   energy   to   the  

same  low  price  as  their  nonrenewable  rivals  are,  the  favorability  to  renewables  

increases  when  income  raises.    

The  three  last  factors,  gender,  age,  and  ethnicity,  are  said  to  be  influential  

since   they   are   related   to   both   income   and   education (Aarora, 2006; O'Neill &

O'Neill, 2006; Perry & Gundersen, 2011).  

Figure  6.  Vyas;  Hurst,  2013,  Energy  and  Environment  Consumer  Survey.  http://www.navigantresearch.com/wp-­‐assets/uploads/2013/12/WP-­‐EECS-­‐13-­‐Navigant-­‐Research.pdf  

  28  

 Although  the  American  government  is  trying  to  reduce  the  pay  inequality  

in   regard   to  pay   and   gender,  men   are   still   earning   an   average  of   close   to  20%  

more  than  their   female  colleagues (Perry & Gundersen, 2011).  Education,  on  the  

other  hand,  is  higher  for  women;  they  earn  more  bachelors  and  master  degrees  

but   lack   behind   on   doctorates   (IES, 2013).   The   difference   in   education   is   in  

comparison  to   the  pay/gender  relation  much  smaller  and  only  accounts   to   less  

than  a  5  per  cent  difference (IES, 2013).    

  Also  ethnicity  and  income,  as  well  as  education,  are  related  to  each  other

(O'Neill & O'Neill, 2006; Aarora, 2006).   The   average   Caucasian   man   earns   on  

average  $819  dollars  a  week,  which  is  lower  than  the  Asians  who  earn  $952,  but  

higher   for   both   African-­‐American   and  Hispanics  who   earn   an   average   of   $621  

and  $569  respectively (U.S. Deparment Of Labor, 2010; U.S. Census Bureau, 2011).  

Between  ethnicity  and  education  there  is  also  a  correlation  to  be  found (Aarora,

2006).   The   highest   percentage   of   people   having   at   least   a   bachelor   degree   are  

found  within  the  Asian  race  with  close  to  51%,  followed  by  Caucasians  with  32%,  

and   Black   and   Hispanic  with   19,7%   and   13%   respectively (Aud & Fox, 2010).  

When  putting  this  data  in  relation  to  the  outcomes  in  figure  6,  we  see  that,  expect  

for   the   Hispanic   race,   there   is   a   correlation   between   ethnicity   and   education

(U.S. Department Of Education, 2010)    

  The   conclusion   here,   when   generalizing,   is   that   the   most   supportive  

groups   of   people   consist   of   Asian,   Hispanic   or   Caucasian   descent,   has   a   high  

income,   is  highly  educated,   their  gender   is  male,  and  they  are  65+.  However,   is  

important   to   note   that,   although   dividing   by   those   factors,   every   group  within  

each  factor  had  at  least  favored  wind  energy  with  59%.    

In   the  end,   although  people  generally   say   they   favor  wind  energy,   there  

still  arise  problems  when   it   comes   to   the  actual  construction  of   the  wind   farm.  

Typically  a  wind  farm  consists  of  dozens  to  hundreds  of  turbines  that  are  placed  

on   a   land   of   thousands   of   acres.   The   actual   farm   additionally   consists   of   sub-­‐

stations,  access  roads,  and  transmission  wires  that  are  placed  within  and  around  

the  farm.  Problems  that  arise  are  connected  to  aesthetic  and  acoustic  factors  and  

opponents   tend   to  become  NIMBYs.    An  attitude   the   literature  calls   “not   in  my  

backyard”  or  shortened  NIMBY.  

 

  29  

  By  now  we  know  the  general  U.S.  attitude  towards  wind  energy  and  what  

problems  might   arise.  However,   since   a   country's   population  does   not   directly  

decide   on   decisions,   regarding   the   development   of   wind   power,   other  

stakeholders   are   of   importance   as   well.   The   U.S   government,   which   is   elected  

every   fourth  year,   is   running   their  campaign  before  election   to  advertise  about  

their  future  goal  of  the  country.  During  the  last  years,  especially  the  Democratic  

Party   has   pronounced   itself   very   favorable   towards   wind   energy   and   its  

development (Handley, 2012).  However,   energy   is  only  one  of  many   issues   that  

are  lying  inside  a  parties  campaign  and  it  would  be  false  to  conclude  that  every  

American  voter,  who  is  pro  wind,  would  decide  to  go  with  the  Democrats.    

Also  wind  developers  are  extremely  affected  by  people’s  attitude  towards  

wind  energy.  Being  backed  by  a  big  community  increases  the  chance  of  success  

for   a   project,   and   it   is   important   for   the   developers   to   take   those   factors   into  

account (Nickell, 2014).  When   deciding  where   to   build   it   is   therefore   not   only  

important  to  decide  by  market  and  legislative  conditions,  which  are  going  to  be  

elaborated  later  in  this  analysis,  but  also  the  ethnographic  characteristics  of  the  

areas   and   to   what   extend   its   inhabitants   are   supporting   wind   energy.   But   as  

already   mentioned   earlier,   although   most   people   say   they   favor   wind   energy  

there  are  still  problems  that  might  arise.  To  avoid  these  problems  it  is  important  

for  developers  to  include  the  local  community  make  them  aware  of  the  potential  

problems   and   benefits   that   the   wind   farm   is   going   to   contain   before   starting  

construction.    

6.2.4  TECHNOLOGICAL  

  The  technological  level  of  a  turbine  is  crucial  for  manufacturers  success.  It  

is   not   for   nothing   that   R&D   is   one   of   the   biggest   costs   that  manufacturers   are  

facing.    Besides  a   company’s   internal   level  of   technology,   the   country’s   specific  

energy   infrastructure   is  of   tremendous   importance.  This  part  of   the  analysis   is  

going   to   analyze   the   overall   technological   level   of   the   wind   turbine  

manufacturers   in   the   U.S   while   additionally   putting   focus   on   the   general  

infrastructure  of  the  country.  

 

  30  

  The  U.S  is  a  very  big  country,  but  in  comparison  to  many  others,  not  that  

populated.  The  population  density   in   the  U.S   is  84  per  one  square  mile,  609   in  

Germany,   and   333   in   Denmark (U.S. Census Bureau, 2011).   Countries   facing   a  

higher  density  of  population,  like  Germany,  often  already  have  established  wide-­‐

ranging  streets  and  water  pipes  plus  additionally  transmission  lines,  distribution  

circuits,   and   substations,   which   are   crucial   for   the   transport   of   electricity

(AWEA, 2013).   On   the   other   hand,   a   country   having   a   lower   density   of  

population  often  has  areas  where   these   infrastructures  still   lack  behind  or   just  

are   not   the   capable   of   dealing   with   the   huge   amount   of   energy   a   wind   farm  

produces   (Komperda, 2014).   Additionally   to   that,   areas   that   might   be   able   to  

handle   the   amount   of   energy,   with   the   necessary   infrastructure   components  

already   installed,   are   often   extremely   quickly   occupied   by   developers   (Nickell,

2014).  

As   a   reaction   to   those   concerns   in   the   energy   infrastructure,   Obama  

signed  a  memorandum  for  the  first  Quadrennial  Energy  Review  (QER) (Holdren,

2014).   The   memorandum,   which   was   signed   on   January   9th   2014   and   was  

fulfilling   a   commitment   from   the   Climate   Action   Plan,   which   ensured   that   the  

federal  government   is  continuing  to  meet  economic,  market,  and  security  goals

(Holdren, 2014).   The   QER   is   going   to   focus   directly   on   the   infrastructure   for  

energy   e.g.   transmitting,   storing,   and   delivering (Holdren, 2014).   The   plan   is   to  

establish  200.000  miles   of   high-­‐voltage   transmission   lines,   2.2  million  miles   of  

local  distribution  circuits,  300.000  miles  of  transmission  pipelines,  and  hundreds  

of  processing  plants  and  storage  facilities  for  natural  gas  (Holdren, 2014).  Besides  

the   importance   of   the   transmission   lines,   distribution   circuits,   and   substations  

being  present,  it  is  also  very  important  that  the  quality  and  technological  level,  of  

the   components   used,   are   high   since   it   is   able   to   increase   the   efficiency  

dramatically (Chakrabortty, 2014).  When  using  old  or  components  of  bad  quality  

the   losses   on   the  way   to   the   end   consumers   are   able   to   decrease  wind   farms  

profitability,   while   additionally   decreasing   its   eco-­‐friendliness (Chakrabortty,

2014).  

 

  When   developing   a   wind   farm   it   is   very   important   to   keep   these  

infrastructure  characteristics  in  mind.  Building  a  wind  farm  in  a  rural  area  where  

  31  

no   streets,   transmission   lines,   or   substations   are   present,   the   project   might  

dramatically  increase  its  cost  since  all  of  this  is  to  get  build.    

 

  Looking  at  the  technological  level  within  the  suppliers  of  a  wind  turbine,  

we  find  different  factors  that  are  to  be  taken  into  consideration.    

  What   is  said  to  be  one  of   the  major  disadvantages  of  wind  energy   is   the  

fact   that  wind   is   not   able   to   provide   energy,   independent   from   other   sources,  

over   longer   terms (EIA, 2011).   Except   for   solar,  wind   is   the  only   source  where  

the   supply   cannot   be   ensured   totally,  which   results   in  wind   energy   only   being  

used  in  connection  with  other  sources (EIA, 2011).    

However,   during   the   last   years   not   only   has   the   size   of   the   turbines  

increased   but   also   their   overall   efficiency.   Siemens,   or   at   that   point   Danregn,  

started   out   with   producing   a   25   kW   onshore   turbine   in   1980.   Today   the  

company’s   turbine   portfolio   consists   of   4   different   turbines,   2   onshore   and   2  

offshore,  having  a  capacity  between  2.3  and  6  MW  (Siemens, 2013).  The  turbines  

are   designed   to   work   under   different   environmental   conditions,   the   G2,   their  

smallest   onshore   turbine   with   2.3   MW,   being   able   to   handle   a   wide   range   of  

different  wind   conditions,   the   D2,   their   biggest   onshore   turbine  with   3.2  MW,  

working   best   under   strong   wind   conditions,   the   G4,   their   smallest   offshore  

turbine  with  4MW,  designed  to  work  under  a  wide  range  of  offshore  conditions,  

and   the   D6,   their   biggest   offshore   turbine,   working   best   with   strong   wind  

conditions (Siemens, 2013).   Inside   each   platform   of   turbine   the   developers   are  

able   to   decide   on   which   rotor   blade   to   make   it   fit   best   to   the   environmental  

conditions (Siemens, 2013).    

GE-­‐Energy,  Siemens  strongest  competitor  on  the  American  market,  offers  

a   wider   range   of   onshore   turbines   but   on   the   other   hand   only   one   offshore  

turbine.   Their   on-­‐shore   product   portfolio,   which   ranges   from   1.7   to   3.2   MW,  

contains  8  different  turbines (GE-Energy, 2014).  Their  only  off-­‐shore  turbine  is  a  

4.1  MW   turbine,   and   aims,   in   comparison   to   others,   not   to   be   the   biggest   but  

rather  to  stand  out  by  its  reliability  and  availability (GE-Energy, 2014).  

Although  efficiency,  capacity  and  reliability  are  all  very  important  factors  

in   themselves,   there   are  other   factors   that   the   average  person  might  not   think  

about.   Information   provided   by   a   wind   developer   tells   that   especially   factors  

  32  

regarding   sound   have   shown   to   take   an   enormous   impact   on   the   actual  

realization  of  a  wind  farm (Komperda, 2014).  Owners  of  the  land,  where  the  wind  

farm   is   to   be   build,   are   often   going   to   live   close   to   the   turbines   and   might  

therefore  be  affected  by  the  noise  the  nacelle  and  the  rotor  blades  produces.    The  

noise   has   shown   to   impact   people’s   health   and   is,   although   rarely,   causing  

headaches,   insomnia,   blurred   vision,   difficulties   in   thinking   and   remembering,  

dizziness,   or   even   tinnitus (Ryan, 2014).   For   a   turbine   manufacturer   it   is  

therefore   important   to   take   these   factors   into   account  when  developing   a  new  

onshore  turbine.  Generally,  a  turbine  can  be  quieter  at  certain  sound  frequencies  

as   the  rotor  diameter   increases  since   the  blades  are  going   to  move  slower,  but  

other  acoustic  frequencies  can  be  louder.  On  the  other  hand,  larger  turbines  may  

increase  the  problem  of  shadow  flickers,  which  are  shadows  made  by  the  rotor  

blades.    

 

The   process   of   R&D   of   a   wind   turbine   is   still   going   to   implement  

enormous   changes   in   the   next   few   decades   and   also   the   fact   that   investments  

into   infrastructure   are   made   are   going   to   change   the   situation.   Already   today  

different   technologies   are   able   to   reduce   the   noise   factor   of   a   turbine  

tremendously   while   additionally   eliminate   shadow   flickers,   due   to   another  

design   of   the   turbine (Lombardo, 2013).   Additionally   engineers   are   trying   to  

develop  a  technology  that  makes  it  able  to  store  the  electricity  produced  by  wind  

turbines,  which  would  make  it  possible  for  wind  to  be  the  only  energy  source  if  

the  average  production  would  exceed  consumption (Bullis, 2014).  However,  this  

technology  is  still  in  its  first  stages  and  it  is  going  to  take  some  more  years  to  go  

into  production.  

 

Generally   Siemens,   although   having   a   smaller   portfolio,   has   positioned  

them   favorably.   Focusing   only   on   a   smaller   range   enables   them   to   profit   of  

economies  of  scale  while  on  the  other  hand  directing  more  resources  to  a  smaller  

group  of  products.    

Also   the   planned   infrastructure   investment   increases   the   favorability   of  

wind  in  general  since  it  decreases  costs  that  are  associated  to  the  construction  of  

a  wind  farm.    

  33  

6.2.5  ENVIRONMENTAL  

  Now  we  are  going   to   take  a   look  on   the   factors   that  are,  or  might  be,  of  

importance   for   wind   energy   in   regard   to   the   environmental   conditions.   As  

already  noted  earlier,  the  word  environment  used  in  the  PESTEL  analysis  refers  

to  the  nature  of  the  country  or  the  biotic  environment.  

 

  Before  starting   it   is   important  to  know  how  wind  energy  actually  works  

since  there  actually  are  many  factors  that  are  taking  influence  that  most  people  

do  not  note.    

Wind   power   is   actually   a   form   of   solar   energy (WED, 2014).   Wind   is  

caused  by  the  uneven  heating  of  the  atmosphere  made  by  the  sun,  by  the  rotation  

of   the   earth,   and   additionally   the   irregularities   of   the   earth’s   surface (WED,

2014).  Furthermore,  the  oceans  surrounding  the  areas,  the  different  geographical  

terrains/elevation,   and   the   vegetative   covers   influence   wind   and   its   speed

(WED, 2014).    

 

  The  U.S.  is  one  of  the  biggest  countries  worldwide,  which  results  in  having  

different   climate   zones.   The   climate   zones   are   ranging   from   desert   climate   in  

Arizona  and  California  to  subarctic  climate  in  Alaska.  Additionally  to  that,  the  U.S  

is  surrounded  by  the  Atlantic  and  Pacific  Ocean.  These  two  factors,  both  climate  

zone  and  circumvallation  of  both  oceans  contribute  to  U.S.  having  7  different  air  

masses  throughout  the  country.  

  When   developing   a   wind   farm   it   is   necessary   to   keep   these   factors   in  

mind.  It   is  not  only  important  to  focus  on  the  average  wind  level  of  the  specific  

areas,   but   also   the   overall   variation   in   it.   Although   turbines,   during   the   last  

decades   developed   impressively,   natural   disaster   still   have   to   be   taken   into  

account.   Earthquakes,   hurricanes,   tornadoes   and   floods   are   all   able   to   cause  

enormous   damages,   not   only   to   the   turbines   themselves,   but   also   to   all   the  

different   components   that   are   included   in   the  wind   farm (Lawson, 2013).  Most  

commonly  all  of   these  parts  are  well   insured,  but   the  premium  increases  when  

placing   the  wind   farm   in   an   area  where   these   natural   disaster   are  more   likely

(Lawson, 2013).  The   increase   in  premium  is  not  only  affecting   the  owner  of   the  

  34  

farm  but   especially   the   end   consumer   since   it   increases   the   cost  of  production  

and  by  that  the  final  price.  

  So  where  should  developers  place  wind  farms  to  make  the  highest  profit?  

Generally  the  best  wind  levels  are  obtained  in  the  coast  and  mountain  areas  plus  

additionally   the   Great   Plains   ranging   from   North   Dakota   all   the   way   to   Texas

(AWEA, 2013).  According   to   the  American  Wind  Energy  Association   the  best  3  

states  for  the  development  of  a  wind  farm,  when  evaluating  by  the  average  wind  

level,  are  North  Dakota,  Texas  and  Kansas (AWEA, 2013).   In   the   following  part  

we  are  going   to   look  at  North  Dakota   in  more  detail   to   see  what   factors  might  

influence  the  decision  of  where  to  establish  a  wind  farm.    

 

North  Dakota   is   placed   in   the   northwestern   continental   area   of   the  U.S.  

Being  placed   in   the   continental   climate   zone;  North  Dakota   is   characterized   as  

having  cold  winters  and  hot  summers  and  experiences  a  wide  variety  of  weather  

conditions.   This   area   is   especially   influenced   by   the   continental   arctic   and  

continental  polar  air  masses,  which   results   in  having   the  highest  average  wind  

level  of  the  U.S.,  with  a  speed  of  approx.  11  meters  per  second (NOAA, 2002).    

The  National  Renewable  Energy  Laboratory  and  the  Associated  Weather  

Services  calculated   the  states  capacity,  when  subtracting  protected  areas,   to  be  

770.000   MW,   which   is   more   than   all   of   the   U.S.   fossil-­‐fueled   power   plants  

produce  together (NREL, 2014).  With  this  number  North  Dakota  is  the  6th  biggest  

wind  resource  area  in  the  U.S. (AWEA, 2013).    

North   Dakota   ranks   as   number   3   when   looking   at   the   percentage   of  

energy  supplied  by  wind (AWEA, 2014).  At  its  contemporary  point  the  state  has  

a  total  installment  of  995  turbines  together  producing  1.6  MW  which  accounts  to  

approx.  15%  of  the  states  total  electricity  production (AWEA, 2013).    

Especially  due  to  the  states  climate  the  energy  consumption  stays  high  all  

year   long  with  air-­‐conditions  running   in   the  summer  and  heaters   in   the  winter  

times.   Per   capita   the   state   is   placed   at   the   4th   most   consuming   state   in   the  

country,   with   an   average   of   19.8   kWh   per   person,   which   is   more   than   7kWh  

higher  than  the  U.S  average (CEC, 2011).    

 

  35  

What  is  important  to  note  when  evaluating  the  wind  capacity  of  different  

areas  is  that  there  not  only  are  different  methods  to  calculate  these  numbers  but  

also   the   ongoing   development   in   the   industry   with   bigger   and   more   efficient  

turbines   being   put   into   production (Söder, 2009).   Different   countries   use  

different  formulas  to  calculate  the  capacity  of  wind  and  all  of  them  are  giving  the  

user   another   result.   Factors   that   are   influencing   the   calculations   are   the   level  

above  ground  where   the  wind   is  measured,  what   technology   is  used,  and  what  

time   of   the   year   and   day   is   measured (Söder, 2009).   Using   different   methods  

might  make  a  project  much  more  attractive  than  using  another  and  it  is  therefore  

crucial   for  developers   to  keep   this   in  mind (Söder, 2009).    Often  using  different  

methods  together  the  user  is  able  to  eliminate  errors  that  are  arising  in  others,  

by  that  giving  a  more  realistic  picture (Söder, 2009).  

 

Generally   the  environmental   conditions  are  more   than   just  good   for   the  

installation  of  wind  turbines.  However,  it  is  important  to  remember  that  the  cost  

of  building  a  wind  farm  is  not  only  connected  to  the  installation  of  the  turbines  

but  also  the  total  grid  (Nickell, 2014).  This  is  one  of  the  reasons  why  states  such  

as  North  Dakota,   South  Dakota,  Wyoming  and  Montana  are  not   totally   covered  

with  wind   farms,   since   not   only   demand   is   too   low   but   also   the   actual   cost   of  

establishing   the   grid   would   go   into   the   billions (Nickell, 2014).   However,  

generally   the   environmental   conditions   may   outweigh   these   other   concerns  

depending  on  project  specifics.    

6.2.6  LEGAL  

  Numerous   legal   issues  can  arise  when   it   comes   to   the  development  of  a  

wind   farm.   Also   this   factor   is   going   to   deal   more   directly   with   the   wind  

developers   instead   of   the  manufacturers,   since   it   is   the   developers   facing   and  

dealing  with  the  issues.  Especially  the  topic  concerning  the  land  and  its  owners  

where  the  farm  is  to  get  build  is  going  to  be  discussed  in  more  detail.    

 

  In   the   U.S.   a   wind   farm   usually   stretches   over   several   hundred   up   to  

several   thousands   of   acres   and   therefore   contracts   with   many   different  

landowners  are  to  be  made  (Nickell, 2014).  The  land  is  not  only  going  to  be  used  

  36  

for   the   turbines   themselves  but  also   the  electrical  grid  containing  sub-­‐stations,  

high   voltage   transmission   lines   and   distribution   circuits (Komperda, 2014;

Nickell, 2014).  The  lease  agreement,  which  is  going  to  be  signed  by  both  parties  

and   usually   last   for   30   years,   is   going   to   address   the   period   of   the   lease,   how  

much   is  be   leased,  how  much   is   to  be  paid,  how   the  payment   should  be  made,  

what   rights   the   developers   and   the   landowner   receives,   what   the   termination  

rights  are,  how  the  components  of  the  farm  are  to  be  insured,  and  how  it  works  

after  the  lease  agreement  expired  (Nickell, 2014).  Furthermore  it  is  important  for  

the  developers  to  ensure  that  there  are  no  easements  that  are  covering  that  area  

where  the  farm  is  to  get  build,  since,  especially  coal  and  gas  companies  are  able  

to  exert  their  easements  by  that  eliminating  the  developers  contracts  made  with  

the  landowners  (Komperda, 2014; Barry, 2014).    

However,   besides   needing   the   approval   from   the   landowners,   the  

developers   also   needs   the   local   governmental   agencies,  who   control   the   siting  

process,   to   agree   on   the   project   (Nickell, 2014).   During   the   development   of   a  

wind   farm,   developers   usually   run   into   several   problems   that   are   causing   the  

area  to  shrink  little  by  little  (Nickell, 2014).  According  to  Kyle  Barry,  an  attorney  

dealing  with  the  development  of  wind  farms  said  that  especially  zoning  codes  are  

contemporary  facing  developers  with  issues (Barry, 2014).  Zoning  control   is  the  

division   of   geographical   area   (e.g.   residential,   commercial,   agricultural,  mining  

zone  etc.  Laws  control  each  zone  and  only  some  of  the  zones  are  eligible  for  the  

construction   of   a   wind   farm   typically   agricultural.   Since   the   industry   of   wind  

energy,  in  comparison  to  others,  is  relatively  young  there  are  new  laws  executed  

on  regular  basis,  which  changes  the  whole  legal  system  for  a  project.  Especially  

zoning  is  affected  by  this  which  is  caused  by  the  fact  that  not  only  more  turbines  

are  installed  but  also  are  they  getting  bigger  and  bigger.  As  already  mentioned  in  

the   technological   factor,  especially  noise  and  shadow  flickers  are  causing   these  

new  laws,  since  they  not  only  are  affecting  the  land  owners  themselves  but  also  

the  local  community  living  close  to  the  turbines.    

  Since  there  a  many  problems  a  project  might  run  into,  developers  tend  to  

sign   an   option  with   the   landowners   before   signing   the   actual   lease   agreement  

(Nickell, 2014).   This   option   is   going   to   ensure   the   developers   of   having   the  

“option”   of   leasing   the   land  while  being   able   to   continue  development  without  

  37  

the   duty   to   lease   the   land   (Nickell, 2014).   When   continuing   the   development,  

developers   are   going   to  deal  with   the   so-­‐called   commercial   agreements,  which  

we  are  going  to  look  at  now.  

 

  Commercial   agreements   are   agreements   such   as   the   turbine   purchase  

agreement,  the  warranty,  operation  and  maintenance  agreement,  and  the  power  

purchase  agreement.    

  The   turbine   purchase   agreement   is   an   agreement,   either   soft   or   hard,  

between  the  developers  of  a  wind  farm  and  a  turbine  manufacturer (Komperda,

2014).  Both  parties  are  by  the  use  of  a  contract  ensuring  when  to  pay,  how  to  pay,  

when   to   deliver,   how   to   deliver,   who   has   to   install   the   turbines,   who   is   liable  

during   the   shipping   process,   and   often  who  has   to   deal  with  maintenance   and  

warranty  for  the  next  years.    

The  cost  of  the  turbines  for  a  whole  wind  farm  goes  into  the  hundreds  of  

millions,   sometimes  billions,   and   the  way  of   financing   is   to   be  well   considered

(Nickell, 2014).   Due   to   the   high   cost,   the   developers,   which   at   that   point   of   a  

project  usually  already  are  backed  by  an  investor,  are  passing  this  part  over.  It  is  

now  the  task  of  the  investor,  who  might  be  a  utility  company  or  a  pension  found  

etc.,   to   finance   the  project   and   to   contact   a   lender   if   needed (Komperda, 2014).  

The  reason  for  investors  entering  into  the  agreement  might  be  motivated  by  tax  

benefits   connected   to   the   PTC,   or   the   fact   that   the   project   is   seen   as   an  

reasonable   investment   (Barry, 2014).  When   looking   for   a   way   of   financing   the  

PPA  starts   to  be  of   importance  since   it   is  securing  the  energy,  produced  by  the  

farm,  to  be  purchased  by  a  utility  company  (Barry, 2014).  When  having  the  PPA,  

financing  usually  becomes  easier,  since  you  can  ensure  your  lender  that  you  have  

regular  cash  flows  coming  in  (Barry, 2014).  However,  the  PPA  is  sometimes  hard  

to  acquire  (Nickell, 2014).  One  factors  causing  the  PPA  to  be  hard  to  get  is  the  fact  

that   wind   is   an   intermediate   resource,   which   means   that   it   is   not   possible   to  

ensure  that  the  wind  level  is  going  to  stay  constant  during  the  time  of  agreement,  

and   because   wind   still   is   more   expensive   than   other   energy   sources   and  

especially   than   the   energy   supplied   by   its   nonrenewable   rivals   (Barry, 2014;

Nickell, 2014).  Another  factors  is  related  to  the  grid  owner,  who  might  force  you  

to  decrease  your  output  if  the  grid  would  be  overloaded  when  the  total  amount  

  38  

of   energy  would  be   injected,  which  would   result   in  your  purchaser  not   getting  

the   total   possible   output (Nickell, 2014).   However,   there   are   also   factors  

increasing   the   chance   for   a   wind   farm   to   receive   a   PPA.   One   factors   is   the  

renewable   portfolio   standard,   already   elaborated   earlier,   which   however   is  

facing   increasing   competition   form   the   stock   market   where   utility   companies  

might  decide  to  invest  in  options  on  renewables (Barry, 2014).    

 

The  issues  discussed  above  are  only  a  few  of  many.  It  is  essential,  not  only  

for   the   developers   but   for   the   manufacturers   as   well,   to   keep   in   mind   where  

problems  might  arise  since  they  are  able  to  cancel  a  whole  project.  Especially  the  

fact  that  new  laws,  which  might  have  an  enormous  impact  on  the  industry,  might  

be  executed  on  a   regular  basis  needs  attention  by  both   the  developers  and   the  

manufacturers.    

7.  PORTERS  FIVE  FORCES  

  Porters  Five  Forces  is  a  framework  developed  in  1980  by  Michael  Porter,  

a   professor   in   strategic   management.   Porter,   who   is   said   to   be   one   of   the  

founding   fathers   of   strategic   management,   wrote   more   then   17   books   and  

developed  several  different  analytical   tools   for  corporate  strategy (Kotler et al.,

2009).   However,   one   of   the  most   popular   tools,   not   only   around  managers   but  

also  around  business  schools  all  around  the  world,  is  the  five  forces  framework

(Hollensen, 2011).     The   framework   is   to   help   a   company   to   evaluate   both   the  

potential   profitability   inside   the   industry   and   on   the   other   hand   its   own  

competitive  position (Hollensen, 2011).    

When   using   the   framework   the   company   analysis   five   different   factors  

that  are  to  evaluate  the  nature  of  competitiveness  in  a  given  industry (Hollensen,

2011; Kotler et al., 2009).   These   five   different   forces   are   elaborated   in   the  

following  part.  

 

The   first   force   we   are   going   to   look   at   is   “Rivalry   Among   Competing  

Firms”.   This   force   is   usually   said   to   be   the  most   influential   one   of   all   the   five  

different   forces (Kotler et al., 2009).   Rivalry   Among   Competing   Firms   is   the  

  39  

rivalry  between   companies  offering   a  product   that   is   able   to  provide   the   same  

basic  feature  e.g.  a  turbine  by  Vestas  or  Siemens (Kotler et al., 2009).    

For   the   firm   to   have   a   competitive   advantage,   they   might   implement  

different  strategies.  Some  of   the  most  used  strategies  here  are   lowering  prices,  

enhancing  quality,  providing  additional  services,  increase  warranty  coverage,  or  

adding  new  features (Kotler et al., 2009; Hollensen, 2011).   In  general,   the  rivalry  

increases  as  soon  as  the  number  of  competitors  increases,  since  all  of  them  are  

aiming  at  increasing  profitability  and  sales (Kotler et al., 2009).  However,  not  only  

the  number  of  competitors  has  shown  to  take  impact  on  the  degree  of  rivalry  in  

the   industry,   also   the   size   and   capability   of   the   competing   firms,   changes   of  

market   conditions   such   as   demand   declines,   a   wide   range   of   substitutes,   low  

entry  barriers,  generally  high  fixed  costs  in  the  industry,  and  leaving  barriers  are  

high,  have  all  shown  to  increase  the  intensity  of  rivalry (Hollensen, 2011).    

Another  factor  that  had  tremendous  influence  on  the  competition  within  

the  same   industry   is   the  modern  way  of   information  access.  Since   the   Internet,  

everybody  is  able  to  gather  information  not  only  about  a  product  in  general  but  

also   to  compare  prices  between  several   retailers.  This  new  way  of   information  

access   tremendously   increased   competition   and   is   extremely   favorable   for   the  

end  customer.  

 

The   second   force  we  are  going   to   look  at   is   the   “Potential  Entry  of  New  

Competitors”.  As  soon  as  the  entry  barriers  into  an  industry  are  low,  it  increases  

the   overall   intensity   of   competitiveness (Hollensen, 2011).   Mostly   barriers   to  

enter   an   industry   are   connected   to   factors   such   as   the   level   of   technology   and  

know-­‐how   that   is   needed,   the   experience   that   other   firms   in   the   industry   are  

having,   the   loyalty   customers  have   to   their   preferred  brand,   the   capital   that   is  

required  to  enter,  the  development  of  distribution  that  is  needed  to  deal  out  the  

product,  the  degree  to  which  patents  cover  specific  features  of  the  products,  the  

general   access   to   raw  materials   that   are   needed,   and   governmental   regulatory  

like  tariffs  or  restrictions  etc. (Kotler et al., 2009).    

However,   it   sometimes   happens,   although   entry   barriers  might   be   high,  

that   new   companies   are   entering   the   industry   with   products   that   might   be  

cheaper,  have  a  higher  quality  etc.,  which  might  be  caused  by  an  innovation  that  

  40  

the  company  discovered  or  a  big  company  having  a  lot  of  resources  that  is  able  to  

profit   of   economies   of   scale (Hollensen, 2011).   Because   things   like   that   might  

happen,   it   is   always   crucial   that   firms  within   the   industry  monitor   the  market  

and  are  able  to  react  accordingly  to  threats  like  this.    

 

The   third   force   we   are   going   to   look   at   is   “The   Threat   Of   Substitute  

Products”.  A  substitute  is  a  product  or  a  service  that  is  going  to  provide  the  end  

used   with   closely   the   same   feature (Hollensen, 2011).   The   car   industry   faces  

substitutes   such   as   motorcycles,   public   transports,   walking   or   biking   etc.  

Generally  most  products  are   facing  different  substitutes   that   the  end  consumer  

might  switch  to.  Substituting  a  product  is  often  caused  by  price  sensitivity,  which  

means  that  consumers  are  switching  products  as  soon  as  price  passes  a  certain  

level (Hollensen, 2011).   However,   there   are   several   factors   influencing   the  

decision   of   substituting   a   product,   elements   such   as   technological/innovative  

advancement,   product   image,   general   design,   product-­‐connected   services   etc.  

(Hollensen, 2011).  

The   pressure   in   the   industry   increases  when   the   switching   cost   for   the  

customer  is  relatively  low  and  when  the  substitutes  price  decreases (Kotler et al.,

2009).   The   cost   of   switching   varies   tremendously,   and  while   switching   from   a  

Snickers   candy   bar   to   a  Mars   candy   bar  might   be   generally   cheap,   the   cost   of  

switching  from  a  bike  to  a  car  might  be  extremely  expensive.  For  a  company  to  

estimate   the   threat   that   a   substitute   product   might   have,   it   is   important   to  

constantly  monitor  their  rivals  holding  a  potential  substitute.    

 

The  next  force  getting  elaborated  in  more  detail  is  “The  Bargaining  Power  

of   Suppliers”.   The   bargaining   power   of   suppliers   in   an   industry   is   said   to   be  

higher  when  there  is  a  small  number  of  suppliers,  when  there  are  no  substitutes,  

when   the   switching   cost   of   raw  material   or   components   is   high,   or   when   the  

market  is  unimportant  to  the  suppliers (Hollensen, 2011).  Mostly  it  is  both  in  the  

interest  of  the  supplier  and  the  producer  to  build  a  loyal  long-­‐term  relationship,  

which  is  securing  high  quality,  reasonable  prices,  continues  development  of  the  

relation,   and   saving   both   parties   from   long   and   costly   inventories (Hollensen,

2011).    

  41  

Companies  that  have  been  very  successful  in  their  industry,  often  tend  to  

make   a   backward   vertical   integration,  which  means   that   they   are   buying   their  

own  suppliers (Kotler et al., 2009).  Suppliers  that  are  too  expensive,  not  reliable,  

or  just  not  able  to  meet  the  company’s  needs  often  cause  this  action (Kotler et al.,

2009).    

However,  more  common  is  the  use  of  external  suppliers.  This  is  especially  

true  for  small  or  medium  sized  companies,  since  the  demand  usually   is  smaller  

than  for  their  big  competitors (Kotler et al., 2009).  Big  suppliers  are  able  to  profit  

from  economies  of  scale  by  that  having  the  possibility  to  offer  their  products  at  a  

relatively  low  price (Hollensen, 2011).    

Companies  that  are  not  having  an  ownership  in  their  own  suppliers,  often  

tend   to   have   strategic   partnerships   with   their   suppliers.   Those   partnerships  

often  allow  both  parts  to  reduce  cost  associated  with  logistics  and  inventory  with  

strategies   such   as   just   in   time   delivery (Hollensen, 2011).   Additionally   to   that  

partnerships   are   able   to   increase   the   speed   of   availability   of   next   generation  

components,  increase  quality  of  the  supplied  goods,  and  in  general  decrease  cost  

in  several  areas  that  both  companies  otherwise  might  be  facing (Hollensen, 2011).    

 

  The   last   force   in   the   Porters   Five   Forces   framework   is   “The   Bargaining  

Power   of   Consumers”.   There   are   said   to   be   different   characteristics   that  make  

the   bargaining   power   of   consumers   rise   namely:   high   concentration   of  

consumers,   big   consumer   group,   consumers   are   buying   in   large  

amounts/volumes,   or  many   suppliers (Hollensen, 2011).   For   companies   to   stay  

competitive  with   their   rivals,   they   often   tend   to   offer   extras   such   as   extended  

warranties  or  after  purchase  services (Kotler et al., 2009).  By  offering  extras,  like  

the  one  just  mentioned,  companies  want  to  increase  a  consumer’s  loyalty  to  the  

brand,  by   that   increasing   the  chance  of  buying   their  products  again (Hollensen,

2011).     Additionally   to   the   factors   above   that   are   influencing   the   bargaining  

power   of   consumers,   also   product   characteristics   are   taking   an   enormous  

influence.   Standardized   and   undifferentiated   products,   where   substitution   is  

easy,   often   face   the   consumer   with   a   higher   degree   of   bargaining   power

(Hollensen, 2011).   Furthermore   the   consumers  discretion   in  whether  and  when  

they  purchase  the  products,  increases  the  pressures  on  the  selling  company  since  

  42  

inventory  cost  often  are  of  substantial   influence   in  their  balance  sheets.  Like   in  

the   first   force   as   well,   also   this   force   is   has   shown   to   be   of   more   and   more  

importance  with  the  modern  exchange  of  information.  Since  customers  are  able  

to  retrieve   information,   in  regard  to  price,  product  characteristics  etc.,   they  are  

able  to  compare  on  an  everyday  basis  by  that  increasing  the  chance  of  switching  

to  another  brand  or  a  substitute  product.    

7.1  CRITIQUE  

  The  Porters  Five  Forces   framework   is   like   every  other   strategy   tool  not  

perfect.  Although  it  by  many  of  its  proponents  is  characterized  as  one  of  the  most  

powerful   tools   for   the   analysis   the   business   environment   it   still   has   its  

limitations  and  detractors (Stonehouse & Snowdon, 2007).  

   

  One   of   the   critique   points   is   in   regard   to   the   unit   of   analysis,   which   in  

Porters  framework  is  the  industry  rather  than  the  individual  firm (Rumelt, 1991).  

The  reason  for  this  being  a  bad  thing,  according  to  Rumelt  (1991),   is  caused  by  

the   fact   that   every   company   is   different   in   its   nature,   which   results   in   every  

company  facing  different  factors  that  are  to  be  analyzed (Rumelt, 1991).  Rumelt  

(1991)  argues  that  firm’s  specific  factors  are  way  more  important  than  industry  

factors  when  it  comes  to  evaluating  potential  profitability (Rumelt, 1991).    

  Another   critique   point   is   connected   to   the   fact   that   the   Porters   Five  

Forces  framework  implies  that  that  every  force  applies  equally  to  every  firm  in  a  

given   industry.   Detractors   on   the   other   hand   see   every   force   affecting   every  

company   differently,   at   least   to   some   extend (Stonehouse & Snowdon, 2007).  

According   to   them,   the   Porters   framework   ignores   reality   in   regard   to   for  

example  a  company’s  size (Stonehouse & Snowdon, 2007).    

  Additionally,  and  that  is  especially  interesting  for  our  analysis,  is  the  fact  

that   the   Porters   framework   is   said   to   be   static (Stonehouse & Snowdon, 2007).  

Since   environmental   conditions   in   most   industries   change   regularly,   using   a  

static  tool  is  only  able  to  evaluate  for  a  short  term (Stonehouse & Snowdon, 2007).    

 

  43  

7.2  PORTERS  FIVE  FORCES  SIEMENS  WIND  POWER  

  Since  we   now  know   the  most   noteworthy   characteristics   of   the   Porters  

Five  Forces  framework,  we  are  able  to  use  the  theory  in  practice.    

7.2.1  RIVALRY  AMONG  COMPETING  FIRMS  

  The   energy   industry,   as   already   mentioned   in   the   description   of   the  

American   energy   market,   is   supplied   by   several   different   sources.   The   actual  

product  that  we  are  looking  at  is  electricity.  This  part  of  the  Porters  Five  Forces  

Framework   is   going   to   look   at   the   rivalry   only   within   the   wind   industry.  

Although  the  product  features  of  electricity  are  the  same,  other  sources  are  going  

to  be  analyzed  in  the  part  of  “The  Threats  of  Substitute  Products”.  This   is  done  

since   the   process   of   producing   the   electricity   is   branding   the   product   to   a  

significant  degree.    

 Figure   7.   AWEA,   18.07.2013,   U.S.   Wind   Energy   Industry   Manufacturing   and   Supply   Chain.  http://www.awea.org/Resources/Content.aspx?ItemNumber=4609  

 

  Figure   7   shows   the  

seven   biggest   turbine  

manufacturers   on   the  

American   market.   GE   Energy,  

an   American   company,   has  

been   the   market   leader   since  

many   years,   and   had   an  

installment  of  more  than  5  GW  

in   2012,   which   is   equal   to   a  

market   share   of   38% (AWEA,

2013).  GE  Energy  is  followed  by  

Siemens   Wind   Power,   which  

had   a   market   share   of   20%

(AWEA, 2013).  Vestas,  a  Danish  

Figure  8.  SNL  Energy,  2013,  Top  10  Turbine  Manufacturers.  http://www.worldofwindenergy.com/wind_resources/research-­‐and-­‐analysis/snl_energy_reports_top_10_turbine_manufacturers.html  

  44  

manufacturer  and  the  world’s  largest  supplier  of  wind  turbines,  has  been  on  the  

third  place  with  a  total  market  share  of  14% (AWEA, 2013).  Since  2010  both  GE-­‐

energy  and  Vestas  have   lost  5%  of   their  market  share.  On   the  other  hand  both  

Siemens   and   Gemensa   were   able   to   gain   market   share,   with   5%   and   2%  

respectively.  To  eliminate  confusion,  figure  8  shows  the  projected  market  share  

while   the   data   from   AWEA   were   able   to   provide   the   actual   installment   data.  

However,  what   is   noteworthy   in   the  development  of  manufacturers  on   the  U.S  

market  is  that  there  only  have  been  5  in  2005  installing  more  than  1  MW,  while  

having  more  than  25  in  2012 (AWEA, 2013).    

The   rapid   growth   of   the   market   and   the   governmental   incentives   to  

support   production   and   development   also   captured   the   attention   of   other  

manufacturers   and   the  market   is   starting   to   receive  more   and  more   suppliers.  

The  increase  in  competition  leads  the  manufacturers  to  even  more  consider  what  

strategy  to  follow.    

As  we   remember   from   the   technological   factor  of  PESTEL,  GE-­‐Energy   is  

offering  a  broad  range  of  turbines  that  generally  have  a  lower  capacity  than  the  

turbines  manufactured  by  their  competitors.  One  of  the  reasons  that  GE-­‐Energy  

is  able  to  offer  a  wider  range  of  turbines  is  the  fact  that  they  originate  from  the  

American  market.   In   comparison   to   the  other  big   suppliers,  GE  has   through   its  

whole   history   been   active   in   the  U.S.,  which   allowed   the   company   to   establish  

facilities   all   around   America (GE-Energy, 2014).   This   allows   GE   to   safe   huge  

amounts   of   costs   related   to   logistics,   which   is   a   tremendous   part   of   their  

competitors  cost.  Another  noteworthy  advantage  is  the  fact  that  GE,  as  a  result  of  

its  descent,  was  able  to  gain  a  lot  of  experience  on  the  domestic  market,  by  that  

being   able   to   take   more   variables   into   account   when   deciding   on   strategy.  

However,   GE-­‐Energy´s   focus,   which   during   its   history   nearly   exclusively   was  

directed   towards   the   U.S.,   causes   the   company   to   lack   behind   on   the  

international  market  and  only  leaves  the  U.S.  as  their  main  pillar.    

Vestas,  who   is   the  world’s   biggest   turbine  manufacturer,   is   placed   third  

on  the  American  market.  Like  GE  also  Vestas  has  a  quit  broad  product  portfolio,  

which  at  its  current  stage  consists  of  ten  different  turbines.  The  turbines  capacity  

ranges  from  1.8  MW  to  3.3  MW,  which  is  extremely  close  to  the  capacity  of  GE´s  

turbines.   In   contrast   to  both  GE  and  Siemens,  Vestas   is   exclusively   focusing  on  

  45  

the   wind   industry,   which   on   the   one   hand   excludes   Vestas   from   the   synergy  

between  different   industries   that  GE  and  Siemens  experience,  but  on   the  other  

hand  neither  can  be  affected  negatively  by  another  business  branch  and  allows  

the  company  to  totally  focus  on  one  industry.  However,  also  Vestas,   in  order  to  

be   more   competitive,   invested   directly   into   the   American   market   and   opened  

different   facilities   that   are   dealing   with   manufacturing   of   tower,   nacelle   and  

blades,   research   &   development,   maintenance,   and   services (Vestas, 2013).  

Together   their   manufacturing   plants   are   able   to   supply   approx.   90%   of   the  

components  that  are  required  to  assemble  the  final  turbine (Vestas, 2013).  Being  

able  to  supply  the  major  part  with  the  domestic  production  not  only  saves  Vestas  

shipping  costs,  which  decreases  the  overall  cost  of  the  turbine,  but  also  cuts  the  

delivery  time  to  the  customer.    

Siemens  Wind   Power   offers,   in   comparison   to   GE   and   Vestas,   a   smaller  

range   of   products   but   on   the   other   hand   with   a   bigger   capacity.   Although  

Siemens  has   invested  heavily   into   the  American  market,   they   tend   to  stick   to  a  

rather  small  but  powerful  product  portfolio.  Having  a  smaller  product  portfolio  

does   not   need   to   be   a   bad   thing   in   itself   since   Siemens   is   able   to   profit   from  

economies  of  scale  to  higher  degree.  In  comparison  to  GE,  who  produces  most  of  

its   components   domestically,   Siemens   nacelle   assembling   facility   in   the   U.S.  

manufacturers   only   one   nacelle   which   is   to   be   used   with   a   2.3   MW   turbine

(Siemens, 2013).   This,   although   they   are   able   to   supply   most   of   their   blades  

domestically,  results   in   increased  slack  time  and  huge  costs   that  are  associated  

with  logistics  since  many  of  the  parts  are  to  be  shipped  from  Siemens  production  

facilities  in  Denmark.  However,  one  of  the  main  advantages  that  the  company  is  

having  is  the  fact  that  they  are  the  oldest  turbine  manufacturer  worldwide.  This  

not  only  results  in  Siemens  being  extremely  experienced  but  also  contributed  to  

the  many  patents  the  company  is  holding (Siemens, 2013).  Another  advantage  the  

company  has  is  that  they  not  solely  are  dependent  on  the  American  market.  At  its  

contemporary  point  the  company  4th  biggest  supplier  of  turbines  worldwide  and  

is  active  in  Asia,  Europa,  America,  Africa,  and  Australia.    

 

  46  

What  is  interesting  in  the  industry  of  wind  energy  is  the  fact  that  usually  

companies   that   are   charging   premium   prices   and   are   producing   high-­‐end  

turbines  are  succeeding.  

 The  competition  that  at  least  at  its  contemporary  point  is  between  the  big  

suppliers  rises  especially  through  the  fact  that  many  of  them  have  invested  a  lot  

into   the   market,   which   increases   the   exit   barriers   since   none   of   the  

manufacturers   are  willing   to   give   up   their   huge   investments.   However,   on   the  

other   hand   the   rivalry   decreases,   at   least   for   Siemens   since   their   product  

portfolio  to  high  degree  is  able  to  differentiate  itself.    

7.2.2  POTENTIAL  ENTRY  OF  NEW  COMPETITORS  

  Generally   the   industry   of   turbine   manufacturers   is   said   not   to   face  

noteworthy  threats  by  the  potential  entry  of  new  competitors.      

At   its   current   stage   the   industry   is   lead   by   European   and   American  

manufacturers,  which  were   the   first   to   start   in   the   industry  by   that  possessing  

the   highest   amount   of   experience   and   know   how.   Although   Suzlon,   an   Indian  

company,   has   shown   to   compete   generally   well,   there   is   still   no   Chinese   or  

Korean   manufacturer   that   made   it   under   the   top   five   manufacturers   on   the  

American  market (AWEA, 2013).    

The   main   causes   for   the   Asian   companies   having   trouble   to   enter   the  

market   is   their   lack  of  experience  since  most  of   them  are  relatively  new  to   the  

industry (Trahish, 2012).   Additionally   the   American   market   shows   to   have  

several  different  entry  barriers  a  new  competitor  has  to  overcome.  First  of  all  an  

entry  would  need  enormous  investments  to  be  competitive.  Companies  entering  

the  market   need   to   have   a   turbine   that   is   able   to   compete   with   the   domestic  

supply   and   usually   domestic   manufacturing   facilities   are   to   be   established   to,  

first,  reduce  costs  associated  with  logistics  and,  second,  to  increase  the  delivery  

speed.  Furthermore,  entering  companies  need  to  be  sure  that  no  patents  on  the  

market   are   violated   and   that   their   turbine   design   is   allowed   to   operate   in   the  

market.  

 

However,   although   the   risk   of   new   entrants   is   low,   there   still  might   be  

companies   that   are   able   to   enter.   It  might   be   a   company   that   is   to   able   find   a  

  47  

niche  in  the  market  or  a  big  company  that  is  able  to  raise  the  needed  investment.  

Especially   Samsung,   who   started   its   wind   business   in   2010,   might   become   a  

potential   competitor.   Samsung   is   ranked  no.   14   in   the  Fortune  500   list,  with   a  

jump   of   6   places   from   2012   where   the   company   was   number   20.   Also   if   the  

company  would  not   able   to   invent   their  own  competitive   technology,   they   still  

would  be  able  to  acquire  a  smaller  wind  turbine  manufacturer.  Acquisitions  have  

been   the  basis   for  both  Siemens  and  GE,  which  demonstrated   that   the  strategy  

might  work.    

7.2.3  THREAT  OF  SUBSTITUTES  

  When   analyzing   the   threat   of   substitutes,   we   first   have   to   define   what  

product   actually  would   be   a   substitute   for   a  wind   farm/turbine.   This   depends  

tremendously  on  the  potential  customer  and  if  the  renewable  characteristic  is  of  

major  influence.  When  this  is  the  case,  the  only  substitutes  are  other  renewable  

sources   like   solar,   hydro,   and   geothermal,   with   biomass   taking   a   position   in-­‐

between,   since   it   is   carbon   dioxide   neutral.   However,   if   the   resource   is   not   of  

concern  then  the  non-­‐renewable  sources  are  able  to  be  a  substitute.  In  addition,  

the   fact   that   many   investors,   especially   big   companies,   are   looking   for   an  

investment  only,  we  have  other  substitutes  showing  up  that  are  able  to  be  used  

as  investment  e.g.  stocks,  bonds,  funds,  options  etc.    

During  this  analysis  we  assume  that  the  only  customers  are  the  potential  

purchasers  of  the  actual  wind  farm.  This  is  due  to  the  fact  that  wind  developers  

although   they   hypothetically   are   able   to   substitute,   usually   lack   knowledge  

inside   other   energy   industries.   Additionally   to   that   we   assume   that   the   only  

substitutes   are   other   renewable   sources.   If   we   would   take   the   two   other  

scenarios  into  account,  and  especially  the  one  where  the  wind  farm  is  seen  as  an  

investment  only,  we  could  continue  this  analysis  forever.    

 

  So,  besides  renewability,  what  other  factors  are  this  analysis  going  to  take  

into  account?  To  find  an  answer  on  the  question  “The  Threat  of  Substitutes”  we  

need   first   of   all   to   understand   how   the   different   sources   are   functioning  

therefore  we  need  to  keep  in  mind  the  information  that  is  provided  in  section  4.2  

and  4.3.      

  48  

   

 

 

Figure  9  provides  us  with   information   concerning   the   cost   of   a   plant   in  

regard  to  the  different  renewable  energy  sources.    

Transmission  investment   is  the  amount  of  Dollars  you  need  to  spend  on  

the  electrical  grid  per  MWh  injected.  

The   overnight   cost   is   the   cost   related   to   the   construction   of   the   power  

plant  per.  kW.    

The  fixed  costs  of  O&M,  which  means  operation  and  maintenance,   is   the  

amount  of  money  you  have  to  spend  every  year  on  per  kW.    

The   variable   cost   of  O&M   is   based   on   the   cost   of   activity   per  MWh  and  

only  is  affected  when  the  plant  is  running.    

 

 Figure  9.  EIA,  2013,  Updated  Capital  Cost  Estimates      for  Utility  Scale  Electricity      Generating  Plants.  http://www.eia.gov/forecasts/capitalcost/pdf/updated_capcost.pdf  

Let   us   now   put   the   information   provided   above   in   relation   to   wind  

energy.  The  overnight  capital   cost   for  an  onshore  wind   farm   is  $2.213  per  kW,  

which  is  the  lowest  cost  inside  the  market  of  renewables.  Connected  to  the  cost  

of  construction  of  a  wind  farm,  we  have  an  average  cost  of  $3.2  per  MWh  for  the  

transmission  construction.  This  number  is  lower  than  for  solar  but  higher  for  the  

3  other  sources.  The  fixed  O&M  costs  of  $39  per  kWh  a  year  are  lower  for  all  of  

the  sources  except  for  photovoltaic.  Last  but  not  least  we  have  the  variable  cost  

  49  

of   O&M  where   there   only   is   one   sector   that   is   affected,   namely   Biomass   with  

$17.4  per  MWh.    

It   is   crucial   to   keep   in  mind   that   this   information  was   calculated   as   an  

average  from  the  available  data.  A  potential   investor   is  not  able,  at   least  not  by  

the   use   of   these   numbers,   to   predict   the   profitability   of   a   project,   since   every  

project  concerning  a  power  plant  is  unique.  

 

  What   is   important   to   note   is   the   fact   that   the   provided   data,   both   be  

AWEA  and  EIA,   are   from  2012,  which  means   that   the  PTC   still  was  making   an  

impact  on  the  overall  profitability  of  wind  energy.  Since  the  PTC  is  expired,  and  

we   already   know  what   impact   this   is   having,  we   can   conclude   that   customer’s  

favorability  of  wind  with  high  probability  decreases.  This  does  not  automatically  

mean,   that   the   overall   likelihood   of   substituting  wind  with   another   renewable  

source   increases.  The  reasons  for  this   is   that  many  potential  customers  tend  to  

wait   rather   than   investing   into   a   source   that  maybe   at   its   contemporary   point  

might  look  more  profitable  but  in  comparison  to  the  long  term  outlook  and  the  

probable  reactivation  of  the  PTC,  is  not  able  to  compete  with  wind.    

7.2.4  BARGAINING  POWER  OF  SUPPLIERS  

  It   is   important  to  note,  before  starting  to  analyze,  that  the  supply  of  raw  

materials  and  components,  for  the  manufacturing  of  a  turbine,  needs  to  be  well  

considered   since   a   turbine   is   a   highly   advanced   and   expensive   product.   Being  

able   to   supply   a   high   quality   product  with   a   fast   delivery   is   able   to   increase   a  

company’s  reputation,  by  that  taking  impact  on  the  overall  profitability (Crane et

al., 2009).   Reputation,   which   is   the   overall   to   the   company’s   favorable   or  

unfavorable   name   it   has   in   the   public,   is   able   to   increase   potential   customers  

willingness  to  purchase  their  product (Crane et al., 2009).  Often  the  related  cost  

of   increasing   reputation   is   relatively   low   in   comparison   to   the   beneficial  

outcome,  and  an  increase  in  it  should  be  pursued (Crane et al., 2009)  

 

  One  of   the  most  noteworthy   characteristics,  when   looking  at   the   supply  

chain   of   a   manufacturer,   is   the   fact   that   nearly   all   of   them   have   integrated  

vertically,  at  least  to  some  extend (Lawson, 2013).  Vertical  backward  integration,  

  50  

when   talking   about   the   supply   chain,  means   that   a   company   is   acquiring   their  

own   suppliers (Hollensen, 2011).   Siemens   has   different   subsidiaries   in   the   U.S.  

that   are   established   by   them.   In   addition,   the   company   acquired   Winergy  

Drivesystems,   which   is   supplying   a   nacelle   for   installment   on   the   American  

market (Siemens, 2013).  When  owning   suppliers   the  manufacturers   are   able   to  

increase   their   control   of   quality   and  delivery,  while   at   the   same   time   reducing  

the   overall   cost,   since   all   of   the   activities   are  made   internally   in   the   company

(Hollensen, 2011).  Furthermore  the  company  can  ensure  that  the  supplier  is  only  

dealing  with   the  parent   company,  by   that  excluding   rivals   form   the   technology  

that   the   subsidy   supplies (Hollensen, 2011).   Increasing   the   backward   vertical  

integration  is  especially  making  sense  when  the  demand  is  high,  not  only  in  the  

short  term  but  also  in  a  long-­‐term  future  outlook.  

  Another  way  of   ensuring  higher  quality   standards  and   faster  delivery   is  

sub-­‐contracting (Hollensen, 2011).   Siemens   has   sub-­‐contracted   different  

components   in   long-­‐term   agreements   on   different  markets (Siemens, 2013).   In  

the   U.S.   Siemens   states   that   especially   their   offshore   partners   are   exceptional  

reliable,  but  on  the  other  hand  faces  problems  with  their  onshore  partners  that  

were  not  able  to  supply  stable  and  to  a  reasonable  cost,  at   least  during  the   last  

years (Siemens, 2013).    

  However,  backward  vertical   integration  has  also  shown  to   increase  risk,  

particularly  when  having  economic  downturns (Hollensen, 2011).  Being  vertically  

integrated  decreases  a   company’s   ability   to  adjust   capacity,  which  especially   is  

able  to  cause  huge  losses  when  demand  is  low,  since  all  fixed  costs  are  to  be  paid  

independent   of   production (Hollensen, 2011).   Especially   at   its   contemporary  

point   where   the   market   faces   extreme   demand   fluctuations   with   uncertain  

subsidies,   both   internal   in   the   industry   and   externally   on   the  whole   American  

market,   the   vertical   integration   faces   companies   with   huge   pressures.   Vestas,  

who   to   high   extend   was   vertically   integrated,   started   to   restructure   their  

business   between   2011   and   2012,   by   cutting   staff   with   almost   a   third.   Also  

Siemens   is  complaining  about   the  contemporary  situation  since   they  are   facing  

overcapacity  that  is  resulting  in  losses (Siemens, 2013).    

 

  51  

“Good  supplier  management,  better  inventory  control,  long-­‐term  innovation  

and   partnerships:   in   general,   it's   about   making   the   industry   a   lot   leaner”   says  

Edward   Rae,   who   is   vice   president   for   Alstom´s   global   supply   chain (Lawson,

2013).  The  main  cause  for  this  is  that  independent  suppliers  are  able  to  specialize  

on  one  component  like  gearboxes,  blades  etc. (Hollensen, 2011).  This  would  allow  

the   suppliers   have   products   that   are   to   be   sold   to   different  manufacturers   on  

different   markets,   which   would   results   in   economies   of   scale   what   means   a  

decrease  of  costs  through  the  increase  of  output (Hollensen, 2011).  When  looking  

at  Siemens  future  plans,  we  see  that  the  reaction  to  the  instability  of  the  market  

is  going  end  up  with  Siemens  focusing  more  on  being  supplied  with  components,  

rather  than  producing   it   themselves (Siemens, 2013).  Very   important  to  them  is  

that  especially  the  supply  of  the  heavy  and  large  components  should  be  covered  

domestically  since  this  not  only  decreases  shipping  time  and  the  associated  risk,  

but   also   increases   control   since   a   higher-­‐level   communication   is   possible

(Siemens, 2013).  

 

  When   evaluating   the   bargaining   power   of   suppliers,   by   the   information  

above,  we  need  to  take  two  different  scenarios  into  accounts.    

  The   backward   vertical   integrated   company   usually   demands   raw  

materials  and  only  a  small  amount  of  pre  assembled  components.  This  decreases  

the   bargaining   power   of   the   suppliers,   since   the   demanded   material,   which  

majorly   is   steel,   is   not   only   supplied   by   many   different   suppliers   but   also   is  

regulated  on  the  stock  market  since  it  is  a  commodity.  Also  the  fact  that  Siemens  

is  extremely  big  decreases  the  bargaining  power  of  suppliers  because  Siemens  is  

able  to  integrate  further  backwards  when  the  supplier’s  price  is  to  high  or  when  

quality  standards  are  not  met.    

  However,   the   new   way   of   supply,   how   Rae   is   predicting   it,   is   going   to  

increase  the  suppliers  bargaining  power.  Then  again   it   is  not  possible  to  say  to  

what  degree  the  since  this  is  dependent  on  the  number  of  supplier,  the  degree  to  

which   patents   are   controlling   the   technology   the   demand   situation   etc.

(Hollensen, 2011).  

  52  

7.2.5  BARGAINING  POWER  OF  CONSUMERS  

  In   comparison   to   many   other   products,   the   bargaining   power   of  

customers  is  a  little  more  complicated  in  the  wind  industry.  This  is  caused  by  the  

fact  there  are  two  buyers  that  are  of  concern,  first  it  is  the  developer  of  the  wind  

farm   and,   second,   the   buyer   of   the   actual   project.   This   part   of   the   analysis   is  

going  to  focus  on  the  buyers  of  the  actual  turbines  or  better  the  wind  farm.      

 

  Due  to  the  large  size  of  a  typical  American  wind  farm  today,  the  number  of  

potential  buyers  has  decreased  dramatically.  During   the   last  years   the  political  

situation  has  tremendously  influenced  the  attractiveness,  of  a  wind  farm,  since  it  

was  supported  by  different  subsidies.  Usually  a  wind  farm  is  purchased  by  either  

a   utility   companies,   a   local   government,   or   a   pension   fund.  However   there   are  

other  investors  like  big  companies  that  are  investing  into  wind  energy,  which  not  

rarely  is  caused  by  tax  benefits  related  to  the  investment (Nickell, 2014).    

In   comparison   to  many  other   industries,   customers   of   a  wind   farm   in   a  

different  way   care   about   price,  which   is   caused  by   the   fact   that   the  purchased  

product  is  going  to  generate  revenue  in  itself.  What  is  important  for  investors  is  

that  the  farm  is  equipped  with  turbines  that  are  high  in  capacity,  that  the  grid  is  

connected   properly,   that   the   efficiency   is   high,   that   the   technology   used   is  

reliable,   that  demand  for  the  electricity   is  on  hand  etc.  All  of   these   factors  then  

are  related  to  the  farms  cost  and  its  profitability  is  calculated.  

 Project   developers,   which   usually   are   the   part   of   the   supply   chain  

between   the   manufacturer   and   the   customer,   have   to   take   customer   into  

account.  When  developing  a  wind  farm  the  developer  usually  first  choose  where  

to   build   and   afterwards  what   turbine   to   use.   Since   every   geographical   area,   at  

least   to   some  extent,   is   unique,   there  usually   only   is   one   turbine   that   fits   best.  

Preferable  than  lowering  the  sights  of  the  project,  the  developer  is  going  with  the  

one  turbine  that  showing  the  best  characteristics   for  his  project  and  allows  the  

highest  marginal  return.    

 

All  this  of  course  decreases  the  bargaining  power  of  the  buyer.  However  it  

is   noteworthy   that,   in   comparison   to   an   everyday   product,   the   buyer   is  

constantly   calculating   on   the   profitability   of   the   project.   This   results   in   the  

  53  

turbine  manufacturers  to  adjust  prices  to  stay  within  a  level  where  the  average  

project   is  able   to  make  enough  profit  out  of   the  chosen   turbines.   It   is  however  

not  possible  for  manufacturers  to  predict  a  projects  cost  since  they  are  related  to  

many   different   factors   e.g.   energy   infrastructure,   governmental   support,   wind  

level  etc.      

8.  SWOT  ANALYSIS  

The  SWOT  analysis  has  a  long  history  in  the  literature  of  strategy,  ranging  

all   the   way   back   to   the   1960s   where   it   was   invented   by   Albert   Humphrey,   a  

former  American  business  and  management  consultant.  The  analysis  was  and  is  

to   evaluate   internal   and   external   factors   after   4   different   criteria,   namely:  

Strengths,  Weaknesses,   Opportunities,   and   Threats (Pickton & Wright, 1998;

Piercy & Giles, 1989; Kotler et al., 2009).  Although  environmental  scanning  tools  

are   often   criticized   for   focusing   too  much   on   external   factors,   both   Strengths,  

which  is  determining  the  organizations  strong  points,  and  Weaknesses,  which  is  

determining   the   organizations   frailties,   are   internal   factors,   which  means   that  

they  are  used  to  analyze  within  the  organization (Lee et al., 2000; Piercy & Giles,

1989).   Opportunities,   which   are   the   organizations   future   or   contemporary  

openings,  and  Threats,  which  are  the  potential  intimidations  the  organization  is  

facing,   are   external   factors   that   are   to   analyze   the   environmental   settings  

surrounding  the  organization (Lee et al., 2000; Kotler et al., 2009).  It  is  important  

to   note   that   both   internal   factors   are   within   the   control   of   the   organization;  

factors  that  might  be  included  here  are  internal  financing,  marketing,  accounting  

etc. (Lee et al., 2000).  The  external  factors  are,  in  contrast  to  the  internal  factors,  

not   controllable   by   the   organization;   areas   that   are   included   in   the   external  

factors   often   relate   to   political   factors,   technology,   economical   factors,  

competition  etc. (Lee et al., 2000; Piercy & Giles, 1989).      

 

The   basic   idea   behind   the   analysis   is   to   assist   practicing   managers   or  

businessmen,   in   the   strategic   management   planning   process,   and   since   its  

invention   it   has   done   so   relatively   good (Pickton & Wright, 1998; Kotler et al.,

2009).   One   of   the   most   praised   characteristics   of   the   SWOT   analysis   is   its  

  54  

simplicity   and   the  way   it  makes   the   user   focus   on   the   key   factors/issues   that  

might   be   of   importance   for   the   organizations   development.   According   to  

Wehrich   (1982),   the   SWOT   can   either   be   used   at   its   whole   or   the   user  might  

build  a  combination  of  two  factors (Lee et al., 2000).  The  following  SWOT  analysis  

for  Siemens  in  the  American  wind  industry  is  going  to  use  the  SWOT  analysis  in  

its  totality,  since  the  goal  is  to  obtain  an  overall  picture  of  their  current  position.    

8.1  CRITIQUE  

Besides  having  its  proponents  the  SWOT  analysis  also  has  its  detractors.  

During   its   history   the   SWOT   analysis   has   severely   been   criticized   for   being   a  

conventional   and   sole   tool   for   formulating   a   company’s   strategy (Kotler et al.,

2009).   According   to   Hill   and   Westbrook   (1997)   the   SWOT   tool   is   often   so  

misleading  that  it  should  be  scrapped  totally. (Hill & Westbrock, 1997)  

 

Although  SWOT  is  loved  for  its  simplicity  it  as  the  same  time  is  one  of  its  

major  critique  points.  Detractors  say   that,  when  using  SWOT,   the  user   tends   to  

oversimplify  the  issues  a  company  is  facing  and  at  the  same  time  lacks  to  allocate  

the  importance  and  level  of  influence  that  each  finding  in  the  analysis  has (Hill &

Westbrock, 1997).  This  often  leads  to  a  conclusion  where  the  user  sees  the  weak  

strengths   and   strong   weaknesses   as   being   balanced,   with   the   same   situation  

often  happening  for  opportunities  and  threats.    

Another   question   is  whether   the   external   factors   can   be   categorized   as  

favorable  or  unfavorable  only?  According  to  Erhard  Valentin  (2005)  this  should  

be   acknowledged   by   the   SWOT   analysis   since   user   often   tend   to   run   into   this  

very  tricky  question (Valentin, 2005).    

 

Generally   detractors   say   that   the   SWOT   analysis   needs   to   include  more  

guidelines,   limitations,   and   criteria   for   prioritizing (Mintzberg, 1994; Valentin,

2005).   Especially   lacks   on   how   to   use   a   finished   SWOT   are   acknowledged   by  

different   disparagers.   An   example   here   would   be   how   companies   should   deal  

with   the   opportunities   found   and   how   an   appropriate   decision   about   which  

opportunity  to  pursue  is  made (Hill & Westbrock, 1997).      

  55  

8.2  SWOT  ANALYSIS  SIEMENS  WIND  POWER  

  Now   we   are   going   to   use   SWOT   to   analyzes   Siemens   Wind   Powers  

environment  on  the  North  American  market.    

The  analysis  is  additionally  summing  up  on  many  of  the  points  that  were  

analyzed  in  both  the  PESTEL  and  the  Porters  Five  Forces  analysis,  resulting  in  a  

shortened  conclusion  of   this  paper.  Therefore  we  are  assuming   that   the  reader  

keeps   the   information,   provided   above,   in   mind   while   reading   the   SWOT  

analysis.    

8.2.1  STRENGTH    

  When  evaluating   the  strength  of  Siemens  Wind  Power   it   is   important   to  

keep   in   mind   that   the   company   is   part   of   Siemens,   which   is   one   of   richest  

companies   worldwide.   Additionally   it   is   important   to   remember   that   wind  

energy   in   itself   is   extremely   favored   by   the   community,   which   is   backing   the  

development  in  comparison  to  other  nonrenewable  sources.    

  Siemens  diversified  business  and   the   fact   that   the  company   is  operating  

not  only  in  many  segments  but  in  many  geographical  markets  as  well,  gives  them  

the   advantage   of   interconnecting   their   businesses   with   each   other.   Market  

entrants  are  often  easier  for  companies  that  already  have  entered  the  market  in  

one   industry,   since  both  market  knowledge  was  gained  and  relationships  were  

made.      

Also   the   fact   that   Siemens   demand   of   raw   materials   or   components   is  

sometimes  shared  with  different  of  their  industries,  makes  them  able  to  exploit  

supplier   relationships   that   are   gained   in   one   segment   to   be   used   in   another

(Senn, 2006).  Additionally,  and  that  is  one  of  the  most  important  influences  from  

the   mother   company,   is   the   fact   that   Siemens   Wind   Power   is   able   to   rely   on  

financial   support   when   the   business   is   showing   to   have   difficulties.   This   was  

especially   helping   Siemens  Wind   Power  when   governmental   subsidies   expired  

and  made  them  able,   in  comparison  to  Vestas,   to  maintain   their  position   in   the  

market  without  the  need  to  restructure  immediately.    

    However,   there   are   also   strengths   inside   Siemens  Wind   Power   that   not  

directly  are  related  to  their  mother  company.  As  we  know  Siemens  is  the  oldest  

wind  turbine  manufacturer,  which  not  only  means  that  they  were  able  to  develop  

  56  

technologically   but   also   gain   experience   throughout   many   years.   During   that  

time   the   company  was   able   to   establish  wide-­‐ranging   relations  with   suppliers  

and   other   partners   e.g.   utilities,  maintenance   companies.   Additionally   Siemens  

Wind   Power   has,   during   its   history,   established   and   acquired   several   different  

facilities   in  the  U.S,  which  not  only   increased  their  presence  but  also  decreased  

cost   associated  with   communication   and   logistics.   Also   their   turbine   portfolio,  

which   is  much   smaller   than   the   ones   from   their   competitors,   but   on   the   other  

hand   more   powerful,   has   shown   to   give   them   the   advantage   of   holding   a  

differentiated  product  portfolio.  Especially   their  new  offshore   turbine,  which   is  

one   of   the   biggest   turbines   world-­‐wide,   seems   to   fit   the   American   needs   and  

several   projects   are  under  development (Siemens, 2013).  What   is   special   about  

their  new  offshore  technology  is  the  fact  that  they  are  able  to  build  the  turbine  

with   50%   less   parts   than   before.   By   that   they   are   able   to   reduce  maintenance  

time   and   cost,   while   additionally   reducing   the   overall   weight   of   the   turbine

(Siemens, 2013).    

8.2.2  WEAKNESSES    

  Now  we  are   going   to   look   at   the  weaknesses   that   Siemens  Wind  Power  

contemporary  faces.  

 

  What  has  shown  to  be  a  problem  is  the  fact  that  manufacturers  are  often  

dependent   on   developers,   which   could   be   changed   by   pursuing   a   forward  

vertical   integration.   The   next   level   of   the   supply   chain   is   usually   the   wind  

developer.  Although   they   are  not   buying   the   turbines   themselves,   they   are   the  

part  where  the  decision  is  made  what  turbine  to  choose  for  a  given  project.  What  

however   is   interesting   is   the   fact   that  many   turbine  manufacturers  usually   are  

not   involved   in   this   decision   process,   although   some   are   providing   you   with  

assistance  as  soon  as  you  decide  that  you  are  going  with  their  turbines.  The  fact  

that  developers  are  independent  makes  it  hard  for  manufacturers  to  ensure  that  

they  are  capturing  some  of  the  projects  that  are  going  to  be  developed  or  already  

are  under  development.  This  is  due  to  the  fact  that  developers  usually  keep  the  

option  of   switching   to   another   supplier  when  discovering   that   another   turbine  

might   be   more   profitable   for   a   given   project.   In   Europe   Siemens   already  

  57  

eliminated   this   risk   to   some   degree   by   going   into   a   joint   venture   with   utility  

companies.  

Another   factor   that   has   shown   to   be   a   strength,   but   a  weakness   on   the  

other  hand,  is  the  fact  that  still  some  of  the  very  important  parts  are  supplied  by  

third   parties.   As  we   know,  manufacturers   generally   starting   to   pursue   a  more  

flexible  structure  with  more  suppliers  external  to  the  organization.  On  the  other  

hand   external   supply   is   also   facing   Siemens   with   more   uncertainty   about   the  

products   e.g.   quality,   logistics,   etc. (Siemens, 2013).   Especially   their   American  

suppliers,   in   regard   to   their   onshore   turbines,   were   facing   Siemens   with  

problems  to  deliver  on  time (Siemens, 2013).    

8.2.3  OPPORTUNITIES    

  Because   the   industry   of   wind   energy   is   still   relatively   young,   we   can  

expect  a  lot  of  development  during  the  next  decades.  This  of  course  also  results  

in  manufacturers   facing  many   opportunities.   In   the   following   we   are   going   to  

discuss  some  of  them.  

 

  As  already  mentioned  above,  Siemens  still  lacks  behind  on  relations  with  

developers.   Especially   small   developers   are   increasingly   able   to   develop   wind  

farms  of  an  enormous  size.  The  reason  for  that  is  the  fact  that  wind  developers  

do  not   need   a   huge   amount   of   employees  but   rather   employees  with   the   right  

knowledge   and   capability (Komperda, 2014).   Having   a   small   company,   that   is  

playing   an   influential   rule   in   the   supply   chain,   should  make  big  manufacturers  

think   about   how   they   could  make   sure   that   they   are   the   chosen   supplier.   One  

way  would   to   be   to   bind   both   parties  with   a   contract,  which   is   saying   that   all  

projects   that   are   going   to   be   developed   are   equipped  with   the  manufacturers  

turbine.   Another  way  manufacturers   you   ensure   that   the   developers   are   using  

their  turbine  is  to  make  an  acquisition.  Since  the  companies  usually  a  small,  the  

needed  investment  would  be  so  as  well,  at  least  when  the  developer  is  willing  to  

be  acquired.    

 

  Another   opportunity   to   decrease   the   risk   of   the   very   vague   political  

situation  for  wind  energy  is  to  switch  extensive  from  an  internal  to  an  external  

  58  

supply.   However,   as   we   already   have   discussed,   this   opportunity   is   not   only  

increasing  the  company’s  strengths  but  additionally  its  weaknesses.  Nonetheless,  

since   the   market   is   extremely   unpredictable   at   its   contemporary   point,   the  

company  should  try  to  be  more   flexible   to  adjust   to  changing  conditions   faster.  

The   demand   situation   would   then   decrease   its   influence   on   the   company’s  

profitability   since   all   the   fixed   costs,  which   are   connected   to   the  production  of  

components,  would  be  affecting  the  suppliers  only.    

8.2.4  THREATS  

  The  most  noteworthy  threats  are  lying  inside  political  decisions  in  regard  

to   wind   energy.   As   we   have   discovered   in   the   “Threat   of   Substitutes”   turbine  

manufacturers   are   holding   a   good   standpoint   since   wind,   at   least   at   its  

contemporary  point,  is  the  most  profitable  renewable  energy  source  with  one  of  

the  biggest  potential  development  of  capacity.    

 

  The  big  influence  that  the  political  system  has  is  not  only  connected  to  if  

support  is  granted  or  not,  but  also  the  fact  that  nobody  is  able  to  predict  what  is  

going  to  happen.  If  the  government,  hypothetically,  would  announce  that  support  

for  wind  energy  is  not  going  to  be  granted  from  now  on,  investors  are  ensured.  

The   problem   right   now   is   that   nobody  wants   to   build   a   project   since   they   are  

waiting   for   the   potential   support.   However,   that   does   not   mean   that   a   wind  

project  would  be  unprofitable  without   the  support,  but  having  a  potential  20%  

increase  of  profitability  by  waiting  a  year,  makes  most  investors  letting  the  time  

pass  which  results  in  many  manufactures  facing  a  huge  decline  in  demand.    

 

  Another   potential   threat   is   related   to   patents.   Since   the   industry   is   still  

characterized  as  investing  a  lot  in  research  &  development,  new  and  better  ways  

of   capturing   wind   energy   might   be   discovered.   Already   today   there   are  

technologies,  although  in  their  starting  stage,  that  are  extremely  efficient  and  on  

the   other   hand   are   able   to   eliminate   noise   and   shadow   flickers   nearly   totally.  

Having  a  company  that  is  holding  a  patent  on  a  technology,  which  is  way  better  

than  the  technology  used  by  manufacturers  today,  might  result  in  a  market  with  

a   company  having  monopolistic   control.   If   this   company  decides   to  market   the  

  59  

new   technology   themselves,   without   giving   other   companies   the   possibility   to  

license,  the  market  for  wind  energy  would  change  dramatically.    

9.  CONCLUSION  

  This  paper  has  by  the  use  of  different  analytical  tools  shown  what  factors  

are   having   an   impact   on   Siemens  Wind  Power´s   business   in   the  United   States.  

Furthermore   we   have   learned   how   environmental   scanning   tools   are   able   to  

provide  information  that  is  essential  for  the  strategic  decision  process.    

However,   it   is   important   to   note   that   different   analytical   tools   are  

providing   different   information.   Our   impression   of   market   characteristics   and  

factors   that   are   of   importance   might   tremendously   change   when   using   other  

tools  that  are  found  within  the  management  and  marketing  literature.    

Furthermore   we   should   acknowledge   that   the   research   design  

simultaneously   was   taking   an   impact   on   our   results.   Also   here   a   different  

approach  would  have  accredited  different  factors.    

 

But   what   can   we   conclude   from   our   research   design   and   our   use   of  

PESTEL,   Porters   5   Forces,   and   SWOT?   First   of   all   we   have   learned   that  

governmental   support   has   a   tremendous   impact   on   the   industry’s   success.  

However,  governmental  support  can  only  be  granted  when  the  economy  is  doing  

well  and  at  its  current  stage  this  is  not  the  case  since  it  is  mainly  a  stock  market  

bubble  growing  because  the  is  FED  is  supplying  cheap  money.  What  is  important  

is   that   the   industry   learns   how   to   grow  without   governmental   support,  which  

already  might  be  possible,  but  for  investors  easier  and  well  more  profitable  with  

granted  subsidies.    Also  the  fact  that  wind  generally  is  favored  by  the  biggest  part  

of  the  community  should  be  acknowledged  and  the  causes  for  the  phenomena  of  

NIMBY   should   by   tried   to   tackle   through   new   turbine   technology.   Especially  

wind  developers  should  take  this  into  account  and  plan  projects  were  the  highest  

favorability  is  placed  while  additionally  involving  the  local  community  from  start  

on.  Furthermore,  the  industry  should  start  seeing  the  governmental  investment  

into   the   energy   infrastructure   as   another,   although   indirect,   grant   for   the  

industry  while  additionally  making  potential  investors  aware  of  that.  As  we  have  

  60  

discovered   the   costs   of   installing   the   grid   is   extremely   influential   in   its   impact  

and   might   decrease   tremendously   when   the   government   extends   it   for   the  

taxpayers  costs.  Also   turbine  manufacturers  should  start   to   involve   themselves  

more  into  the  developers  tasks  and  especially  focus  on  the  legal  issues  that  can  

arise,  since  there  not  only  are  many  and  extreme  in  their  potential  impact  but  on  

the  other  hand  developing  to  acknowledge  new  problems.    

  However,   Siemens  Wind   Power   also   has   to   develop   their   own   internal  

business.  Although  we  found  out  that  the  threat  of  new  entrants  generally  is  low,  

since  the  needed  investment  is  way  too  high  for  most  companies,  GE  and  Vestas  

are   still  major   players   and   are   able,   through   their   bigger   product   portfolio,   to  

supply  areas  where  Siemens  does  not  have  the  right  turbine.  Especially  when  the  

market   starts   to   saturate,   secondary   areas   are   going   to   be   utilized   where  

different   turbine   characteristics   might   be   needed.   Additionally   the   company  

should   start   to   rely   on   outside   suppliers   to   higher   degree,   although   we   have  

learned   that   the  backward  vertical   integration  was  able   to  offer  many  benefits,  

the  situation  on  the  American  market   is   too  unpredictable   to  have  all   the  costs  

internally  and  the  risk  would  decline  tremendously  when  passing  it  to  suppliers.  

What  however  might  be  worth  a  try,  although  it  decreases  flexibility,  is  a  forward  

vertical   integration.   The   closer,   more   direct,   customer   contact   might,   if  

approached   correct,   dramatically   increase   the   company’s   orders   while  

additionally  increasing  their  knowledge  about  the  supply  chain.  

 

  Before  the  reader  puts  this  paper  away,  it  is  important  to  note  that  these  

analyzes  only  are  able  to  provide  a  short-­‐term  picture.  During  the  next  decades  

the  industry  is  going  to  develop  tremendously  and  we  all  can  look  forward  to  a  

huge  amount  of  interesting  research  for  the  industry  of  wind  energy.    

   

  61  

Bibliography  Aarora,  R.,  2006.  Race  and  Ethnicity  in  Educatio.  Education  +  Training  ,  48(7),  

p.13.  

ACORE,  2013.  Energy  Fact  Check.  [Online]  Available  at:  http://www.energyfactcheck.org/category/jobs/  [Accessed  25  March  2014].  

Adler,  N.J.  &  Gundersen,  A.,  2008.  International  Dimensions  of  Organizational  Behavior.  Mason,  Ohio,  America:  South  Western.  

Aud,  S.  &  Fox,  M.A.,  2010.  Status  and  Trends  in  the  Education  or  Racial  and  Ethnic  Groups.  Statistic.  Washington:  IES.  

AWEA,  2013.  American  Wind  Energy  Association.  [Online]  Available  at:  http://awea.files.cms-­‐plus.com/FileDownloads/pdfs/PTC%20Fact%20Sheet.pdf  [Accessed  25  March  2014].  

AWEA,  2013.  American  Wind  Energy  Association.  [Online]  Available  at:  https://www.awea.org/resources/statefactsheets.aspx?itemnumber=890  [Accessed  17  April  2014].  

AWEA,  2014.  American  Wind  Energy  Associaton.  [Online]  Available  at:  http://awea.files.cms-­‐plus.com/FileDownloads/pdfs/NorthDakota.pdf  [Accessed  17  April  2014].  

Aziz,  J.,  2013.  Week.  [Online]  Available  at:  http://theweek.com/article/index/244899/does-­‐the-­‐federal-­‐reserve-­‐really-­‐control-­‐the-­‐money-­‐supply  [Accessed  14  April  2014].  

Barry,  K.,  2014.  Legal  issues  in  regard  to  the  development  of  a  wind  farm.  [Online]  Springfield,  U.S.  

Biomass  EC,  2014.  Biomass  Energy  Center.  [Online]  Available  at:  http://www.biomassenergycentre.org.uk/portal/page?_pageid=76,15049&_dad=portal&_schema=PORTAL  [Accessed  18  March  2014].  

Biomass  Power,  n.d.  Biomass  Power  Association.  [Online]  Available  at:  http://biomasspowerassociation.com/pages/about_facts.php  [Accessed  18  March  2014].  

Blumberg,  B.,  Cooper,  D.  &  Schindler,  P.,  2008.  Business  Research  Method.  Maidenhead,  Bershire,  England:  McGraw  Hill.  

Bonus  Energy,  2003.  Bonus.  [Online]  Available  at:  http://web.archive.org/web/20010331181302/http://www.bonus.dk/uk/profil/profilvinduer/mere_historie.html  [Accessed  04  March  2014].  

Brown,  A.,  2014.  Clean  Energy.  [Online]  Available  at:  http://blog.cleanenergy.org/2014/03/03/conservatives-­‐ptc/  [Accessed  18  April  2014].  

Bullis,  K.,  2014.  MIT  Technology  Review.  [Online]  Available  at:  http://www.technologyreview.com/news/523251/new-­‐battery-­‐material-­‐could-­‐help-­‐wind-­‐and-­‐solar-­‐power-­‐go-­‐big/  [Accessed  18  April  2014].  

Byars,  L.L.,  1991.  Strategic  management:  Formulation  and  implementation  :  concepts  and  cases.  Harper  Collins.  

  62  

CEC,  2011.  California  Energy  Comission.  [Online]  Available  at:  http://energyalmanac.ca.gov/electricity/us_per_capita_electricity-­‐2010.html  [Accessed  17  April  2014].  

Chakrabortty,  A.,  2014.  NC  State  University.  [Online]  Available  at:  http://news.ncsu.edu/releases/wms-­‐chakrabortty-­‐wind2014/  [Accessed  18  April  2014].  

Cogley,  T.,  1997.  Federal  Reserve  Bank  of  San  Francisco.  [Online]  Available  at:  http://www.frbsf.org/economic-­‐research/publications/economic-­‐letter/1997/september/what-­‐is-­‐the-­‐optimal-­‐rate-­‐of-­‐inflation/  [Accessed  18  April  2014].  

Crane,  A.  et  al.,  2009.  The  Oxford  Handbook  of  Corporate  Social  Responsibility.  Oxford:  Oxford  University  Press.  

Doering,  C.,  2014.  The  Des  Moines  Register.  [Online]  Available  at:  http://www.desmoinesregister.com/story/news/politics/2014/04/02/renewal-­‐wind-­‐tax-­‐credit-­‐shows-­‐signs-­‐life/7190249/  [Accessed  13  April  2014].  

EBSCO  HOST,  2014.  Ebsco  Host.  [Online]  Available  at:  http://connection.ebscohost.com/science/alternative-­‐energy-­‐exploration/history-­‐alternative-­‐and-­‐renewable-­‐energy  [Accessed  24  April  2014].  

Eckhart,  M.T.,  2012.  Ecogeneration.  [Online]  Available  at:  http://ecogeneration.com.au/news/history_and_outlook_on_renewable_energy_policy_in_the_us/067016/.  

EIA,  2011.  U.S  Energy  Information  Administration.  [Online]  Available  at:  http://www.eia.gov/todayinenergy/detail.cfm?id=3970  [Accessed  21  March  2014].  

Eia,  2013.  U.S  Energy  Information  Administration.  [Online]  Available  at:  http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf  [Accessed  15  March  2014].  

Eia,  2013.  U.S  Energy  Information  Administration.  [Online]  Available  at:  http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_01_a  [Accessed  18  March  2014].  

EIA,  2013.  Updated  Capital  Cost  Estimates  for  Utility  Scale  Electricity  Generating  Plants.  Cost  Estimate.  EIA.  

EPA,  2011.  Environmental  Protection  Agency.  [Online]  Available  at:  http://www.epa.gov/climatechange/ghgemissions/gases/co2.html  [Accessed  18  April  2014].  

Galbraith,  K.,  2009.  New  York  Times.  [Online]  Available  at:  http://green.blogs.nytimes.com/2009/02/25/obama-­‐vows-­‐support-­‐for-­‐renewables-­‐and-­‐a-­‐carbon-­‐cap/  [Accessed  25  April  2014].  

GEA,  2010.  Geothermal  Energy  Association.  [Online]  Available  at:  http://www.geo-­‐energy.org/pdf/reports/GreenJobs_Through_Geothermal_Energy_Final_Oct2010.pdf  [Accessed  21  March  2014].  

  63  

GE-­‐Energy,  2014.  GE-­‐  Energy.  [Online]  Available  at:  http://www.ge-­‐energy.com/products_and_services/products/wind_turbines/fourone_113.jsp  [Accessed  16  April  2014].  

GENESLAW,  H.,  1995.  CLEANUP  OF  NATIONAL  PRIORITIES  LIST  SITES,  FUNCTIONAL  EQUIVALENCE,  AND  THE  NEPA  ENVIRONMENTAL  IMPACT  STATEMENT.  Journal  of  Land  Use  &  Environmental  Law.  

Handley,  M.,  2012.  U.S  News.  [Online]  Available  at:  http://www.usnews.com/news/articles/2012/09/04/6-­‐energy-­‐policy-­‐highlights-­‐from-­‐the-­‐democratic-­‐party-­‐platform  [Accessed  15  April  2014].  

Hill,  T.  &  Westbrock,  R.,  1997.  SWOT  analysis:  It's  time  for  a  product  recall.  Long  Range  Planning,  30(01),  p.6.  

Holdren,  J.,  2014.  Whitehouse.  [Online]  Available  at:  http://www.whitehouse.gov/blog/2014/01/09/new-­‐steps-­‐strengthen-­‐nation-­‐s-­‐energy-­‐infrastructure  [Accessed  16  April  2014].  

Hollensen,  S.,  2011.  Global  Marketing.  Harlow,  England:  Prentice  Hall.  IES,  2013.  Institute  of  Education  Sciences.  [Online]  Available  at:  

http://nces.ed.gov/programs/digest/d12/  [Accessed  15  April  2014].  

IHS,  2010.  Emerging  Energy.  [Online]  Available  at:  http://www.emerging-­‐energy.com/uploadDocs/Excerpt-­‐-­‐-­‐US-­‐RPS-­‐Markets-­‐and-­‐Utility-­‐Strategies-­‐2010-­‐2025.pdf  [Accessed  15  March  2014].  

Iowa  Energy  Center,  2014.  Iowa  Energy  Center.  [Online]  Available  at:  http://www.iowaenergycenter.org/wind-­‐energy-­‐manual/history-­‐of-­‐wind-­‐energy/  [Accessed  24  March  2014].  

Johnson,  G.,  Scholes,  K.  &  Whittington,  R.,  2007.  Exploring  Corporate  Strategy.  Lancaster:  Prentice  Hall.  

Kaldellis,  J.  &  Zafirakis,  D.,  2011.  The  wind  energy  (r)evolution:  A  short  review  of  a  long  history.  Lab  of  Soft  Energy  Applications  &  Environmental  Protection,  36,  p.17.  

Komperda,  S.,  2014.  Legal  issues  in  regard  to  the  development  of  a  wind  farm.  [Online]  Springfield,  U.S.  

Komperda,  S.,  2014.  Wind  Developers  in  the  U.S.  and  the  Contemporary  Situation  for  Wind  in  the  U.S.  [Online]  Springfield,  U.S.  

Kotler,  P.  et  al.,  2009.  Marketing  Management.  Harlow:  Pearson.  Kotter,  J.  &  Schlesinger,  L.,  2008.  Choosing  Strategies  for  change.  Harvard  

Business  Review,  Augustus.  p.29.  

Lawson,  J.,  2013.  Renewable  Energy  World.  [Online]  Available  at:  http://www.renewableenergyworld.com/rea/news/article/2013/04/to-­‐keep-­‐wind-­‐competitive-­‐manufacturing-­‐ups-­‐its-­‐game  [Accessed  19  April  2014].  

Lee,  S.F.,  Lo,  K.K.,  Leung,  R.F.  &  Sai  On  Ko,  A.,  2000.  Strategy  formulation  framework  for  vocational  education:  integrating  SWOT  analysis,  balanced  scorecard,  QFD  methodology  and  MBNQA  education  criteria.  Managerial  Auditing  Journal,  15(8),  p.16.  

  64  

Lombardo,  T.,  2013.  Engineering  Electronics.  [Online]  Available  at:  http://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/5832/Worlds-­‐Quietest-­‐Wind-­‐Turbine.aspx  [Accessed  18  April  2014].  

Lyons,  W.,  2010.  About  Energy.  [Online]  Available  at:  http://energy.about.com/od/Generation_and_Storage/ht/How-­‐To-­‐Build-­‐A-­‐Wind-­‐Farm.htm  [Accessed  15  April  2014].  

Miller,  B.,  2013.  Wind  Power  Monthly.  [Online]  Available  at:  http://www.windpowermonthly.com/article/1207731/wind-­‐power-­‐growth-­‐2006-­‐2012  [Accessed  25  April  2014].  

Mintzberg,  H.,  1994.  The  Rise  and  Fall  of  Strategic  Planning.  Prentice  Hall  International.  

Muralidharan,  R.,  2013.  Environmental  Scanning  and  Strategic  Decisions  in  Multinational  Corporations.  The  Multinational  Business  Review,  11(1),  p.22.  

NHA,  2013.  Hydro.  [Online]  Available  at:  http://www.hydro.org/wp-­‐content/uploads/2010/12/NHA-­‐Fact-­‐Sheet-­‐Hydropower-­‐for-­‐a-­‐Clean-­‐Energy-­‐Future.pdf  [Accessed  15  April  2014].  

Nickell,  C.,  2014.  Legal  issues  in  regard  to  the  development  of  a  wind  farm.  [Online]  Springfield,  U.S.  

NOAA,  2002.  National  Oceans  And  Atmospheric  Administration.  [Online]  Available  at:  http://www.berner.com/sales/energy_windspeed.html  [Accessed  17  April  2014].  

NREL,  2008.  20%  Wind  Energy  by  2030.  Outlook.  U.S.  Department  of  Energy.  

NREL,  2014.  National  Renewable  Energy  Laboratory.  [Online]  Available  at:  http://www.nrel.gov/learning/re_biomass.html  [Accessed  18  March  2014].  

NREL,  2014.  Wind  Power  in  America.  [Online]  Available  at:  http://www.windpoweringamerica.gov/wind_resource_maps.asp?stateab=nd&print  [Accessed  17  April  2014].  

NWCC,  2010.  National  Wind  Coordinating  Collaborative.  [Online]  Available  at:  http://www1.eere.energy.gov/wind/pdfs/birds_and_bats_fact_sheet.pdf  [Accessed  15  April  2014].  

O'Neill,  J.  &  O'Neill,  D.,  2006.  What  do  wage  differentials  tell  about  labor  market  discrimination?  Emerald  Group.  

Perry,  J.  &  Gundersen,  D.,  2011.  American  Women  and  the  Gender  Pay  Gap:  A  Changing  Demographic  or  the  Same  Old  Song.  Advancing  Women  in  Leadership,  31(1),  p.7.  

Pickton,  D.  &  Wright,  S.,  1998.  What's  swot  in  strategic  analysis?  Strategic  Change,  7(1001),  p.9.  

Piercy,  N.  &  Giles,  W.,  1989.  Making  Swot  Analysis  Work.  Strategic  Marketing  Development,  7(5),  p.3.  

Post,  W.,  2013.  The  Energy  Collective.  [Online]  Available  at:  http://theenergycollective.com/willem-­‐post/310631/more-­‐realistic-­‐cost-­‐wind-­‐energy  [Accessed  14  April  2014].  

  65  

REAP,  2013.  Renewable  Energy  Alaska  Project.  [Online]  Available  at:  http://alaskarenewableenergy.org/why-­‐renewable-­‐energy-­‐is-­‐important/alaskas-­‐resources/  [Accessed  18  April  2014].  

Rumelt,  R.P.,  1991.  How  Much  Does  Industry  Matter?  Strategic  Managment  Journal,  12(3).  

Ryan,  D.,  2014.  EHP.  Environmental  Health  Perspective,  122(1),  p.6.  Available  at:  http://ehp.niehs.nih.gov/122-­‐a20/.  

Söder,  L.,  2009.  Diva.  [Online]  Available  at:  http://www.diva-­‐portal.org/smash/get/diva2:405861/FULLTEXT01.pdf  [Accessed  17  April  2014].  

SEIA,  2014.  Solar  Energy  Industries  Association.  [Online]  Available  at:  http://www.seia.org/policy/solar-­‐technology/photovoltaic-­‐solar-­‐electric  [Accessed  18  March  2014].  

Senn,  C.,  2006.  The  executive  growth  factor:  how  Siemens  invigorated  its  customer  relationships.  Journal  of  Business  Strategy  ,  27(01).  

Sherlock,  M.,  2011.  Energy  Tax  Policy:  Historical  Perspectives  on  and  Current  Status  of  Energy  Tax  Expenditures.  Congrssional  Research  Service.  

Siemens  AG,  2013.  Das  Unternehmen  2013.  Annual  Report.  Siemens  AG.  Siemens  Wind  Power.  2013.  [Film]  Directed  by  Siemens.  

Siemens,  2008.  Siemens.  [Online]  Available  at:  http://www.siemens.com/history/pool/geschichte/unternehmensgeschichte_lang.pdf  [Accessed  04  March  2014].  

Siemens,  2008.  treia.  [Online]  Available  at:  http://www.treia.org/assets/documents/TR08_Tue_1030-­‐1200_Nelson.Robert_Siemens_Wind_Power-­‐Technical_Developments.pdf  [Accessed  04  March  2014].  

Siemens,  2010.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/pool/de/events/energy/2010-­‐11-­‐wind/Factsheet_USA_de.pdf  [Accessed  04  March  2014].  

Siemens,  2010.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/en/pressrelease/index.php?content[]=E&content[]=EW&search=Searchterm&date-­‐1-­‐dd=01&date-­‐1-­‐mm=03&date-­‐1=2005&date-­‐2-­‐dd=05&date-­‐2-­‐mm=03&date-­‐2=2014&intern=1&content_0=E&content_1=EW&sheet=9  [Accessed  05  March  2014].  

Siemens,  2011.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/en/pressrelease/index.php?content[]=E&content[]=EW&search=Searchterm&date-­‐1-­‐dd=01&date-­‐1-­‐mm=03&date-­‐1=2005&date-­‐2-­‐dd=05&date-­‐2-­‐mm=03&date-­‐2=2014&intern=1&content_0=E&content_1=EW&sheet=8  [Accessed  05  March  2014].  

Siemens,  2011.  Siemens.  [Online]  [Accessed  05  March  2014].  

  66  

Siemens,  2011.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/en/pressrelease/index.php?content[]=E&content[]=EW&search=Searchterm&date-­‐1-­‐dd=01&date-­‐1-­‐mm=03&date-­‐1=2005&date-­‐2-­‐dd=05&date-­‐2-­‐mm=03&date-­‐2=2014&intern=1&content_0=E&content_1=EW&sheet=6  [Accessed  05  March  2014].  

Siemens,  2012.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/en/pressrelease/index.php?content[]=E&content[]=EW&search=Searchterm&date-­‐1-­‐dd=01&date-­‐1-­‐mm=03&date-­‐1=2005&date-­‐2-­‐dd=05&date-­‐2-­‐mm=03&date-­‐2=2014&intern=1&content_0=E&content_1=EW&sheet=5  [Accessed  05  March  2014].  

Siemens,  2012.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/pool/de/events/2012/energy/2012-­‐07-­‐wismar/factsheet-­‐wind-­‐power-­‐offshore-­‐e.pdf  [Accessed  05  March  2014].  

Siemens,  2013.  Oxford  Research.  [Online]  Available  at:  http://www.oxfordresearch.dk/media/185188/Opl%C3%A6g_Mogens%20Nyborg%20Pedersen.pdf  [Accessed  19  April  2014].  

Siemens,  2013.  Siemens.  [Online]  Available  at:  http://www.siemens.com/about/en/management-­‐structure/energy.htm  [Accessed  04  March  2014].  

Siemens,  2013.  Siemens.  [Online]  Available  at:  http://www.siemens.com/about/en/businesses/energy.php  [Accessed  04  March  2014].  

Siemens,  2013.  Siemens.  [Online]  Available  at:  http://www.energy.siemens.com/hq/en/renewable-­‐energy/wind-­‐power/references.htm  [Accessed  04  March  2014].  

Siemens,  2013.  Siemens.  [Online]  Available  at:  http://www.siemens.com/press/pool/de/feature/2013/energy/2013-­‐12-­‐fort-­‐madison/factsheet-­‐siemens-­‐wind-­‐power-­‐d.pdf  [Accessed  01  April  2014].  

Siemens,  2013.  Siemens.  [Online]  Available  at:  http://www.siemens.com/innovation/apps/pof_microsite/_pof-­‐spring-­‐2013/_pdf/de/Weisse_riesen_produzieren_DE.pdf  [Accessed  18  April  2014].  

Sikorski,  D.,  2011.  The  Global  Financial  Crisis.  Contemporary  Studies  in  Economic  and  Financial  Analysis,  93,  p.70.  

Slaughter,  R.,  1999.  Framework  for  Environmental  Scanning.  Foresight,  1(5).  Stonehouse,  G.  &  Snowdon,  B.,  2007.  Competitive  Advantage  Revisited:  

Michael  Porter  on  Strategy  and  Competitiveness.  Journal  of  Management  Inquiry,  16,  p.19.  

Subramanian,  C.,  2013.  Time.  [Online]  Available  at:  http://business.time.com/2013/12/26/dow-­‐jones-­‐record-­‐high/  [Accessed  14  April  2014].  

  67  

Summers,  L.,  2009.  National  Economic  Council.  [Online]  Available  at:  http://www.whitehouse.gov/administration/eop/nec/speeches/responding-­‐to-­‐an-­‐historic-­‐economic-­‐crisis-­‐the-­‐obama-­‐program  [Accessed  18  April  2014].  

Trahish,  H.,  2012.  GreenTech.  [Online]  Available  at:  https://www.greentechmedia.com/articles/read/ge-­‐still-­‐dominates-­‐u.s.-­‐wind-­‐making-­‐but-­‐new-­‐faces-­‐are-­‐emerging/  [Accessed  14  April  2014].  

U.S.  Bureau  Of  Labor  Statistics,  2014.  Tradingeconomics.  [Online]  Available  at:  http://www.tradingeconomics.com/united-­‐states/inflation-­‐cpi  [Accessed  14  April  2014].  

U.S.  Census  Bureau,  2011.  Population  Density  per  Square  Mile  of  Countries.  U.S  Census  Bureau.  

U.S.  Deparment  Of  Labor,  2010.  BLS.  [Online]  Available  at:  http://www.bls.gov/cps/cpswom2009.pdf  [Accessed  15  April  2014].  

U.S.  Department  Of  Education,  2010.  Status  and  Trends  in  the  Education  of  Racial  and  Ethnic  Groups.  IES.  

U.S.  Department  of  Energy,  2014.  U.S.  Department  of  Energy.  [Online]  Available  at:  http://energy.gov/eere/wind/history-­‐wind-­‐energy  [Accessed  01  April  2014].  

U.S.  Department  of  Energy,  2014.  U.S.  Department  of  Energy.  [Online]  Available  at:  http://www1.eere.energy.gov/tribalenergy/guide/wind_turbines.html  [Accessed  04  April  2014].  

U.S.  Energy  Information  Administration,  2014.  Monthly  Electric  Sales  and  Revenue  With  State  Distributions  Report.  Power  Plant  Operations  Report.  U.S.  Energy  Information  Administration.  

Union  of  Concerned  Scientists,  2014.  UCSUSA.  [Online]  Available  at:  http://www.ucsusa.org/clean_energy/our-­‐energy-­‐choices/renewable-­‐energy/how-­‐geothermal-­‐energy-­‐works.html  [Accessed  18  March  2014].  

Valentin,  E.K.,  2005.  Away  With  SWOT  Analysis:  Use  Defensive/Offensive  Evaluation  Inste.  The  Journal  of  Applied  Business  Research  –,  21(2),  p.103.  

Vestas,  2013.  Vestas.  [Online]  Available  at:  http://worldofwind.vestas.com/en/Manufacturing  [Accessed  18  April  2014].  

Vyas,  C.  &  Hurst,  D.,  2013.  Energy  and  Environment  Consumer  Survey.  Consumer  Survey.  Navigant  Research.  

WED,  2014.  Wind  Energy  Development.  [Online]  Available  at:  http://windeis.anl.gov/guide/basics/  [Accessed  17  April  2014].  

Wind  Energy  Foundation,  2014.  Wind  Energy  Foundation.  [Online]  Available  at:  http://www.windenergyfoundation.org/about-­‐wind-­‐energy/history  [Accessed  24  March  2014].  

Yüksel,  I.,  2012.  Developing  a  Multi-­‐Criteria  Decision  Making  Model  for  PESTEL  Analysis.  International  Journal  of  Business  and  Managemen,  7(24),  p.15.