bacillus cereus - old-biomikro.vscht.czold-biomikro.vscht.cz/vyuka/mzp/bacillus_cereus7.pdf · •...

55
Bacillus cereus

Upload: hoangdung

Post on 11-Feb-2019

218 views

Category:

Documents


1 download

TRANSCRIPT

Bacillus cereus

Bacillus cereus

Historie Bacillus cereus

• První záznamy týkající se otrav z potravin způsobené rodem Bacillus pochází z roku 1906, kdy Lubenau popsal propuknutí onemocnění v sanatoriu, kde se u 300 pacientů a zaměstnanců objevily silné průjmy, křeče žaludku a zvracení. Přestože Lubenau pojmenoval microorganismus, které onemocnění vyvolalo, Bacillus peptonificans, vlastnosti, které u microorganismu popsal, se podobaly vlastnostem Bacillus cereus. V Evropě se pak objevila řada takovýchto onemocnění a v letech 1936 až 1943 Stockholmské ministerstvo zdravotnictví odhadovalo, že byl tento mikroorganismus tvořící aerobní spory příčinou onemocnění ve 117 případech z 367 zkoumaných.

Historie Bacillus cereus

• Do roku 1950 nebyl Bacillus cereus definitivně potvrzen jako příčina onemocnění z potravin. Stalo se tak až vyjasněním taxonomie rodu. Hauge popsal čtyři propuknutí nákazy v Norsku dohromady u 600 lidí. Zdrojem byla vanilková omáčka, která byla připravena den předem a uložena při pokojové teplotě. U této omáčky bylo později zjištěno 2,5*107 až 1,1*108 /ml buněk Bacillus cereus.

• Tyto klasické zprávy a mnohé další popisují onemocnění, pro které byl převládajícím příznakem průjem. Je známo, že je Bacillus cereus zodpovědný za dva odlišné typy onemocnění z potravin: „průjmové onemocnění“ („diarrhoeal syndrom“) s relativně delší inkubační dobou a onemocnění projevující se zvracením, tzv. „emetický syndrom“, který má rychlý začátek a byl poprvé popsán v roce 1971 ve Spojeném Království.

Charakteristika organismu

• Bacillus cereus je typická, v půdě žijící Gram-pozitivní, tyčinkovitá, betahemolytická bakterie. Některé kmeny jsou nebezpečné pro lidi a vyvolávají onemocnění z potravy, (foodborne illness), zatímco jiné mohou být prospěšné jako probiotika pro zvířata.

• Podle tvaru sporangia se člení do tří skupin• Také se označuje jako syndrom čínské restaurace (

Fried Rice Syndrome).• B. cereus je aerobní, a podobně jako další členové rodu

Bacillus tvoří endospory.• Serotypizace je založena na bičíkovém H antigenu

Scientific classification

Kingdom Bacteria

Phylum Firmicutes

Class Bacilli

Order Bacillales

Family Bacillaceae

Genus Bacillus

Species Cereus

Systematické zařazení

Sporulující kultura B.cereus – barveno podle Grama

Růst a jeho kontrola

• Teplota: Optimum 30-37 ºC. Některé kmeny mohou růst až do 55 ºC zatímco další rostou ještě při 4 - 5 ºC (mléčné výrobky)

• pH: minimum pro růst je 4.3 a maximum okolo 9,3.

• Atmosféra: Růst je optimální v přítomnosti kyslíku. Růst za annaerobních podmínek je pomalý s nízkou produkcí toxinů.

• Vodní aktivita: Minimální rozsah vodní aktivity k vegetativnímu růstu je 0,912 – 0,950.

Onemocněnívyvolaná B.cereus

• B.cereus tvoří několik enterotoxinů. Ojediněle může způsobovat onemocnění u imunokompromitovaných pacientů (meningitis, endokarditis, endophtalmitis, konjunktivitis nebo akutní gastroenteritis).Je též původcem oportunních infekcí.

otrava z potravin (enterotoxikóza) • meningitís • endokarditis • konjunktivitis • pneumonie • sepse • infekce ran

Diarhoeální (průjmové) onemocnění

• Inkubace: 10-12 hodin po požití kontaminované potraviny

• Symptomy: bolest břicha, vodnatý průjem a občasné zvracení (podobné jako při infekci C. perfringens).

• Příčinou je požití vegetativních organismů nebo spor a jejich následné množení a produkce toxinu v zažívacím traktu (enterotoxin Nhe a/nebo hemolytický enterotoxin HBL)

• V Evropě dosti častý výskyt

Emetický syndrom

• Inkubace: 1- 6 hodin po požití kontamino- vané potraviny

• Symptomy: nausea a zvracení,občas následované průjmem (výsledek požití již utvořeného toxinu: emetoxin ETE). Podobně jako u S. aureus.

• Velice časté v Japonsku

Probiotikum

• B. cereus soutěží s ostatními mikroorganismy jako je Salmonella a Campylobacter v trávícím traktu tak, že jeho přítomnost redukuje jejich počet.

• U hospodářských zvířat : kuřata, králíci a vepři některé neškodné kmeny B. cereus se užívají jako probiotická potravní aditiva ke snížení počtu salmonel ve střevech. Zlepšuje to růst zvířat a zároveň zvyšuje bezpečnost jejich masa pro lidskou výživu.

Vliv stáří kultury na barvení

Kriteria pro B. cereus

• Nařízení 1441/2007 Kapitola 2.2• 2.2.11 Sušená počáteční kojenecká výživa a

sušené dietní potraviny pro zvláštní léčebné účely určené pro kojence do šesti měsíců věku

plán odběru vzorků limity anal. metoda

Bacillus cereus n/5 c/1 m=50 KTJ/g EN/ISO 7932 M= 500 KTJ/g- vyhovující, pokud jsou všechny zjištěné hodnoty ≤ m- přijatelný, pokud nejvýše c/n hodnot nachází mezi m a M a zbývající

zjištěné hodnoty jsou ≤ m- nevyhovující, pokud je jedna nebo více zjištěných hodnot > M nebo

se více než c/n hodnot nachází mezi m a M.

Identifikace podle ISO normy

• ČSN EN/ISO 7932

• Na povrch tuhé selektivní půdy v Petriho miskách se očkuje určený objem zkušebního vzorku, stejně s epostupuje při očkování desetinásobných ředění vzorku.

• Plotny se inkubují aerobnw při 30 oC po 18-48 h.• Půda obsahuje kromě živin fenolovou červeň, polymyxin

B a žloutkovou emulzi.

• Typické kolonie jsou velké, růžové a oobvykle obklopené

zónou precipitace (tvorba lecitinasy)• Konfirmace na agaru s ovčí krví – hemolytická reakce

Biochemická charakteristika• Identifikačním znakem pro B. cereus, B. thuringiensis, B cereus var.

mycoides a v menší míře B. anthracis je schopnost syntetizovat lecithinasu, která způsobuje zamlženost ve žloutkovaječném bujónu a neprůhledné zóny opalescence okolo kolonií na tomto typu agaru.

• Stejně jako lecithinasa (α-toxin) druhu Clostridim perfringens, jsou tyto enzymy aktivovány Ca2+ a Mg2+ ionty, vykazují určitou termostabilitu, dávají Naglerovu reakci v lidském séru, lyzují erythrocyty a jsou neutralizovány specifickým sérem.

• Lecithinasovou reakci na žloutkovaječném agaru, avšak mnohem slabší a omezenou, vykazují i jiné druhy (B. laterosporus, B. polymyxa a B. macerans). K této reakci dochází v místě hned pod kolonií, a proto je viditelná pouze při odstranění narostlého mikroorganismu.

B.cereus produkuje

• fosfolipáza C • hemolyzin - oxigenlabilní cereolysin,

letální pro myš • oxigenstabilní hemolysin • enterotoxin - mimo jiné zvyšuje

permeabilitu cév • emetický toxin - termostabilní, odolný vůči

pH, proteázám

• Různé druhy z rodu Bacillus, zvláště ty z 1 morfologické skupiny, produkují hemolysiny.

• Primární hemolysin B. cereus, cereolysin, je oxygenlabilní, aktivuje se thioly a inaktivuje se cholesterolem a antistreptolysinem a je blízce příbuzný, není-li identický, s hlavním hemolysinem B. thuringiensis, thuringiolysinem. B. megaterium produkuje hemolysin podobný α-hemolysinu Staphylococcus aureus

Virulenční faktory

• Diarhetické syndromy u pacientů jsou výsledkem účinku tří toxinů Hbl, Nhe a CytK. Geny nhe/hbl/cytK jsou lokalizovány na chromosomu bakterie.

• Transkripce těchto genů je řízena PlcR. Tyto geny se vyskytují také v taxonomicky příbuzných B. thuringensis a B. anthracis. Tyto enterotoxiny se tvoří v tenkém střevu hostitele, tak jsou chráněny před trávícími enzymy hostitele.

• Toxiny Hbl a Nhe mají porační aktivitu podobnou jako E. coli. Mají konformaci "beta-barrel" tak mohou pronikat do buněčných membrán vzhledem k hydrofobnímu exteriéru, tvoří póry s hydrofilním vnitřkem (interiérem).

• Výsledkem je ztráta buněčného membranového potenciálu a případně smrt buňky.

• CytK je pory tvořící protein příbuzný ostatním hemolysinům.

PlcR• PlcR je regulátor transkripce u Bacillus cereus, který aktivuje

genovou expresi tak, že se váže na sekvence nukleotidů označované jako ‘PlcR box’.

• Ke zjištění seznamu všech genů obsažených v PlcR regulonu byly pomocí mutagenese identifikovány shodné sekvence.

• Referenční kmen ATCC14579 byl kompletně sekvenován, shodné sekvence byly vyhledány a utvořen virtuální regulon.

• PlcR kontrola těchto genů byla potvrzena porovnáním genové exprese u referenčního kmene a jeho isogenního mutanta Δ-plcR využitím DNA chipů (microarray), lacZ fuzemi a dalšími metodami proteomiky.

• Výsledný seznam obsahoval 45 genů kontrolovaných v 28 PlcR boxech. Čtyřicet proteinů řízených PlcR bylo exportováno,z nich 22 bylo sekretováno do media a 18 bylo vázáno nebo zachyceno na struktury buněčných obalů (membrána nebo peptidoglykanová vrstva).

Transkripční regulátor PlcR ( Phospholipase C regulator) kontroluje expresi většiny známých faktorů virulence.

Proteiny řízené PlcR

• Funkce těchto proteinů mají souvislost s výživou (fosfolipasy, proteasy, toxiny), s ochranou buňky (bakteriociny, toxiny, transportery, bioegenese buněčné stěny) a reakce na prostředí (dvou složkové sensory, proteiny chemotaxe, GGDEF regulátory). Ćtyři geny kódují cytoplasmatické regulátory.

• PlcR regulon zřejmě integruje velký počet environmentálních signálů, včetně nedostatku živin a reguluje transkripci genů umožňujících překonat tyto překážky, které brzdí růst B. cereus v hostiteli: dodávka živin, ochrana hostitele, jeho imuní obrana, a soutěž s ostatními druhy bakterií.

• PlcR je klíčovou složkou účinné adaptace B. cereus v prostředí hostitele.

Přehled PlcR regulonů

Vliv konservačních látek

• Růst je inhibován 0,26% sorbové kyseliny při pH 5,5 a 0, 39% sorbátem draselným při pH 6,6

• Přídavek 0,2% propionátu vápenatého zabraňuje klíčení spor B .cereus v chlebu

• Nisin je běžně užíván k potlačení klíčení spor a růstu v tavených sýrech, mléčných desertech, konservách, uzeném mase a v pekárenských výrobcích s vysokou vlhkostí (3.75 μg/g)

• Ostatní antimikrobiální látky: benzoát, sorbát, etylenediaminetetraoctová kyselina (EDTA) a polyfosfáty

Staphylococcus aureus Staphylococcus aureus - - úvodúvod

Byl popsán před více než 140 lety jako původce abscesů a o několik desítek let i jako původce alimentárních intoxikací.

V patogenezi infekčních onemocnění lidí a zvířat se uplatňují i jiné druhy, SA má u stafylokokových infekcí a intoxikací dominantní postavení.

Patogenita a virulence SA je způsobena schopností kmenů produkovat biologicky aktivní proteiny:

• syndrom toxického šoku• exfoliativní toxiny• enterotoxiny

Koagulasa-pozitivní stafylokokyStaphylococcus aureus

• Domain:Bacteria• Říše: Eubacteria• Kmen:Firmicutes• Třída:Bacilli• Řád:Bacillales• Čeleď:Staphylococcaceae• Rod:Staphylococcus• Druh:aureus

Staphylococcus aureus

Stafylokoky tvořící hemolýzu

Výskyt

• Staphylococcus aureus je přirozenou součástí mikroflóry lidského těla. Člověk je stafylokoky kolonizován od prvních dnů života. Nejvíce jsou kolonizována kůže na rukou, perinea a sliznice dýchacího a zažívacího ústrojí. Přítomnost S. aureus lze prokázat v horních cestách dýchacích u 20 – 50% populace. Jejich přenašeči mohou být i zdraví jedinci, u kterých není vyvoláno žádné onemocnění. Nosičství stafylokoků organismus nijak nepoškozuje, ale naopak vede k poměrně dobré odolnosti vůči infekci. K onemocnění dochází jen při oslabení imunitního systému.

• S. aureus rovněž kolonizuje dýchací trakt hospodářsky významných zvířat. Nejčastěji se jedná o domácí prasata a drůbež. Vyskytuje se také u řady divoce žijících druhů.

Patogenita

• Stafylolyziny - patří sem hemolyzin alfa, beta, gama, delta. Jsou to cytotoxiny, které poškozují nejen erytrocyty, ale i buňky různých tkání. S. aureus a haemolyticus způsobují beta-hemolýzu.

• Leukocidin - zvyšuje permeabilitu membrány leukocytů • Exfoliatin - je epidermolytický toxin typický pro S.

aureus. Způsobuje syndrom opařené kůže (SSSS, Ritterův syndrom), což je toxická epidermolýza. Jedná se o těžké poškození kůže, při němž vznikají vodnaté puchýře, které postupně praskají a kůže se pak olupuje. Tekutina v puchýřích je sterilní.

Další faktory patogenity

• TSST-1 (toxic shock syndrome toxin) - jedná se o toxin syndromu toxického šoku, jehož hlavním projevem je multisystémový efekt (horečka, difúzní erytrém, průjmy, hypotenze, selhání funkce jater a ledvin). Zvyšuje propustnost endotelu

• Enterotoxiny - způsobují stafylokokovou enterotoxikózu. Vyskytují se i v infikovaných potravinách, jsou termostabilní a odolné vůči kyselině chlorovodíkové v žaludku.

Další faktory patogenity

• Plazmokoaguláza (volná) - sráží fibrinogen. Vytváří ochranný fibrinový obal a napomáhá tím k tvorbě abscesů.

• Hyaluronidáza - je faktor invazivity. Napomáhá tvorbě flegmóny. Štěpí kyselinu hyaluronovou a pomáhá pronikání stafylokoků do mezibuněčných prostor.

• Stafylokináza - je fibrinolyzin, který rozpouští fibrinové sraženiny. • Lipázy - hydrolyzují lipidy a způsobují tak lepší šíření do podkoží. • Nukleáza - její úloha je zatím v patogenezi nejasná. Využívá se v

laboratorní diagnostice. • Penicilináza - je beta-laktamáza kódovaná plasmidem. Rozkládá

betalaktamový kruh betalaktamových antibiotik.

Enterotoxiny

• Stafylokokové enterotoxiny jsou bazické proteiny rezistentní k proteolytickým enzymům zažívacího traktu. Odolávají účinkům varu po dobu 30 minut.

• Svými strukturními a biologickými vlastnostmi náležejí do skupiny stafylokokových a streptokokových pyrogenních toxinů označovaných jako superantigeny, které jsou schopny stimulovat větší množství T-lymfocytů než běžné antigeny. Superantigeny jsou aktivovány ve střevech, kde navodí odezvu, což je příčinou gastroenteritid spojených s dehydratací.

• Stafylokokové enterotoxiny jsou jednou z příčin bakteriální virulence, vyvolávají zvracení a mohou také zapříčinit toxický šok.

Typy enterotoxinů

• S. aureus produkuje 11 typů enterotoxinů (SE), přičemž doposud bylo identifikováno 20 sérologicky odlišných typů. Jedná se o malé jednořetězcové polypeptidy o velikosti 26 – 30 kDa.

• Syntéza je řízena chromozomálními nebo plastidovými geny.

Enterotoxiny SEA, SEB, SEC, SED a SEE byly popsány již dříve, zatím co SEG, SEH, SEI a SEJ, jsou nověji popsané enterotoxiny.

Antigenní struktura

• peptidoglykan - je složka buněčné stěny. Navozuje v těle tvorbu interleukinu-1 a opsonizačních látek. Aktivuje komplement, má endotoxinovou aktivitu a působí jako chemotaktický faktor. Na peptidoglykanu je navázána kyselina teichoová a protein A.

• kyselina teichoová - navozuje tvorbu protilátek. • protein A - se váže na Fc fragment IgG, čehož se pak užívá v

diagnostice u tzv. koaglutinační reakce. Dále inhibuje opsonizaci a fagocytózu - má antifagocytární a antikomplementární účinek.

• adheziny - jsou kolonizační faktory. Způsobují adhezi stafylokoků na mezibuněčné nebo buněčné struktury (např. fibrinogen, fibronektin, kolagen, sialoprotein) BIOFILM

• vázaná koaguláza - je shlukovací faktor a zprostředkovává vazbu na fibrinogen.

Stafylokoková enterotoxikosa

• Koagulasa enzym tvořený bakteriemi, zvláště Staphylococcus aureus, který napomáhá tvorbě fibrinu z fibrinogenu při tvorbě sraženin (krevních).

• Test používá králičí fibrinogen.

Koagulasa• Plazmakoaguláza je určujícím znakem druhu a obecně známkou

patogenity. Jednoduchý protein přeměňující fibrinogen na fibrin. Srážení

vyvolané koagulázou vede k akumulaci fibrinu okolo bakteriální buňky a ztěžuje tak hostitelským obraným agens zkontaktovat se s ní a zabránit tak fagocytóze.

Plazmakoaguláza může přispívat k ohraničení zánětlivé reakce vytvořením fibrinového lemu kolem léze, která se přeměňuje ve stafylokokový absces.

Podle produkce plazmakoagulázy se stafylokoky rozdělují do dvou velkých skupin: koaguláza pozitivní a koaguláza negativní stafylokoky.

Koagulázový test se používá pro rozlišení S. aureus a S. epidermidis, který je koaguláza negativní.

PatogenezePatogenezeToxická dávka 0,1-1 µg enterotoxinu je schopna vyvolat

onemocnění.Inkubační doba se pohybuje od 1 do 7 hodin.Nástup klinických příznaků je velmi rychlý a dramatický,

bolesti hlavy, zvracení, bolesti břicha, vzácněji průjem. Úzdrava je rychlá, do 2 dní.

Předpokládá se, že enterotoxiny stimulují lokální neuroreceptory v trávícím traktu, které prostřednictvím vagu stimulují centrum pro zvracení v mozku.

Bakteriální intoxikace

0

200

400

600

800

1000

1200

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005+

po

če

t h

láš

en

ýc

h p

říp

ad

ů

Kriteria pro St. aureus

• Nařízení 1441/2007 EU• Kapitola 1. Kriteria bezpečnosti potravin• 1.21 Sýry, sušené mléko a sušená syrovátka

podle kritérií pro koagulázopozitivní stafylokoky , viz kapitola 2.2

• Stafylokokové enterotoxiny: n = 5, • Neprokázány ve 25 g, podle metody referenční

laboratoře Společenství pro koagulázopozitivní stafylokoky

Kriteria pro St. aureus

• Kapitola 2.2 Mléko a mléčné výrobky• 2.2.3 Sýry vyrobené ze syrového mléka• 2.2.4 Sýry vyrobené z mléka , které bylo podrobeno

nižšímu tepelnému ošetření než pasterizaci a zrající sýry vyrobené z pasterizovaného či silněji tepelně ošetřeného mléka nebo z pasterizované či silněji tepelně ošetřené syrovátky

• 2.2.5 Nezrající měkké sýry (čerstvé sýry) vyrobené z pasterizovaného či silněji tepelně ošetřeného mléka nebo z pasterizované či silněji tepelně ošetřené syrovátky

• 2.2.7 Sušené mléko a sušená syrovátka

Limity

• n = 5 c = 2 m M• 2.2.3 104 KTJ/g 105 KTJ/g • 2.2.4 100 KTJ/g 1000 KTJ/g• 2.2.5 10 KTJ/g 100KTJ/g• 2.2.7 10 KTJ/g 100KTJ/g

• Pokud jsou hodnoty > 105 KTJ/g musí být příslušná partie sýra vyšetřena na stafylokokové enterotoxiny.

• Kapitola 2.4 Produkty rybolovu• 2.4.1 Krunýře a lastury zbavené výrobky z vařených korýšů a

měkkýšů se schránkami• 100 KTJ/g 1000 KTJ/g

ČSN EN ISO 6888-1

• Horizontální metoda stanovení počtu koagulázopozitivních stafylokoků

• Část 1: Technika s použitím agarové půdy podle Baird-Parkera

• Kultivace na živné půdě s K2TeO3 a žloutkovou emulzí.

• Typické černé nebo šedé kolonie obklopené zónou ptojasnění se konfirmují na přítomnost koagulasy

Vazba na potraviny

• Malá množství téměř na všech typech masa a drůbeže

• Uzenářské výrobky, šunka

• Mléko a mléčné výrobky

• Tvrdé sýry

• Zákusky, v Japonsku rýžové kuličky, zmrzlina (Maďarsko)

Vliv technologiíVliv technologií

Bakterie SA jsou velmi odolné k vnějšímu prostředí. Dobře přežívají v:• suchém i kyselém prostředí, • snáší vysoký obsah kuchyňské soli, • chladírenské i mrazírenské teploty, • aerobní i anaerobní prostředí. Nepřežívají sterilační ani pasterační teploty. Toxiny jsou velmi rezistentní!

Indikátorové mikroorganismy• Indikace kontroly účinnosti

antimikrobiálních technologických zákroků a hygieny prostředí

• Indikace fekálního znečištění • Koliformní bakterie –- zkvašují laktosu

za vniku kyseliny a plynu• Enterobacteriaceae – zkvašování

glukosyukazatel při rozboru pitné vody

• Enterokoky

Enterobacteriacae

Standardní a patogenní mikroflora

• • E. coli • Salmonella   • Klebsiella  • Shigella   • Enterobacte  r • Yersinia   • Proteus  • pathogennní E. coli • Serratia 

Všechny jsou Gram negativní Fakultativně anaerobní Fermentují glukosu Oxidasa negativní Nitrát pozitivní

Nařízení 1441/2007 EU

• Kapitola 2.1 maso a výrobky z něj• 2.1.1 jatečně upravená těla skotu, ovcí, koz a koňovitých

1,5 – 2,5 log KTJ/cm2

• 2.1.2 jatečně upravená těla prasat

4,0 – 5,0 log KTJ/cm2

• 2.2 Mléko a mléčné výrobky• 2.2.1 Pasterizované mléko a další pasterizované tekuté

mléčné výrobky ≤1 KTJ/ml, 5 KTJ/ml• 2.2.7 Sušené mléko a sušená syrovátka

10 KTJ/g (c = 0)

Nařízení 1441/2007 EU

• 2.2.8 Zmrzlina a maražené méčné deserty

• 10 KTJ/g, 100KTJ/g• 2.2.9 Sušená počáteční kojenecká výživa a sušené

dietní potraviny pro zvláštní léčebné účely určené pro kojence do šesti měsiců věku

Nepřítomnost v 10 g

2.3.1 Vaječné výrobky

10 KTJ/g nebo ml, 100KTJ/g nebo ml

Media pro identifikaci

• Testování na přítomnost nebo celkový počet indikátorových organismů ( coli-aerogenes - koliformní) v potravinách je prováděno standardně.

• Media s krystal. violetí, methyl červení, žlučovými solemi a laktosou jsou navržena pro koliformní,t.j. laktosa pozitivní bakterie. VRBA, jsou varianty klasikého MacConkey agaru

• Tato media jsou užívaná v posledních 20–30 letech pro počet a izolaci koliformních org.

• Nové typy medií jsou pro E. coli založených na β- glukuronidasové aktivitě se také užívají pro koliformy.