back to the basics event analysis using symmetrical...

16
1 © 2018 SEL Back to the Basics Event Analysis Using Symmetrical Components Amanvir Sudan Schweitzer Engineering Laboratories, Inc. Motivation Overview Introduction Symmetrical components refresher Event analysis using symmetrical components Case studies Conclusions Back to Basics

Upload: others

Post on 08-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

1

© 2018 SEL

Back to the Basics – Event Analysis

Using Symmetrical Components

Amanvir Sudan

Schweitzer Engineering Laboratories, Inc.

• Motivation

• Overview

▪ Introduction

▪ Symmetrical components refresher

▪ Event analysis using symmetrical components

▪ Case studies

▪ Conclusions

Back to Basics

Page 2: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

2

• Short-circuit calculations

• Protective elements (67G, 59Q, 49, and so on)

• Impedance-based fault location

• Fault identification

• Event analysis

IntroductionSymmetrical Components Usage

Symmetrical Components Refresher

Ia0

Ib0

Ic0

Zero-sequence

currents

Ia2

Ib2 Ic2

Negative-sequence

currents

Ia1

Ic1 Ib1

Positive-sequence

currents

A a0 a1 a2

B b0 b1 b2

C c0 c1 c2

I I I I

I I I I

I I I I

Page 3: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

3

Symmetrical Components

Refresher

Z2

V2

Z1I1

V1

Z0

V0

I2

I03RF

E10°

I0 = I1 = I2

Symmetrical Components Refresher

I1 I2 = –I1

Z1 Z2

V1 V2

E10°

I1

Z1 Z0

V1 V2

Z2

3RF

I0I2

V0

E10°

Page 4: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

4

• Captured fault oscillography

• Relay hard-coded algorithm

• User-set relay settings

▪ Numeric

▪ Logic

General Event Report Analysis

• Captured fault oscillography

• Anatomy of power system

• Relay location in power system

Event Report Analysis Using Symmetrical Components

Page 5: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

5

1. Using system one-line diagram, build positive-,

negative-, and zero-sequence network diagrams

2. Connect networks based on known or expected

fault location and type

3. Using basic circuit theory, reduce connected

networks to calculate sequence currents at

relay location

Symmetrical Components-Based Approach

4. Calculate phase currents at relay location and verify

they match phase current waveforms recorded in

event report (similar procedure applies for voltages)

5. If calculated phase currents do not match event

report phase currents, change expected fault location

and type, and repeat procedure from Step 2

Symmetrical Components-Based Approach

Page 6: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

6

• Explain nature of fault waveforms that may not

resemble classic waveforms

• Estimate fault location

• Determine or verify impedance values of various

power system elements

Symmetrical Components-Based Approach Can Be Used to Accomplish Several Tasks

Case Study 1

69 kV

51

87T

Feeder 1

Feeder 2

B-CØ

fault

12.47 kV

System

equivalent

source

Main

W1 W251

Page 7: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

7

87T Relay Fault Oscillography

0

20

4069 kV-side

currents

12.47 kV-side

currents

IAW1

IBW1

ICW1

IAW2

IBW2

ICW2

0

20

40

Time (ms)

0 10 20 30 40 50 60 70

Seco

nda

ry A

mp

ere

s

Sequence Network Connection

V2

I1

V1

I2 = –I1

E10°I1

I2

V1

V2

SYS1Z XFMR

1Z

SYS2Z XFMR

2Z

Page 8: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

8

Sequence Currents

0

1 1

2 2

I 0

I '  I • 3

I '   I • 3

A 1 2I  I • 3 I • 3

A 1 1

A 1

I  I • 3  I • 3

I  I 90

Sequence Voltages

XFMR

1 1 1 1

XFMR

2 2 2 2

V ' (V I Z ) • 3

V ' (V I Z ) • 3

Page 9: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

9

Phase Currents and Voltages

XFMRA 1 1 1

A 1

V 3V 0 I Z 90

I I 90

XFMRB 1 1

B 1

V 2I Z 270

I 2I 180

XFMRC 1 1 1

C 1

V 3V 180 I Z 90

I I 90

Phasor Diagram

IA

ICIB

VAVC

VB

Page 10: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

10

Case Study 2

500 kV

87T

F4

F3

F1

34.5 kV

13.8 kV

F2

Solar 1

Solar 2System

equivalent

source

W1W2

W3

Load

Load

ac

dc

ac

dc

87T Relay Fault Oscillography

IAW1

IBW1

ICW10

0

0.4500 kV-side

currents

34.5 kV-side

currents

0

0.08

0.2

560Time (ms)

580 600 620 64051N1

IAW2

IBW2

ICW2

IAW3

IBW3

ICW3

660

Seco

nda

ry A

mp

ere

s

Page 11: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

11

Feeder Relay Oscillography

0

100

Feeder relay

oscillography

560

Time (ms)

2:03:01.602466239 AM 640

0

20

27C1

IA

IB

IC

VA_kV

VB_kV

VC_kV

VA_kV.Mag

VB_kV.Mag

VC_kV.Mag

C-phase undervoltage

element picks up for

about 3 cycles

Prim

ary

Am

pere

sK

ilovolts

Case Study 2Fault Possibilities

F3, F4 F2 F1

F3, F4 F2 F1

SOURCE1E

SOURCE1Z

SOURCE2Z

SOURCE0Z

T5001Z

T5002Z

T5000Z

T34.51Z

T34.52Z

T34.50Z

T13.81Z

T13.82Z

T13.80Z

LOAD1Z

LOAD2Z

LOAD0Z

Page 12: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

12

Case Study 2Sequence Network

Connection

F3, F4

F3, F4

I2

I0

I1 0

I2

0

I0 = I1 = I2

SOURCE1E

SOURCE1Z

SOURCE2Z

SOURCE0Z

T5001Z

T5002Z

T5000Z

T34.51Z

T34.52Z

T34.50Z

T13.81Z

T13.82Z

T13.80ZSOURCE

0IXFMR0I

SOURCE0I

XFMR0I

Case Study 3

System equivalent source

87T

High-side breaker

230 kV

W1 IBW4W3

W2

Capacitor

bank

OPEN

34.5 kV

50/51

PV1 PV2 PV3 PV4

A-GØ

fault

Solar 1 Solar 2 Solar 3 Solar 4

ac

dc

ac

dc

ac

dc

ac

dc

Page 13: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

13

PV2 50/51 Relay Fault Oscillography

0

40000

20000

Time (ms)11:56:17.216145052 PM 250

0

40

51G

VA_kV

VB_kV

VC_kV

IA

IB

IC

IAMag

IB.Mag

IC.Mag

150

51P67G167P1

Prim

ary

Am

pere

s

0

20

Time (ms)11:56:17.220916667 PM 250

0

100

87R

150

TRIP187R287R387BL

230 kV-side currents

and neutral CT current

34.5 kV-side

currentsSeco

nda

ry A

mp

ere

s

IAW1

IBW1

ICW1

IBW4

IAW2

IBW2

ICW2

87T Relay Fault Oscillography

Page 14: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

14

Case Study 387T Relay Secondary

Circuit Wiring

ICW

2

A-G fault

IFAULT

PV2

CT

IAW2

ZCBAZCBA ABCZ

87T

Relay

IAW

1

IBW

1

ICW

1

IAW

2

IBW

2

ICW

3

IAW

3

IBW

3

ICW

4

IAW

4

IBW

4

Mis

sin

g c

on

nectio

n

IAW2N CBA

N

From PV1

CT

From PV3

CT

From PV4

CT

From 230 kV

high-side

breaker CT  

From

capacitor

bank CT  

A

From

neutral

CT dot

polarity

Case Study 3Sequence Network

Connection

I1

I1

I2

I0

I2

I0

I0

SOURCE1E

2300I

SOURCE1Z

SOURCE2Z

SOURCE0Z

T2300I T13.8

0I

T2301Z T34.5

1ZT13.81Z

T2302Z T34.5

2ZT13.82Z

T2300Z T34.5

0ZT13.80Z

Page 15: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

15

Case Study 3

Sequence Current

Calculations

T230 T13.8

0 1 2 0 0I = I = I = I + I

T2300 0

T13.80

T13.8 T2300 0

I • I

Z

Z Z

m

m =

T13.8

0 0I • I m

T2300

2 T2301

2 T2302

1 1 1 IIAW1

IBW1 1 I

ICW1 1 I

02

0

20

1 1 1IAW •I  

IBW1 1 I

ICW1 I1

m

0

0

0

IAW ( )• I

IBW ( )• I

ICW ( )• I

m

m

m

1IBW ICW •IAW

2

m

m

IAW1 = 21.9 0°

IBW1 = 7.45 180°

ICW1 = 6.97 180°

23

1

0.25

m

m

m

• Performance report card

• Hold valuable information about power system

ConclusionsEvent Reports

Page 16: Back to the Basics Event Analysis Using Symmetrical ...prorelay.tamu.edu/wp-content/uploads/sites/3/2018/04/...2018/03/01  · networks to calculate sequence currents at relay location

16

• Provide holistic view of power system

• Explain non-classic fault waveforms at relay location

• Estimate fault location

• Determine or validate power system element

impedance, or build relationships between fault

oscillography and element impedance

ConclusionsEvent Report Analysis Using

Symmetrical Components

Questions?