baeyer-villiger oxidation: mechanism and enantioselective systems

44
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems Jean-Nicolas Desrosiers January 31, 2005 Literature Meeting

Upload: jack

Post on 25-Feb-2016

54 views

Category:

Documents


5 download

DESCRIPTION

Literature Meeting. Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems. Jean-Nicolas Desrosiers January 31, 2005. Outline. 1. Introduction 2. BV mechanistic studies 3. Enantioselective reactions 3.1 Seminal work by Strukul and Bolm 3.2 Katsuki's systems - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Baeyer-Villiger Oxidation:Mechanism and Enantioselective Systems

Jean-Nicolas Desrosiers

January 31, 2005

Literature Meeting

Page 2: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Outline

1. Introduction

2. BV mechanistic studies

3. Enantioselective reactions

3.1 Seminal work by Strukul and Bolm

3.2 Katsuki's systems

3.2.1 Bidentate ligands

3.2.2 Multidentate salen ligands

Page 3: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Discovery of the Baeyer-Villager Oxidation

K2S2O8 + H2SO4 + H2O 2KHSO4 + H2SO5

Heinrich Caro in 1898

NH2H2SO5 NO2

Adolf von Bayer & Victor Villiger in 1899

O

O

Menthone

Carvomenthone

H2SO5

H2SO5

O

O

O

O

Caro, H. Angew. Chem. 1898, 845.

Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899,32, 3625.

Page 4: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Well-Known and Widely Applied ReactionO

R1 R2

O

R1 OR2

[O]

[O]

O O

O

R1, R2 = alkyl or Ar

[O]

O

Se(VI)

COOH

[O] = peroxides (R2O), peracids (RCOOOH), persulfuric acid...

ten Brink et al. Chem. Rev. 2004, 104, 9, 4105.

Page 5: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Well-Known and Widely Applied ReactionO

R OHO

R O

[O]R= alkyl or Aror

O

O

RR

O

R

[O]CHO

RR = EWD R= ED

alkaline conditions

orCOOHR

OHR

ten Brink et al. Chem. Rev. 2004, 104, 9, 4105.

Advantages:

- Compatible with several functionalities

- The regiochemistry is predictable

- Stereoselective process: migrating group retains its configuration

Page 6: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Exploration of the Mechanism

Renz, M.; Meunier, B. Eur. J. Org. Chem. 1999, 737.

Page 7: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

18O-Labeled Experiment

Confirmed the presence of the Criegee intermediate

Doering, W. v.; Dorfman, E. J. Am. Chem. Soc. 1953, 75, 5595.

Page 8: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Retention of the Stereochemistry of the Migrating Group

Turner, R. B. J. Am. Chem. Soc. 1950, 72, 878.

Mislow, K.; Brenner, J. J. Am. Chem. Soc. 1953, 75, 2318.

based on m.p.

based on opt. rot.

Page 9: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Competitive Migration

O

R2R1

O

R2OR1

O

OR1R2+

O

OOH

CHCl3, 8-15 d1a-j 3a-j 4a-j

p-MeO-Ar > p-Me-Ar > Ph > p-Cl-Ar > p-Br-Ar > p-NO2-Ar

Doering, W. v. et al. J. Am. Chem. Soc. 1950, 72, 5515.

Page 10: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Relative Migration Aptitude

3) The peroxy acid used may have a large effect on the results obtained.

1) The ketonic substituent that can best stabilize a partial positive charge usually migrates preferentially.

2) Effect of steric demand must be kept in mind.

R RR R R

R Me

Faster migration

Slowermigration

4) These relative migratory aptitudes will be respected only if a proper stereoelectronic alignment is obtained in the Criegee intermediate. This alignment is governed by...

The primary and the secondary effect.

Krow, G. R. Org. React. 1993, 43, 251.

Page 11: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Primary and Secondary Effect

Primary effect: ... antiperiplanar to the O-O bond leaving group to have the best overlap between the C-C orbital and the * O-O orbital.

Secondary effect: ... antiperiplanar to a lone pair of the hydroxyl group.

The migrating group Rm needs to be...

- Even if R is the most electron-rich group, Rm will migrate because it is properly aligned.

Page 12: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Secondary Effect

OR

O

O

O

'

CF3CO3H OR

O O

O

OR

O O

OO O

+

1 2 2'

Noyori, R.; Kobayashi, H.; Sato, T. Tetrahedron Lett. 1980, 21, 2573.

when R is bulky

OR

O O

OOCOCF3HO

O

R

OO OOCOCF3

HO

Page 13: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Secondary Effect

OR

O O

'

Noyori, R.; Kobayashi, H.; Sato, T. Tetrahedron Lett. 1980, 21, 2573.

oH

O

HO

R

O O

'o

H

O

HO

R

O O

'o

HO

HO

R

O O

'o

H

O

H

OCOCF3 OCOCF3 F3COCO F3COCO

3a 3b 3a' 3b'

OR

O O

OO

2

OR

O O

OO

2'

H H

When R = n-C5H11 the ratio 22' is 25: 75

Rm Rr

oH

OOCOCF3

forbiddensymmetry

Page 14: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Primary Effect

According to the migratory aptitudes

Crudden, C. M. et al. Angew. Chem. Int. Ed. 2000, 39, 16, 2851.

Page 15: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Primary Effect

Violation of the accepted migratory aptitudes

Crudden, C. M. et al. Angew. Chem. Int. Ed. 2000, 39, 16, 2851.

Page 16: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Is the Dipole/Dipole Interaction the Primary Factor? Since dipole moments are known to be stabilized by polar solvents, a decrease in selectivity would be expected as the solvent polarity increases.

O

FtBu mCPBA O O+

O O

6 7

F

F

tBu tBu

Crudden, C. M. et al. Angew. Chem. Int. Ed. 2000, 39, 16, 2851.

Page 17: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Is the Dipole/Dipole Interaction the Primary Factor?

Crudden, C. M. et al. Angew. Chem. Int. Ed. 2000, 39, 16, 2851.

Page 18: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

The Rate-Determining Step of the BV oxidation

XO

mCPBAX

HOOOCOAr X O

O

***

Addition Migration

Palmer, B.W. et al. J. Am. Chem. Soc. 1970, 92, 2580.

The rate-determining step changes from addition to migration with a change of substituents.

Page 19: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Electrophilic and Nucleophilic Activation of the BV reaction.

O

RmR

Mn+

O

RmR

OO

H

Mn+

HB-

(1) (3)

(2)

OO-Mn+

(4)

H

O O

H

Mn+

(5)

(1) Electrophilic activation of the substrate. (H+ or Lewis Acid)

(2) Electrophilic activation of intermediate. (H+ or Lewis Acid)

(3) Nucleophilic activation of intermediate. ( base = bicarbonate)

(4) Nucleophilic activation of hydrogen peroxide. ( metal peroxo complexes)

(5) Electrophilic activation of hydrogen peroxide. (BF3)

ten Brink et al. Chem. Rev. 2004, 104, 9, 4105.

Page 20: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Outline

1. Introduction

2. BV mechanistic studies

3. Enantioselective reactions

3.1 Seminal work by Strukul and Bolm

3.2 Katsuki's systems

3.2.1 Bidentate ligands

3.2.2 Multidentate salen ligands

Page 21: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Seminal Work on Enantioselective BV O

R

n

(R-binap)Pt(2-van) (0.1 mol%)H2O2 35% ( 0.5 equiv) O

O

RH

O

n

+HR

n

Entry n R Temp. Time (min) Yield (%) ee (%)

12

3

4

5

6

7

8

9

10

2

1

1

1

Me

Me

t-Bu

n-pentyl

025

50

0

25

50

50

0

25

50

1561 18 45 (S)1223 30 37

104 28 31

1213 6 16

1288 9 14

1176 10 4

2805 2 12

4305 8 58

1284 11 50

3999 30 22

Gusso, A.; Strukul, G.et al. Organometallics 1994, 13, 3442.

Page 22: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Proposed Mechanism for the Enantioselective BV

R

HO

PtOH

Pt*L

*L

L*

L*

OHPt

*L

*L

+

1/2+ +

OHOPt

O*L

*LO

O

R

OOHPt

*L

*L

+

O

OOHPt

*L

*L

+

O

H2O2 +O R

R

R+

Kinetic Resolution:

Gusso, A.; Strukul, G.et al. Organometallics 1994, 13, 3442.

L*=PPH2

PPH2

Page 23: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Bolm's Enantioselective System

O

R

n

O2, R'CHO (0.5 equiv)CuL*2 (1mol%)

O

R

n

+O

O

Rn

L* =NO2

N

O

OH

tBuMukaiyama's process, safer and easier:

O

R' H

O2

[Ni]

O

R' OO

H

in-situ

Bolm, C. et al. Angew. Chem. Int. Ed. Engl. 1994, 33, 18, 1848.

Mukaiyama, T. et al. Chem. Lett. 1991, 641.

benzene, r.t., 20h

Page 24: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Bolm's Enantioselective System

Bolm, C. et al. Angew. Chem. Int. Ed. Engl. 1994, 33, 18, 1848.

Entry R'CHO R n Yield (%) ee (%)

1

2

3

4

5

6

7

8

1Ph

4-Cl-Ph 1

14-MeO-Ph

0Ph

tBuCHO

tBuCHO

tBuCHO

tBuCHO

3-Cl-PhCHO

4-MeO-PhCHO

iBuCHO

PhCHO

41 65

32

-- --

49

65 59

61 61

43 60

53 65

21 47

O

R

n

O2, R'CHO (0.5 equiv)CuL*2 (1mol%)

O

R

n

+O

O

Rbenzene, r.t., 20h

Page 25: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Bolm's Optimized Results

Bolm, C. et al. Synlett 2004, 9, 1619.

Ph OOH

CHP =

Page 26: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Katsuki's Biography

1988 University of Kyushu, Professor

1980 University of Stanford & MIT, Post-doctoral fellow Prof. K. B. Sharpless 1976 University of Kyushu, Ph.D. Prof. M. Yamaguchi

1969 University of Kyushu, B.Sc.

Tsutomu Katsuki

Page 27: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Proposed Enantioselective BV System

bulky R'

high conformationalfreedom

selectiveaddition

selective migration

Katsuki, T. et al. Helv. Chim. Acta. 2002, 85, 3078.

A metal complex bearing two vacant cis-coordinating sites should be suitable for asymmetric B-V reaction.

Page 28: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Screening Palladium(II) Complexes With Bidentate Ligands

Katsuki, T. et al. Synlett 2003, 5, 643.

OPh O

O

Ph

AgSbF6 or AgBF4 (10 mol%)UHP ( 1.3 equiv)PdCl2 2PhCN (5 mol%)L* ( 5.5 mol%)

1,2-dichloroethane, r.t.1a : 100%, 47% ee

*

Page 29: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Optimization of Solvent and Temp

OPh O

O

Ph

AgSbF6 or AgBF4 (10 mol%)UHP ( 1.3 equiv)PdCl2 2PhCN (5 mol%)1a ( 5.5 mol%) *

UHP=O

NH

H2NH O

OH

Katsuki, T. et al. Synlett 2003, 5, 643.

Page 30: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Few Substrates Tried

OR O

O

R

AgSbF6 or AgBF4 (10 mol%)UHP ( 1.3 equiv)PdCl2 2PhCN (5 mol%)1a ( 5.5 mol%) *

THF, -60 °C

Katsuki, T. et al. Synlett 2003, 5, 643.

Page 31: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Square Planar Complexes

Katsuki, T. et al. Tet. Lett. 2001, 41, 6911.

Square planar complex with trans vacant coordinating sites

Page 32: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Obtaining Vicinal Vacant Coordinating Sites

Che, C.-M. et al. J. Chem. Soc. Dalton Trans. 1997, 3479.

cis- [Mn(III) L1(acac)]

Page 33: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Enantioselectivity with cis- Complex

Katsuki, T. et al. Tet. Lett. 2001, 41, 6911.

- The control of the chelate conformation is not sufficient

Page 34: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Forced cis- Structure via a Zr Complex

activespecies

slow opening

Katsuki, T. et al. Tetrahedron Lett. 2001, 42, 3873.

Fixed conformationof the moiety

Page 35: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Results Obtained With Zr Complexes

Entry Catalyst Yield (%) ee (%) Config

1

2

3

4

7

8

9

10

20

68

13

12

23

87

9

1

S

R

S

-

Katsuki, T. et al. Tetrahedron Lett. 2002, 43, 4481.

Page 36: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Optimization of Reaction Conditions

Katsuki, T. et al. Tetrahedron Lett. 2002, 43, 4481.

Page 37: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Formation of Normal and Abnormal Lactones

O OO O

O

ent-ALNL21%, 88%ee 31%, 97%ee

PhCl, r.t.

cat (8 mol%)UHP (1.2 equiv) +

stopped at 54% conversion

Katsuki, T.et al. Proc. Natl. Acad. Sci. USA 2004, 101, 5737.

O O

O

O

O

O

OO

O

Ofast-reacting isomer (16.8%)

slow-reacting isomer (29.4%)

AL : 97% ee

NL : 88% ee

+

+

ent-NL (1.3%) NL (19.7%)

ent-AL (30.6%) AL (0.5%)

Page 38: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Relative Reaction Ratio of EnantiomersO

O

OO O

O

ent-ALNL21%, 88%ee 31%, 97%ee

PhCl, r.t.

cat (8 mol%)UHP (1.2 equiv) +

stopped at 54% conversion

fast-reacting

slow-reacting

27% ee

krel = kfast

kslow

= ln [ (1- C) (1- ee) ]ln [ (1- C) (1+ ee) ]

Kagan 's equation

krel = = 2.0 ln [ (1- 0.54) (1- 0.27) ]ln [ (1- 0.54) (1+ 0.27) ]

C = conversion of the starting ketone

ee = ee of the unreacted ketone

Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249.

Page 39: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Increasing Conversions

O OO O

O

ent-ALNLPhCl, r.t.

cat (8 mol%)UHP (1.2 equiv) +

Katsuki, T.et al. Proc. Natl. Acad. Sci. USA 2004, 101, 5737.

Page 40: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Screening Substrates

O

ent-ALNLPhCl, r.t.

cat (8 mol%)UHP (1.2 equiv) +

Katsuki, T.et al. Proc. Natl. Acad. Sci. USA 2004, 101, 5737.

nn n

OOO

O

OO

O

O

O O

NL: 27%, 93% eeAL: 44%, 95% ee

NL: 23%, 91% eeAL: 38%, 96% ee

NL: 55%, 80% eeAL: 25%, 99% ee

NL: 14%, 76% eeAL: 54%, 94% ee

NL: 35%, 87% eeAL: 47%, 99% ee

NL: 57%, 76% eeAL: 39%, 98% ee

Page 41: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Conformation Study of the Catalyst

Katsuki, T.et al. Proc. Natl. Acad. Sci. USA 2004, 101, 5737.

N N

O OZr

Y

Y

(R)

PhPh

Y= -OPh

(R)

A

Page 42: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Conformation Study of the Catalyst

Katsuki, T.et al. Proc. Natl. Acad. Sci. USA 2004, 101, 5737.

napht

N N

O OZr

Y

Y

Y= -OPh

napht

OH2

N N

O OZr

O

YOH2

A

B

HaHaHbHb

OHN N

O OZr

O

O

C

Active cis- species

Ha = 8.53 ppmHb = 3.42 ppm

Ha = 8.52 ppmHb = 3.42 ppm

Ha = 8.45 & 8.58 ppmHb = 3.90 & 4.40 ppm

Page 43: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Conformation Study of the Catalyst

Katsuki, T.et al. Proc. Natl. Acad. Sci. USA 2004, 101, 5737.

napht

N N

O OZrY

Y

Y= -OPh

OH2

N N

O OZr

O

YOH2

A

B

OHN N

O OZr

O

OC

OHHO

20 1

A

napht

Page 44: Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems

Conclusions

- Now, great ee's can be obtained with the BV reaction

- The scope of the enantioselective BV is mainly limited to cyclobutanones

- If only one product is wanted (NL or AL) low yields are obtained since it is a kinetic resolution.

n O

O

94-99% ee

ORO

O

R *

O

O

R *Yield < 50%