balloon satellites

Upload: gprsnapandu

Post on 06-Apr-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/2/2019 Balloon Satellites

    1/17

    BALLOON SATELLITE

    ABSTRACT

    The main theme involved in developing this paper is to provide a clear understanding of

    satellites, purpose of satellites and their types, need of satellite communications in day-to-daylife. There are two types of communication satellites low earth orbit communication satellites

    (LEO) and geosynchronous communication satellites. Under LEO communication satellites there

    comes Echo and Telstar communication satellites, their advantages and disadvantages and

    advancements of geosynchronous communication satellites compared to LEOs has been

    discussed.

    A brief idea on basic communication satellite components has been given.

    In the years to come, there are many projected plans in the area of satellites. This will be

    a benefit to the United States and the rest of the world. Some of these advances are in satellite

    photography, communications, and weather technology. Some of the future advances are in thedistant future, while others are being developed right now. The usage of satellites today, new

    satellite communications, the latest in satellite gear, direct broadcast satellite T.V, satellite

    advances in television, future global satellite networks. We have also presented some of the

    launch vehicles used to send satellites into space.

  • 8/2/2019 Balloon Satellites

    2/17

    WHAT IS A SATELLITE

    A satellite is something that goes around and around a larger something, like the earth or

    another planet. Some satellites are natural, like the moon, which is a natural satellite of the earth.

    Other satellites are made by scientists and technologists to go around the earth and do certain

    jobs. Can We Imitate Nature (Artificial Satellites) Very soon after Newton's laws werepublished, people realized that in principle it should be possible to launch an artificial satellite

    which would orbit the earth just as the moon does. A simple calculation, however, using the

    equations which we developed above, will show that an artificial satellite, orbiting near the

    surface of the earth (R = 4000 miles) will have a period of approximately 90 minutes. This

    corresponds to a sideways velocity (needed in order to "miss" the earth as it falls), of

    approximately 17,000 miles/hour (that's about 5 miles/second).

  • 8/2/2019 Balloon Satellites

    3/17

    Figure: Aryabhatta (First Indian Satellite)

  • 8/2/2019 Balloon Satellites

    4/17

    TYPES OF SATELLITES

    Boeing 376, built by Boeing Satellite Systems. The Boeing 376 is used mostly for

    broadcast television and cable television. Boeing 601 which is also built by Boeing SatelliteSystems. The Boeing 601 is used for many purposes, including direct broadcast TV, such as

    DIRECTV. Direct broadcast TV is a system for receiving television using a very small satellitedish. The television signal is relayed by a Boeing 601 satellite. The Boeing 601 also relays

    telephone, fax, and computer communications. The most powerful commercial satellite in the

    world is the Boeing 702. Designed and built by Boeing Satellite Systems, this giant has a

    wingspan of nearly 157 feet more than a Boeing757jetplane.

    Why Satellites for Communication

    By the end of World War II, the world had had a taste of "global communications."

    Edward R. Murrow's radio broadcasts from London had electrified American listeners. We had,

    of course, been able to do transatlantic telephone calls and telegraphs via underwater cables foralmost 50 years. At exactly this time, however, a new phenomenon was born. The first television

    programs were being broadcast, but the greater amount of information required transmitting

    television pictures required that they operate at much higher frequencies than radio stations.

    Television signals however required much higher frequencies because they were transmitting

    much more information - namely the picture. Both radio and television frequency signals can

    propagate directly from transmitter to receiver. This is a very dependable signal, but it is more or

    less limited to line of sight communication. The mode of propagation employed for long distance

    (1000s of miles) radio communication was a signal which traveled by bouncing off the charged

    layers of the atmosphere (ionosphere) and returning to earth. The higher frequency television

    signals did not bounce off the ionosphere and as a result disappeared into space in a relativelyshort distance. This is shown in the diagram below. Radio Signals Reflect Off the Ionosphere;

    TV Signals do not in addition, of course, the appetite for transatlantic radio and telephone was

    increasing rapidly. Adding this increase to the demands of the new television medium, existing

    communications capabilities were simply not able to handle all of the requirements. By the

    late1950s the newly developed artificial satellites seemed to offer the potential for satisfying

    many of these needs. Low Earth-Orbiting Communications Satellites In 1960, communications

    satellite ever conceived was launched. It was called Echo, because it consisted only of a large

    (100 feet in diameter) aluminized plastic balloon. Radio and TV signals transmitted to the

    satellite would be reflected back to earth and could be received by any station within view of the

    satellite.

    Echo Satellite

    Unfortunately, in its low earth orbit, the Echo satellite circled the earth every ninety

    minutes. This meant that although virtually everybody on earth would eventually see it, no one

    person, ever saw it for more than 10 minutes or so out of every 90 minute orbit. In 1958, the

    Score satellite had been put into orbit. It carried a tape recorder which would record messages as

  • 8/2/2019 Balloon Satellites

    5/17

    it passed over an originating station and then rebroadcast them as it passed over the destination.

    Once more, however, it appeared only briefly every 90 minutes - a serious impediment to real

    communications. In 1962, NASA launched the Telstar satellite for AT&T.

    Figure: ECHO communication satellite

    http://www.google.co.in/imgres?imgurl=http://www.nasa.gov/centers/langley/images/content/69831main_LaRC_History_fig9.GIF&imgrefurl=http://www.nasa.gov/centers/langley/news/factsheets/LaRC_History.html&usg=__XuEf0MyZYxTJ38NtJbt299oefps=&h=305&w=306&sz=88&hl=en&start=1&zoom=1&tbnid=SWbLY0hzyPYDgM:&tbnh=117&tbnw=117&ei=6lJJTdqJFIrJrAfuhviYDg&prev=/images?q=echo+communication+satellites&hl=en&sa=N&gbv=2&tbs=isch:1&itbs=1
  • 8/2/2019 Balloon Satellites

    6/17

    Telstar Communications Satellite

    Telstar's orbit was such that it could "see" Europe" and the US simultaneously during one

    part of its orbit. During another part of its orbit it could see both Japan and the U.S. As a result, it

    provided real- time communications between the United States and those two areas - for minutes

    out of every hour Geosynchronous Communications Satellites: The solution to the problem ofavailability, of course, lay in the use of the geosynchronous orbit. In 1963, the necessary rocket

    booster power was available for the first time and the first geosynchronous satellite, Syncom2,

    was launched by NASA. For those who could "see" it, the satellite was available 100% of the

    time, 24hours a day. The satellite could view approximately 42% of the earth. For those outside

    of that viewing area, of course, the satellite was NEVER available.

  • 8/2/2019 Balloon Satellites

    7/17

    Figure: Telstar communication satellite

    http://www.google.co.in/imgres?imgurl=http://www.edwardsamuels.com/illustratedstory/chapter%205/telstar.jpg&imgrefurl=http://www.edwardsamuels.com/illustratedstory/isc5.htm&usg=__nxGfx7HE_tfGvm9JrVd_knNox28=&h=452&w=450&sz=28&hl=en&start=5&zoom=1&tbnid=Ah1F183Qaw3gFM:&tbnh=127&tbnw=126&ei=WFFJTau3NczrrQfz0bWwDg&prev=/images?q=Telstar+communication+satellites&hl=en&sa=N&gbv=2&tbs=isch:1&itbs=1
  • 8/2/2019 Balloon Satellites

    8/17

    Syncom2 Communications Satellite

    However, a system of three such satellites, with the ability to relay messages from one to

    the other could interconnect virtually all of the earth except the Polar Regions. The one

    disadvantage(for some purposes) of the geosynchronous orbit is that the time to transmit a signal

    from earth to the satellite and back is approximately of a second - the time required totravel 22,000 miles up and 22,000 miles back down at the speed of light. For telephone

    conversations, this delay can sometimes be annoying. For data transmission and most other uses

    it is not significant. In any event, once Syncom2 had demonstrated the technology necessary to

    launch a geosynchronous satellite, a virtual explosion of such satellites followed. Today, there

    are approximately 150 communications satellites in orbit, with over 100 in geosynchronous orbit.

    One of the biggest sponsors of satellite development was Intelsat, an internationally-owned

    corporation which has launched 8 different series of satellites (4 or 5 of each series) over a

    period of more than 30 years. Spreading their satellites around the globe and making provision to

    relay from one satellite to another, they made it possible to transmit 1000s of phone calls

    between almost any two points on the earth. It was also possible for the first time,

    due to the large capacity of the satellites, to transmit live television pictures between virtually

    any two points on earth. By 1964 (if you could stay up late enough), you could for the first time

    watch the Olympic Games live from Tokyo. A few years later of course you could watch the

    Vietnam War live on the evening news. Basic Communications Satellite Components every

    communications satellite in its simplest form (whether low earth or geosynchronous) involves

    the transmission of information from an originating ground station to the satellite (the uplink),

    followed by a retransmission of the information from the satellite back to the ground (the

    downlink). The downlink may either be to a select number of ground stations or it may be

    broadcast to everyone in a large area. Hence the satellite must have a receiver and a receiveantenna, a transmitter and a transmit antenna, some method for connecting the uplink to the

    downlink for retransmission, and prime electrical power to run all of the electronics. The exact

    nature of these components will differ, depending on the orbit and the system architecture, but

    every communications satellite must have these basic components. This is illustrated in the

    following drawing. Basic Components of a Communications Satellite Link.

  • 8/2/2019 Balloon Satellites

    9/17

    Figure: Syncom2 satellite

    http://www.google.co.in/imgres?imgurl=http://2.bp.blogspot.com/_DSjqgiaJvag/RqosCV04Z6I/AAAAAAAAATQ/nHiAB_tTtFA/s320/Syncom.jpg&imgrefurl=http://www.tucmuc.org/2007_07_01_archive.html&usg=__d_5HlMKbNW8aRJiFIXSKOOOGGSI=&h=278&w=250&sz=19&hl=en&start=24&zoom=1&tbnid=hDOqpjvc-SbtbM:&tbnh=114&tbnw=103&ei=klVJTZDZNMPLrQfat_maDg&prev=/images?q=syncom+2+communication+satellites&start=20&hl=en&sa=N&gbv=2&tbs=isch:1&itbs=1
  • 8/2/2019 Balloon Satellites

    10/17

    DEVELOPMENTINSATELLITECOMMUNICATION

    Some of the first communications satellites were designed to operate in a passive mode.

    Instead of actively transmitting radio signals, they served merely to reflect signals that were beamed

    up to them by transmitting stations on the ground. Signals were reflected in all directions, so

    receiving stations around the world could pick them up. Echo 1, launched by the United States in

    1960, consisted of an aluminized plastic balloon 30 m (100 ft) in diameter. Launched in 1964, Echo 2

    was 41 m (135 ft) in diameter. The capacity of such systems was severely limited by the need for

    powerful transmitters and large ground antennas. Score, launched by the United States in 1958, was

    the first active communications satellite. It was equipped with a tape recorder that stored messages

    received while passing over a transmitting ground station. These messages were retransmitted when

    the satellite passed over a receiving station. Telstar 1, launched by American Telephone and

    Telegraph Company in 1962, provided direct television transmission between the United States,

    Europe, and Japan and could also relay several hundred-voice channels. Launched into an elliptical

    orbit inclined 45 to the equatorial plane, Telstar could only relay signals between two ground

    stations for a short period during each revolution, when both stations were in its line of sight.Hundreds of active communications satellites are now in orbit. They receive signals from one ground

    station, amplify them, and then retransmit them at a different frequency to another station. Satellites

    use ranges of different frequencies, measured in hertz (Hz) or cycles per second, for receiving and

    transmitting signals. Many satellites use a band of frequencies of about 6 billion hertz, or 6 gigahertz

    (GHz) for upward, or uplink, transmission and 4 GHZ for downward, or downlink, transmission.

    Another band at 14 GHZ (uplink) and 11 or 12 GHZ (downlink) is also much in use, mostly with

    fixed (non mobile) ground stations. A band at about 1.5 GHZ (for both uplink and downlink) is used

    with small, mobile ground stations (ships, land vehicles, and aircraft). Solar energy cells mounted on

    large panels attached to the satellite provide power for reception and transmission.

    GEOSYNCHRONOUS ORBIT

    A satellite in a geosynchronous orbit follows a circular orbit over the equator at an altitude of

    35,800 km (22,300 mi), completing one orbit every 24 hours, in the time that it takes the earth to

    rotate once. Moving in the same direction as the earth's rotation, the satellite remains in a fixed

    position over a point on the equator, thereby providing uninterrupted contact between ground stations

    in its line of sight. The first communications satellite to be placed in this type of orbit was Syncom2,

    launched by the National Aeronautics and Space Administration (NASA) in 1963. Most

    communications satellites that followed were also placed in geosynchronous orbit

    RECENT TECHNICAL ADVANCES

    Communications satellite systems have entered a period of transition from point-to-point

    high-capacity trunk communications between large, costly ground terminals to multipoint-to-

    multipoint communications between small, low-cost stations. The development of multiple access

    methods has both hastened and facilitated this transition. With TDMA, each ground station is

    assigned a time slot on the same channel for use in transmitting its communications; all other stations

  • 8/2/2019 Balloon Satellites

    11/17

    monitor these slots and select the communications directed to them. By amplifying a single carrier

    frequency in each satellite repeater, TDMA ensures the most efficient use of the satellite's onboard

    power supply. A technique called frequency reuse allows satellites to communicate with a number of

    ground stations using the same frequency by transmitting in narrow beams pointed toward each of the

    stations. Beam widths can be adjusted to cover areas as large as the entire United States or as small as

    a state like Maryland. Two stations far enough apart can receive different messages transmitted on the

    same frequency. Satellite antennas have been designed to transmit several beams in different

    directions, using the same reflector. A method for interconnecting many ground stations spread over

    great distances was demonstrated in 1993 with the launch of NASA's ACTS (Advanced

    Communications Technology Satellite). The satellite uses what is known as the hopping spot beam

    technique to combine the advantages of frequency reuse, spot beams, and TDMA. By concentrating

    the energy of the satellite's transmitted signal, ACTS can use ground stations that have smaller

    antennas and reduced power requirements. The concept of multiple spot beam communications was

    successfully demonstrated in 1991 with the launch of Aalst, developed by the Italian Research

    Council. With six spot beams operating at 30 GHZ (uplink) and 20 GHZ (downlink), the satelliteinterconnects TDMA transmissions between ground stations in all the major economic centers of

    Italy. It does this by demodulating uplink signals, routing them between up- and downlink beams, and

    combining and re modulating them for downlink transmission. Laser beams can also be used to

    transmit signals between a satellite and the earth, but the rate of transmission is limited because of

    absorption and scattering by the atmosphere. Lasers operating in the blue-green wavelength, which

    penetrates water, have been used for communication between satellites and submarines. The latest

    development in satellites is the use of networks of small satellites in low earth orbit (2,000 km (1,200

    mi) or less) to provide global telephone communication. The Iridium system uses 66 satellites in low

    earth orbit, while other groups have or are developing similar systems. Special telephones that

    communicate with these satellites allow users to access the regular telephone network and place calls

    from anywhere on the globe. Anticipated customers of these systems include international business

    travelers and people living or working in remote areas.

  • 8/2/2019 Balloon Satellites

    12/17

    BALLOON SATELLITE

    Figure: Balloon satellite

  • 8/2/2019 Balloon Satellites

    13/17

    Model of a Balloon SatelliteA balloon satellite (Also occasionally referred to as a "Balloon", which is a trademarked

    name owned by Gilmore Schjeldahl's G.T. Schjeldahl Company) is a satellite that is inflated with gas

    after it has been put into orbit.

    The Pythagorean Theorem allows us to calculate easily how far a satellite is visible at such a

    great height. It can be determined that a satellite in a 1,500-kilometer (930 mi) orbit rises and sets

    when the horizontal distance is 4,600 kilometers (2,900 mi). However, the atmosphere causes this

    figure to vary slightly. Thus if two radio stations are 9,000 kilometers (5,600 mi) apart and the

    satellite's orbit goes between them, they may be able to receive each other's reflected radio signals if

    the signals are strong enough.

    Optical visibility is, however, lower than that of radio waves, because the satellite must be

    illuminated by the sun the observer needs a dark sky (that is, he must be in the Earth's own shadow on

    the planet's twilight or night side) the brightness of a sphere depends on the angle between theincident light and the observer (see phases of the moon) the brightness of a sphere is much reduced as

    it approaches the horizon, as atmospheric extinction swallows up as much as 90% of the light.

    Despite this there is no problem observing a flying body such as Echo 1 for precise purposes

    of satellite geodesy, down to a 20 elevation, which corresponds to a distance of 2,900 kilometers

    (1,800 mi). In theory this means that distances of up to 5,000 kilometers (3,100 mi) between

    measuring points can be "bridged", and in practice this can be accomplished at up to 3,0004,000kilometers (1,9002,500 mi).For visual and photographic observation of bright satellites andballoons, and regarding their geodetic use, see Echo 1 andPagesfor further information.

    Other balloon satellites

    For special testing purposes two or three satellites of the Explorer series were constructed as

    balloons (possibly Explorer 19 and 38).Echo 1 was an acknowledged success of radio engineering,

    but the passive principle of telecommunications (reflection of radio waves on the balloon's surface)

    was soon replaced by active systems. Telstar 1 (1962) and Early Bird (1965) were able to transmit

    several hundred audio channels simultaneously in addition to a television program exchanged

    between continents.

    Satellite geodesy with Echo 1 and 2 was able to fulfill all expectations not only for the planned

    23 years, but for nearly 10 years. For this reason NASA soon planned the launch of the even larger40-meter (130 ft) balloonPages. The name is from "passive geodesic satellite", and sounds similar to"Geo", a successful active electronic satellite from 1965.1965-1975: Success with flashing light

    beacons Bright balloon satellites are well visible and were measurable on fine-grained (less sensitive)

    photographic plates, even at the beginning of space travel, but there were problems with the exact

    chronometry of a satellite's track. In those days it could only be determined within a few

    http://en.wikipedia.org/wiki/Gilmore_Schjeldahlhttp://en.wikipedia.org/wiki/Satellitehttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Orbithttp://en.wikipedia.org/wiki/Pythagorean_theoremhttp://en.wikipedia.org/wiki/Phases_of_the_moonhttp://en.wikipedia.org/wiki/Extinction_(astronomy)http://en.wikipedia.org/wiki/Echo_1http://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Explorer_programhttp://en.wikipedia.org/wiki/Echo_1http://en.wikipedia.org/wiki/Telstar_1http://en.wikipedia.org/wiki/Early_Birdhttp://en.wikipedia.org/wiki/NASAhttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/NASAhttp://en.wikipedia.org/wiki/Early_Birdhttp://en.wikipedia.org/wiki/Telstar_1http://en.wikipedia.org/wiki/Echo_1http://en.wikipedia.org/wiki/Explorer_programhttp://en.wikipedia.org/wiki/Pageoshttp://en.wikipedia.org/wiki/Echo_1http://en.wikipedia.org/wiki/Extinction_(astronomy)http://en.wikipedia.org/wiki/Phases_of_the_moonhttp://en.wikipedia.org/wiki/Pythagorean_theoremhttp://en.wikipedia.org/wiki/Orbithttp://en.wikipedia.org/wiki/Gashttp://en.wikipedia.org/wiki/Satellitehttp://en.wikipedia.org/wiki/Gilmore_Schjeldahl
  • 8/2/2019 Balloon Satellites

    14/17

    milliseconds.

    Since satellites circle the earth at about 78 kilometers per second (4.35.0 mi/s), a time error of0.002 second translates into a deviation of about 15 meters (49 ft). In order to meet a new goal of

    measuring the tracking stations precisely within a couple of years, a method of flashing light beacons

    was adopted around 1960.To build a three-dimensional measuring network, geodesy needs exactlydefined target points, more so than a precise time. This precision is easily reached by having two

    tracking stations record the same series of flashes from one satellite. Flash technology was already

    mature in 1965 when the small electronic satellite Geo (later named Geos1was launched; along with

    its companion Geos2, it brought about a remarkable increase in precision.

    From about 1975 on, almost all optical measurement methods lost their importance, as they

    were overtaken by speedy progress in electronic distance measurement. Only newly developed

    methods of observation using CCD and the highly precise star positions of the astrometry satellite

    Hip arcos made further improvement possible in the measurement of distance.

    http://en.wikipedia.org/w/index.php?title=Geos_1&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Geos_2&action=edit&redlink=1http://en.wikipedia.org/wiki/Charge-coupled_devicehttp://en.wikipedia.org/wiki/Astrometryhttp://en.wikipedia.org/wiki/Hipparcoshttp://en.wikipedia.org/wiki/Hipparcoshttp://en.wikipedia.org/wiki/Astrometryhttp://en.wikipedia.org/wiki/Charge-coupled_devicehttp://en.wikipedia.org/w/index.php?title=Geos_2&action=edit&redlink=1http://en.wikipedia.org/w/index.php?title=Geos_1&action=edit&redlink=1
  • 8/2/2019 Balloon Satellites

    15/17

  • 8/2/2019 Balloon Satellites

    16/17

    CONCLUSION

    Looking at the rate of advancement in satellite communication one would foresee the use of satellites

    in every field where communication is required such as relaying television and radio signals. Special

    telephones that communicate with these satellites allow users to access the regular telephone network

    and place calls from anywhere on the globe. Additional satellites are scheduled for launch that will

    enable new communication systems to be used around the world. Advances in the new Satellite

    Technology have made people no more than a phone call away. Satellites can send messages from

    one continent to another and also from one planet to another. Satellite technology brings us the

    weather, cellular phones, wireless cable, and direct broadcast television. Satellite communication

    companies are expecting these services to be offered all over the world in the very near future.

  • 8/2/2019 Balloon Satellites

    17/17

    REFERENCES:

    www.msn.encarta.com

    http://www.amazon.com

    http://www.electronicsforu.com

    http://www.odyseus.nildram.co.uk/Systems Comms.pdf

    http://www.cse.wustl.edu/~jain/cis788-97e_nets.pdf

    http://www.connected-earth.com .

    http://www.boeing.com

    http://www.technology-post.com

    http://www.info.com

    http://www.amazon.com/http://www.amazon.com/http://www.electronicsforu.com/http://www.electronicsforu.com/http://www.odyseus.nildram.co.uk/Systems%20Comms.pdfhttp://www.odyseus.nildram.co.uk/Systems%20Comms.pdfhttp://www.cse.wustl.edu/~jain/cis788-97e_nets.pdfhttp://www.cse.wustl.edu/~jain/cis788-97e_nets.pdfhttp://www.connected-earth.com/http://www.connected-earth.com/http://www.boeing.com/http://www.boeing.com/http://www.technology-post.com/http://www.technology-post.com/http://www.info.com/http://www.info.com/http://www.info.com/http://www.technology-post.com/http://www.boeing.com/http://www.connected-earth.com/http://www.cse.wustl.edu/~jain/cis788-97e_nets.pdfhttp://www.odyseus.nildram.co.uk/Systems%20Comms.pdfhttp://www.electronicsforu.com/http://www.amazon.com/