band diagram for an n‐type semiconductor with negatively ... 14 semiconductor devices.pdf · has...

27
1 Lecture 14: Semiconductor Devices: Depletion Layer: n‐type: Assume the surface of an n‐type semiconductor has been negatively charged. The free electrons near the surface will be repelled. Thus, the region near the surface has less free electrons than the interior Depletion layer (space‐change region) Band diagram for an n‐type semiconductor with negatively charged surface. The depletion layer is a potential barrier for electrons.

Upload: buidiep

Post on 06-Feb-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

1

Lecture14:SemiconductorDevices:DepletionLayer:n‐type:Assumethesurfaceofann‐typesemiconductorhasbeennegativelycharged.Thefreeelectronsnearthesurfacewillberepelled.Thus,theregionnearthesurfacehaslessfreeelectronsthantheinterior→Depletionlayer(space‐changeregion)

Banddiagramforann‐typesemiconductorwithnegativelychargedsurface.Thedepletionlayerisapotentialbarrierforelectrons.

2

Banddiagramforap‐typesemiconductorwithpositivelychargedsurface.

Metalsemiconductorcontacts:n‐typemetal

1. SchottkyRectifier𝜑! > 𝜑!

2. Ohmiccontact𝜑! < 𝜑!

3

Rectifyingcontacts(Schottkybarriercontacts):n‐type

𝜑! > 𝜑!

Banddiagramforametalandn‐typesemiconductor𝜑:𝑤𝑜𝑟𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝜑! > 𝜑!Ifthemetalandsemiconductorarebroughtintocontact,electronsflowfromthesemiconductorsdownintothemetaluntiltheFermienergiesofbothsidesareequal.

4

5

LooktothefollowingdrawingFig9‐16onbookThus,themetalwillbechargednegativelyandtheenergybandinthesemiconductorwillbelowered.Inequilibrium,electronsfrombothsidescrossthepotentialbarrier→DiffusionCurrentContactpotential:Thepotentialbarrierfortheelectronsdiffusingfromthesemiconductorintothemetal

𝜑! − 𝜑!Electronaffinity(X):Fromthebottomoftheconductionbandtotheionizationenergy.Driftcurrent:Whenanelectronholepairisthermallycreatedinornearthedepletionlayer.Theexcitedelectronsintheconductionbandissweptdownthebarrier,andsotheholes“thedriftcurrent”Note:thedriftcurrentisverysmallspecificallyforlargebandgap.Totalcurrent=diffusioncurrent+driftcurrent

6

HowSchottkydiodeswork??“metalandn‐type”connectedtoD.CsourceReverseBias:Themetalisconnectedtothenegativeterminal,theelectronsinthesemiconductorwillberepelled,thedepletionlayer,onepotentialbarrierincreases,nodiffusioncurrent(negligible)However,thedriftcurrentdoesn’tdependonvoltage.ForwardBias:Metalisconnectedtothepositiveterminalofthebattery,thepotentialbarrierofsemiconductordecreases“becomesnarrower”CharacteristicsCurveofSchottkyDiodes

OhmicContact(Metallization)Similartometal‐metalcontact,the(I‐V)curveislinear(obeysOhm’sLaw)

7

Ohmiccontactcanoccurinmetal‐semiconductorcontactforthefollowingcases:

‐ metal‐ntype(if𝜑! < 𝜑!)

8

looktothefigure(9‐18)fromyourtextbook‐ metal‐ptype(if𝜑! > 𝜑!)

Metalp‐type:Similar

‐ Example:Al‐Siptype‐

Metaln‐type:Electronflowsfromthemetalintothesemiconductorandthebandsofsemiconductorbenddownward(nobarrier)electronflowsinthetwodirections.Thisconfigurationallowsthecurrenttoflowintoandoutofthesemiconductorwithoutpowerloss.

9

p‐njunction(diode):Similarpotentialbarriertoreactionisformed

10

Electronsflowfromthehigherlevel(n‐type)tothep‐typeThen‐typeloseselectronstothep‐type.

‐ Thep‐typelosesholestothen‐type‐ Then‐typebecomesnegativelychargedatthejunction

‐ Thep‐typebecomespositivelychargedatthejunction

11

‐ AnelectricfieldisformedatthejunctionThisproceedsuntilequilibriumandbothFermienergiesareatthesamelevelNote:Thebandsmoveuptothep‐sideanddowntothen‐side

12

Lecture14a:ContinuesemiconductordevicesLet’scontinueonp‐njunctionp‐njunction(Diode):Semipotentialbarriertoreactionisformed

13

Electronsflowfromthehigherlevel(n‐type)tothep‐typeThen‐typeloseselectronstothep‐type.• Thep‐typelosesholestothen‐type• Then‐typebecomespositivelychargedatthejunction

• Thep‐typebecomesnegativelychargedatthejunction.

14

• Anelectricfieldisformedatthejunction

ThisproceedsuntilequilibriumisreachedandbothFermienergiesareatthesamelevel.Note:Thebandsmoveuptothep‐sideanddowntothen‐side

Afterthepotentialbarrieriscreated,(atequilibrium):Attheconductionband,electronsfromn‐regionfindapotentialbarrierthatreducesitsdiffusiontop‐region.Electronsinp‐regioncaneasilydiffusedownthepotentialbarrierton‐region,howevertheirnumberissmall(theyareonlyduetoexcitation).Thus,thenumberofelectronscrossingthejunctioninbothdirectionsisequal.Applyingexternalpotentialto(p‐n)junctionWewillobtainsimilareffectstoSchottkydiode

15

Looktothenextpageformoredetails

16

Breakdown(AvalancheandZenerDiode)

Looktothisphenomena,itoccursforthep‐ndiodewhenthereversevoltageincreasesmorethanacertainvalue(criticalvalue).Itsbreakdown,itoccursforavalanchingortunneling(Zenerdiode)

17

‐UsesforZenerDiode

Photodiode(solarcell)

18

Consistsofp‐njunction.Iflightfallsonornearthedepletedlayer,electronsareliftedfromthevalencebandtotheconductionband(electron‐holepairsarecreated).Let’slooktothebanddiagram

Theelectronswillmovetothen‐regionandtheholeswillmovetothep‐region.‐ wecandetectthesechargecarriersintwoways:

1. OpenCircuit(photovoltaicmodeofoperation)Anexternalpotentialwillappear

19

2. ShortCircuitthedevice(photo‐conductivemodeofoperation)

Anexternalcurrentwillflow

Thep‐regionismadeverythin(≈ 1nm),sothelightcanreachthedepletedlayer.Note:Defectsplayaseriousrole

20

AvalanchePhotodiode:p‐nphotodiodeoperatedinahighreversebias‐mode(nearbreakdownvoltage)Light→createelectron‐holepairs→areacceleratedthroughthedepletedregiontohighvelocity→ionizelatticeatomsandgeneratemorehole‐electronpairs=photocurrentgainTunnelDiode:Let’sdiscussfirst“degeneratesemiconductors”Atveryhighleveldoping,theFermilevelmovesupintotheconductionbandinthen‐typematerialandmovesdowntothevalenceinp‐typematerial.

21

Thephotodiodeisdegeneratep‐typeanddegeneraten‐typesemiconductor.Looktothefollowingfigure:

Anotherphenomena:Electronscantunnelthroughthepotentialbarrierinbothdirections.Inequilibriumthenettunnelcurrentiszero.LooktotheFermienergyineverymodeofoperationinthenextfigureandlooktotheresultantI‐Vcharacteristiccurveoftunneldiode

22

23

ReverseBias:PotentialbarrierisincreasedtheFermienergyinthep‐areaisraised.Electronsflowfromp‐typeton‐type.ForwardBias(small):Potentialbarrierisdecreased.Electronsflowfromn‐typetop‐typeForwardBias(Medium):Theareaopposite(facing)thefilledconductionbandisforbiddenthecurrentdecreasesForwardBias(normal):Electronsintheconductionbandgetenoughenergytoclimbthepotentialbarrierofp‐sideTransistorsThemostimportantelectronicdeviceBipolartransistorUnipolartransistor(fieldeffecttransistor)Bipolartransistor:twojunctions

n‐p‐ntransistorp‐n‐ptransistor

Bipolartransistor:carriersaremajorityandminorscurrentcontrolFieldeffectresistor:carriersareonlymajorityvoltagecontrolBipolarJunctionTransistor(n‐p‐n)

24

25

Banddiagramofanunbiasedn‐p‐nbiopolarjunctiontransistorE:emitterB:baseC:collectorNote:ThebaseisthincomparedtotheemitterandcollectorAlso,Emitter→ℎ𝑒𝑎𝑣𝑖𝑙𝑦 𝑑𝑜𝑝𝑒𝑑Base→𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑑𝑜𝑝𝑒𝑑Collector→𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑑𝑜𝑝𝑒𝑑Itcanworkas:• Signalamplifier• Switch

26

SignalAmplification:Emitterandbasediode:forwardbiasedBase‐collectordiode:reversebiasedLooktothefigureof:“Biasingann‐p‐ntransistor”‐ BecauseofforwardingbiasingtheE‐Bdiode,thebarrierwillbereduced,alargeelectronflowtothebase.

Whythebaseisthingandlightlydoped?Reversebiasingthebase‐collector→CausestheelectronstoacceleratedowntothecollectorSwitchingBasevoltagecanstoptheelectronflowfromtheemittertocollector

27

n‐p‐ntransistor