chapter3orca.st.usm.edu/~banerjee/csc412/slides/chapter03.pdf · chapter3 30. uninformed search...

73
Problem solving and search Chapter 3 Chapter 3 1

Upload: others

Post on 04-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Problem solving and search

Chapter 3

Chapter 3 1

Page 2: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Outline

♦ Problem-solving agents

♦ Problem types

♦ Problem formulation

♦ Example problems

♦ Basic search algorithms

Chapter 3 2

Page 3: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Problem-solving agents

Restricted form of general agent:

function Simple-Problem-Solving-Agent( percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state←Update-State(state, percept)

if seq is empty then

goal←Formulate-Goal(state)

problem←Formulate-Problem(state, goal)

seq←Search( problem)

action←Recommendation(seq, state)

seq←Remainder(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”Online problem solving involves acting without complete knowledge.

Chapter 3 3

Page 4: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: Romania

On holiday in Romania; currently in Arad.Flight leaves tomorrow from Bucharest

Formulate goal:be in Bucharest

Formulate problem:states: various citiesactions: drive between cities

Find solution:sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Chapter 3 4

Page 5: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: Romania

Giurgiu

UrziceniHirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

DobretaCraiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3 5

Page 6: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Problem types

Deterministic, fully observable =⇒ single-state problemAgent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problemAgent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problempercepts provide new information about current statesolution is a contingent plan or a policyoften interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

Chapter 3 6

Page 7: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world

Single-state, start in #5. Solution??1 2

3 4

5 6

7 8

Chapter 3 7

Page 8: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world

Single-state, start in #5. Solution??[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}e.g., Right goes to {2, 4, 6, 8}. Solution??

1 2

3 4

5 6

7 8

Chapter 3 8

Page 9: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world

Single-state, start in #5. Solution??[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}e.g., Right goes to {2, 4, 6, 8}. Solution??[Right, Suck, Left, Suck]

Contingency, start in #5Murphy’s Law: Suck can dirty a clean carpetLocal sensing: dirt, location only.Solution??

1 2

3 4

5 6

7 8

Chapter 3 9

Page 10: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world

Single-state, start in #5. Solution??[Right, Suck]

Conformant, start in {1, 2, 3, 4, 5, 6, 7, 8}e.g., Right goes to {2, 4, 6, 8}. Solution??[Right, Suck, Left, Suck]

Contingency, start in #5Murphy’s Law: Suck can dirty a clean carpetLocal sensing: dirt, location only.Solution??[Right, if dirt then Suck]

1 2

3 4

5 6

7 8

Chapter 3 10

Page 11: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

successor function S(x) = set of action–state pairse.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

goal test, can beexplicit, e.g., x = “at Bucharest”implicit, e.g., NoDirt(x)

path cost (additive)e.g., sum of distances, number of actions executed, etc.c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actionsleading from the initial state to a goal state

Chapter 3 11

Page 12: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Selecting a state space

Real world is absurdly complex⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actionse.g., “Arad → Zerind” represents a complex set

of possible routes, detours, rest stops, etc.For guaranteed realizability, any real state “in Arad”

must get to some real state “in Zerind”

(Abstract) solution =set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Chapter 3 12

Page 13: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world state space graphR

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??actions??goal test??path cost??

Chapter 3 13

Page 14: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world state space graphR

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)actions??goal test??path cost??

Chapter 3 14

Page 15: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world state space graphR

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)actions??: Left, Right, Suck, NoOpgoal test??path cost??

Chapter 3 15

Page 16: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world state space graphR

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)actions??: Left, Right, Suck, NoOpgoal test??: no dirtpath cost??

Chapter 3 16

Page 17: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: vacuum world state space graphR

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt amounts etc.)actions??: Left, Right, Suck, NoOpgoal test??: no dirtpath cost??: 1 per action (0 for NoOp)

Chapter 3 17

Page 18: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??actions??goal test??path cost??

Chapter 3 18

Page 19: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)actions??goal test??path cost??

Chapter 3 19

Page 20: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)actions??: move blank left, right, up, down (ignore unjamming etc.)goal test??path cost??

Chapter 3 20

Page 21: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)actions??: move blank left, right, up, down (ignore unjamming etc.)goal test??: = goal state (given)path cost??

Chapter 3 21

Page 22: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??: integer locations of tiles (ignore intermediate positions)actions??: move blank left, right, up, down (ignore unjamming etc.)goal test??: = goal state (given)path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Chapter 3 22

Page 23: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Example: robotic assembly

R

RRP

R R

states??: real-valued coordinates of robot joint anglesparts of the object to be assembled

actions??: continuous motions of robot joints

goal test??: complete assembly

path cost??: time to execute

Chapter 3 23

Page 24: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Tree search algorithms

Basic idea:offline, simulated exploration of state spaceby generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search( problem, strategy) returns a solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree

end

Chapter 3 24

Page 25: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Chapter 3 25

Page 26: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Chapter 3 26

Page 27: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Chapter 3 27

Page 28: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Implementation: states vs. nodes

A state is a (representation of) a physical configurationA node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields andusing the SuccessorFn of the problem to create the corresponding states.

Chapter 3 28

Page 29: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Implementation: general tree search

function Tree-Search( problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State(node)) then return node

fringe← InsertAll(Expand(node,problem), fringe)

function Expand(node, problem) returns a set of nodes

successors← the empty set

for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node],action,

result)

Depth[s]←Depth[node] + 1

add s to successors

return successors

Chapter 3 29

Page 30: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:completeness—does it always find a solution if one exists?time complexity—number of nodes generated/expandedspace complexity—maximum number of nodes in memoryoptimality—does it always find a least-cost solution?

Time and space complexity are measured in terms ofb—maximum branching factor of the search treed—depth of the least-cost solutionm—maximum depth of the state space (may be ∞)

Chapter 3 30

Page 31: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Uninformed search strategies

Uninformed strategies use only the information availablein the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Chapter 3 31

Page 32: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Breadth-first search

Expand shallowest unexpanded node

Implementation:fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 32

Page 33: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Breadth-first search

Expand shallowest unexpanded node

Implementation:fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 33

Page 34: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Breadth-first search

Expand shallowest unexpanded node

Implementation:fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 34

Page 35: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Breadth-first search

Expand shallowest unexpanded node

Implementation:fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Chapter 3 35

Page 36: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of breadth-first search

Complete??

Chapter 3 36

Page 37: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Chapter 3 37

Page 38: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space??

Chapter 3 38

Page 39: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal??

Chapter 3 39

Page 40: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/secso 24hrs = 8640GB.

Chapter 3 40

Page 41: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Uniform-cost search

Expand least-cost unexpanded node

Implementation:fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ǫ

Time?? # of nodes with g ≤ cost of optimal solution, O(b⌈C∗/ǫ⌉)

where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(b⌈C∗/ǫ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Chapter 3 41

Page 42: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 42

Page 43: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 43

Page 44: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 44

Page 45: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 45

Page 46: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 46

Page 47: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 47

Page 48: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 48

Page 49: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 49

Page 50: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 50

Page 51: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 51

Page 52: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 52

Page 53: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-first search

Expand deepest unexpanded node

Implementation:fringe = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Chapter 3 53

Page 54: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of depth-first search

Complete??

Chapter 3 54

Page 55: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loopsModify to avoid repeated states along path⇒ complete in finite spaces

Time??

Chapter 3 55

Page 56: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loopsModify to avoid repeated states along path⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space??

Chapter 3 56

Page 57: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loopsModify to avoid repeated states along path⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

Chapter 3 57

Page 58: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loopsModify to avoid repeated states along path⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No

Chapter 3 58

Page 59: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Depth-limited search

= depth-first search with depth limit l,i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search( problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/fail/cutoff

cutoff-occurred?← false

if Goal-Test(problem,State[node]) then return node

else if Depth[node] = limit then return cutoff

else for each successor in Expand(node,problem) do

result←Recursive-DLS(successor,problem, limit)

if result = cutoff then cutoff-occurred?← true

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

Chapter 3 59

Page 60: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Iterative deepening search

function Iterative-Deepening-Search( problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search( problem, depth)

if result 6= cutoff then return result

end

Chapter 3 60

Page 61: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Iterative deepening search l = 0

Limit = 0 A A

Chapter 3 61

Page 62: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

Chapter 3 62

Page 63: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Chapter 3 63

Page 64: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Chapter 3 64

Page 65: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of iterative deepening search

Complete??

Chapter 3 65

Page 66: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of iterative deepening search

Complete?? Yes

Time??

Chapter 3 66

Page 67: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space??

Chapter 3 67

Page 68: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal??

Chapter 3 68

Page 69: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

IDS does better because other nodes at depth d are not expanded

BFS can be modified to apply goal test when a node is generated

Chapter 3 69

Page 70: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- IterativeFirst Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d YesTime bd+1 b⌈C

∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗

Chapter 3 70

Page 71: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Repeated states

Failure to detect repeated states can turn a linear problem into an exponentialone!

A

B

C

D

A

BB

CCCC

Chapter 3 71

Page 72: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Graph search

function Graph-Search( problem, fringe) returns a solution, or failure

closed← an empty set

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test(problem,State[node]) then return node

if State[node] is not in closed then

add State[node] to closed

fringe← InsertAll(Expand(node,problem), fringe)

end

Chapter 3 72

Page 73: Chapter3orca.st.usm.edu/~banerjee/CSC412/slides/chapter03.pdf · Chapter3 30. Uninformed search strategies Uninformed strategies use only the information available in the problem

Summary

Problem formulation usually requires abstracting away real-world details todefine a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear spaceand not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Chapter 3 73