bang-bang digital plls at 11 ghz and 20 ghz with … · 2 at t = 125°c, 8.4 ghz the rms jitter (5...

18
1 Bang-Bang Digital PLLs at 11 GHz and 20 GHz with sub-200-fs Integrated Jitter for High Speed Serial Communication Applications A. Rylyakov, J. Tierno, H. Ainspan, J.-O. Plouchart, Z. Toprak Deniz, J. Bulzacchelli, D. Friedman IBM T.J. Watson Research Center, Yorktown Heights, NY

Upload: lamtruc

Post on 21-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

1

Bang-Bang Digital PLLs at 11 GHz and 20 GHz with sub-200-fs Integrated Jitter for High Speed Serial Communication

Applications

A. Rylyakov, J. Tierno, H. Ainspan, J.-O. Plouchart, Z. Toprak Deniz, J. Bulzacchelli, D. Friedman

IBM T.J. Watson Research Center, Yorktown Heights, NY

2

Motivation• Goal: demonstrate DPLL adequate for 8- to 11-Gbps and 17-

to 20-Gbps wireline communication applications:

– jitter (integrated from fc/1667 to fc/2) ~ 0.3 ps rms– bandwidth: ~ 1 MHz– integer-N: ~ 40

• A drop-in replacement for analog PLLs, offering:

– significant area savings– increased programmability– reduced analog content (models, variability, sensitivity)– portability to advanced CMOS technologies

3

Bang-bang DPLL Background

PK Z-D

proportional path gain, latency

LC-DCO

BB-PFD

÷N

+Z-1

Z-MIK

ΦOUTearly/lateΦREF

ΦFBK

Main design considerations:• PFD: bang-bang or TDC• Loop Filter: BB-PLL jitter grows with increase in proportional path gain (KP ) and latency (D)*• DCO: tuning range, fine tuning step (KDCO), phase noise

* Walker 1992, Da Dalt 2005, Hanumolu 2007

4

Bang-bang PFD vs TDC Integer-N LC-DPLL Verilog simulation results

Time [ns]200 400 600 800

-2

21

-10

1

0

Feedback phase errorΦREF − ΦFBK[ps]

Bang-bangPFD output

• Bang-bang PFD produces same output as 2 ps resolution TDC • Need sub-1ps resolution TDC to extract significantly more information than provided by BB-PFD

5

Proportional Path Latency and Gain

Frequency Offset [Hz]105 106 107 108

-140

KP = 10 MHz, D=1

σ = 2.6 ps

KP = 10 MHz, D=0

σ = 1.5 ps

KP = 0.5 MHz, D=0

σ = 0.5 ps

KP = 10 MHz, D=2

σ = 3.9 ps

Verilog sim.:N = 40L = -88 dBc/Hzat 1 MHz fromfc = 11 GHz

noise integration bandwidth

Pha

se N

oise

[dB

c/H

z]

-100

-120

-80

• Latency (D) of the proportional path should be minimized• Gain of the proportional path (KP) should be reduced

Gain of the integral path needs to be significantly reducedto keep the loop stable

6

BB-DPLL Block Diagramfractional delay bits prop path gain, type

LC

TANK

DCO

output BB-PFD

reference

DELAY

2

dithered reference

INT ∆ΣM8

inc/dec

∆ΣM

ROW-COL

early/lateSEL

delay line controls

EN1 … EN7

4coarse

8 12pcap

48

7icap

1

frac ditherearly/late

1/N 1/4 or 1/16phold clkgdelay range

7

11 GHz, 20 GHz LC DCO Topology

VDDAVDDA

<1:6>

<1:48>

IREF

output

output_b

pcap<6:12> pcap<6:12><6:12>

fine tuning steps KDCO

metal-metal overlap

varactors with size offsets

KP

coarse <1:4> <1:4>

icap <1:48>

dither, pcap<1:5>

<6:12>

to prescalerMain design challenges:• preserving oscillator Q while meeting tuning range and KDCO requirements• realizing low-gain KP

8

LC-DCO Coarse Band Tuning Ranges

8

9

10

11

12

1 4 8 12 16

Freq

uenc

y [G

Hz]

DCO Coarse Tuning Band Number

11 GHz DCO 20 GHz DCO

22

20

18

168 12 16

KDCO = 6 MHz − 14 MHz KDCO = 16 MHz − 30 MHz

• The oscillators meet tuning range and KDCO requirements

9

20 GHz BB-DPLL Phase Noise

noise integration bandwidth

• fc = 20.08 GHz, N=80 (251 MHz reference), no reference dithering

• RMS Jitter: 190 fs (12 MHz to 10 GHz)

• Proportional path: switched metal-metal overlap capacitance

10

• fc = 11 GHz, N=40 (275 MHz reference), no reference dithering

• RMS Jitter: 140 fs (6.5 MHz to 5.5 GHz); 345 fs (1 kHz to 10 GHz)

• Proportional path: switched metal-metal overlap capacitance pcap<12>(similar results for nFET in nwell varactors with size offsets pcap<1:5>)

noise integration bandwidth

0.150.150.150.350.832.0

4.65

KP

[MHz]

140121451115210208937586647

11406

RMSJitter[fs]

pcap

11 GHz BB-DPLL Phase Noise and Jitter

11

BB-DPLL Block Diagramfractional delay bits prop path gain, type

LC

TANK

DCO

output BB-PFD

reference

DELAY

dithered reference

INT ∆ΣM8

inc/dec

∆ΣM

ROW-COL

early/lateSEL

delay line controls

EN1 … EN7

4coarse

8 12pcap

48

7icap

1

frac ditherearly/late2

1/N 1/4 or 1/16phold clkgdelay range

12

BB-PFD Linearization and GainOriginal non-linear transfer function:

ΦREF − ΦFBK

• BB-PFD gain is inversely proportional to input jitter• Low-noise BB-DPLL will have non-linear dynamics

IN

PFDKσπ1

21

=ΦREF − ΦFBK

ΦREF

ΦFBK

Linearized transfer function:

Lee 2004

Da Dalt 2006

13

Variable Delay LineEN1 EN2 EN3 EN4

original clean

reference clock

delay-modulated

reference clockON

EN • delay range<0>

EN • delay range<1>

EN • delay range<1>

EN

ON

EN5 EN6 EN7

delay per stage

11.414.100

6.17.601

3.44.010

1.41.711

meas. [ps]

sim. [ps]

delay range

• Identical delay cells enable high-order ∆Σ modulation

14

Reference Clock Dithering Simulationoriginal reference: flat -140 dBc/Hz phase noise floordithered reference: 3rd order ∆Σ modulated (10 ps per delay stage)

Frequency Offset [Hz]105 106 107

original reference

dithered reference

Pha

se N

oise

[dB

c/H

z]

-100

-120

-140

-80

104 108

• High reference jitter achieved without adding in-band noise• Effective DPLL linearization, loop bandwidth control

15

-70

-150

Frequency Offset [Hz]103 104 105 106 107 108 109 1010

-80

-90-100-110

-120-130

-140

with reference dithering

σ = 137 fs

no reference dithering

σ = 140 fs

• DPLL bandwidth control by proportional path gain or by reference dithering • Reference dithering does not degrade the RMS jitter σ (6.5 MHz to 5.5 GHz)

VDDA=1.2V (17mA), VDD=1.1V (9.2mA), N = 40 (275 MHz reference)Measured 11 GHz Phase Noise Plots

Pha

se N

oise

[dB

c/H

z]

16

11 GHz BB-DPLL Die Photograph

Digital Core

CMOS PrescalerOutput Driver

LC-DCO

pad pitch: 100 µm

• DPLL area can be improved with more efficient layout

17

BB-DPLL Performance Summary

-121 dBc/Hz

345 fs 3

138 fs 1,2

8.1 – 11.8 GHz31 mW

1.2 V, 17 mA1.1 V, 9.1 mA

410 µm × 215 µm65 nm bulk

11 GHz 20 GHz

-112 dBc/HzPhase Noise (at 10 MHz offset)

962 fsRMS Jitter ( 1MHz – 10 GHz )

190 fsRMS Jitter ( fc/1167 – fc/2 )16.4 – 22.4 GHzTuning Range

64 mWTotal Power Dissipation1.6 V, 37 mADCO, Prescalers1.1 V, 4.5 mADigital CoreVoltages,

Currents

425 µm × 265 µmAreaCMOS Technology

1 RMS jitter (6.5 MHz to 5.5 GHz) measured at 14 points across the 10.64 GHz to 11.16 GHz band (in 1 MHz reference steps) was under 178 fs.2 at T = 125°C, 8.4 GHz the RMS jitter (5 MHz to 4.2 GHz) was 205 fs.3 n-cycle jitter under 0.8 ps RMS (from 1-cycle to 1024-cycle; oscilloscope noise floor ~ 450 fs )

18

Conclusion

• Integer-N BB-DPLLs at 11 GHz and 20 GHz meet integrated jitter and bandwidth requirements of high-speed serial communication applications.

• Key design features: – low-gain low-latency proportional path control is

directly applied to the DCO– two different implementation types of DCO

proportional controls demonstrated.• Time-domain reference dithering technique with noise

shaping to effectively control BB-DPLL bandwidth demonstrated.