based on slides by m. l. liu 1 interprocess communications cs 532

34
Based on slides by M. L. Liu 1 Interprocess Communications CS 532

Upload: marian-valerie-jordan

Post on 19-Dec-2015

222 views

Category:

Documents


1 download

TRANSCRIPT

Based on slides by M. L. Liu1

Interprocess Communications

CS 532

Based on slides by M. L. Liu2

Interprocess Communications

- Operating systems provide facilities for interprocess communications (IPC), such as message queues, semaphores, and shared memory.

- Distributed computing systems make use of these facilities to provide application programming interface which allows IPC to be programmed at a higher level of abstraction.

- Distributed computing requires information to be exchanged among independent processes.

Based on slides by M. L. Liu3

IPC – unicast and multicast

In distributed computing, two or more processes engage in IPC in a protocol agreed upon by the processes. A process may be a sender at some points during a protocol, a receiver at other points.

When communication is from one process to a single other process, the IPC is said to be a unicast. When communication is from one process to a group of processes, the IPC is said to be a multicast, a topic that we will explore in a later chapter.

Based on slides by M. L. Liu4

Unicast vs. Multicast

P 2

P 1 P 1

P 2 P 3 P 4...

uni c as t m ul t i c as t

mm m m

Based on slides by M. L. Liu5

P r o c es s 1 P r o c es s 2

d a ta

s en d er r ec e iv er

Interprocess Communications in Distributed Computing

Based on slides by M. L. Liu6

Operations provided in an archetypal Interprocess Communications API

• Receive ( [sender], message storage object)• Connect (sender address, receiver address), for

connection-oriented communication.• Send ( [receiver], message)• Disconnect (connection identifier), for connection-

oriented communication.

Based on slides by M. L. Liu7

Interprocess Communication in basic HTTP

C 1 C 2

S 3 S 4

C 4

W e b s e rv e r

W e b bro ws e r

a p r o c e s s

a n o p e r a t i o n

d a t a f l o w

o p e r a t i o n s :S 1 : a c c e p t c o n n e c t i o nS 2 : r e c e i ve ( r e q u e s t )S 3 : s e n d ( r e s p o n s e )S 3 : d i s c o n n e c tC 1 : m a k e c o n n e c t i o nC 2 : s e n d ( r e q u e s t )C 3 : r e c e i ve ( r e s p o n s e )C 4 : d i s c o n n e c t

S 2

C 3

S 1

H TTPr e q u e s t

H TTPr e s p o n s e

Based on slides by M. L. Liu8

Event Synchronization

Interprocess communication requires that the two processes synchronize their operations: one side sends, then the other receives until all data has been sent and received.

Ideally, the send operation starts before the receive operation commences.

In practice, the synchronization requires system support.

Based on slides by M. L. Liu9

Synchronous vs. Asynchronous Communication

The IPC operations may provide the synchronization necessary using blocking. A blocking operation issued by a process will block further processing of the process until the operation is fulfilled.

Alternatively, IPC operations may be asynchronous or nonblocking. An asynchronous operation issued by a process will not block further processing of the process. Instead, the process is free to proceed with its processing, and may optionally be notified by the system when the operation is fulfilled.

Based on slides by M. L. Liu10

Synchronous send and receive

pr o c e s s 1r unni ng o n ho s t 1

b lo c k in g s en d s ta r ts

b lo c k in g s en d r e tu r n s

b lo c k in g r ec e iv e s ta r ts

b lo c k in g r ec e iv e en d s

ex ec u tio n f lo w

s u s p en d ed p er io d

Sync hr o no us Se nd and R e c e i ve

an o p er a tio n

ac k n o w led g em en t o f d a ta r ec e iv edp r o v id ed b y th e I P C f ac ility

pr o c e s s 2r unni ng o n ho s t 2

Based on slides by M. L. Liu11

Asynchronous send and synchronous receive

P r o c e s s 1

P r o c e s s 2

b lo c k in g r ec e iv e s ta r ts

b lo c k in g r ec e iv e r e tu r n s

ex ec u tio n f lo w

s u s p en d ed p er io d

As ync hr o no us Se nd and Sync hr o no us R e c e i ve

n o n b lo c k in g s en d

o p er a tio n

Based on slides by M. L. Liu12

Synchronous send and Async. Receive - 1

P r o c e s s 1

P r o c e s s 2

n o n b lo c k in g r ec e iv e is s u ed

ex ec u tio n f lo w

s u s p en d ed p er io d

Sync hr o no us Se nd and As ync hr o no us R e c e i ve

b lo c k in g s en d is s u ed

S ce n a rio A

t r an s p ar en t ac k n o w led g em en tp r o v id ed b y th e I P C f ac ility

Based on slides by M. L. Liu13

Synchronous send and Async. Receive - 2

in d ef in iteb lo c k in g

P r o c e s s 1

P r o c e s s 2

n o n b lo c k in g r ec e iv e is s u edan d r e tu r n ed im m ed ia te ly

ex ec u tio n f lo w

s u s p en d ed p er io d

Sync hr o no us Se nd and As ync hr o no us R e c e i ve

b lo c k in g s en d is s u ed

S ce n a rio B

P r o c e s s 1

P r o c e s s 2

Based on slides by M. L. Liu14

Synchronous send and Async. Receive - 3

P r o c e s s 1

P r o c e s s 2

n o n b lo c k in g r ec e iv e is s u edan d r e tu r n ed im m ed ia te ly

ex ec u tio n f lo w

s u s p en d ed p er io d

Sync hr o no us Se nd and As ync hr o no us R e c e i ve

b lo c k in g s en d is s u ed

S ce n a rio C

p r o c es s is n o tif iedo f th e a r r iv a l o fd a ta

tr an s p ar en t ac k n o w led g em en tp r o v id ed b y th e I P C f ac ility

Based on slides by M. L. Liu15

Asynchronous send and Asynchronous receive

P r o c e s s 1

P r o c e s s 2

n o n b lo c k in g r ec e iv e is s u edan d r e tu r n ed im m ed ia te ly

ex ec u tio n f lo w

s u s p en d ed p er io d

As ync hr o no us Se nd and As ync hr o no us R e c e i ve

b lo c k in g s en d is s u ed

S ce n a rio C

p r o c es s is n o tif iedo f th e a r r iv a l o fd a ta

Based on slides by M. L. Liu16

Event diagram

Pro ce s s APro ce s s B

in te rp r o c es s c o m m u n ic a tio n

ex ec u tio n f lo w

p ro c es s b lo c k ed

E ve nt di ag r am fo r a pr o to c o l

r eq u es t 1

r es p o n s e 1

r es p o n s e2

r eq u es t 2

t im e

Based on slides by M. L. Liu17

Blocking, deadlock, and timeouts

Blocking operations issued in the wrong sequence can cause deadlocks.

Deadlocks should be avoided. Alternatively, timeout can be used to detect deadlocks.

r ec e iv e f r o m p r o c es s 2 is s u ed

r ec e iv ed f r o m p r o c es s 1 is s u ed

p r o c es s 1 b lo c k ed p en d in g d a taf r o m p r o c es s 2 .

p r o c es s 2 b lo c k ed p en d in g d a taf r o m p r o c es s 1 .

P r o c es s 1 P r o c es s 2

Based on slides by M. L. Liu18

Using threads for asynchronous IPC

When using an IPC programming interface, it is important to note whether the operations are synchronous or asynchronous.

If only blocking operation is provided for send and/or receive, then it is the programmer’s responsibility to using child processes or threads if asynchronous operations are desired.

pro ce s s

m ain th r ead

n ew th r ead is s u es a b lo c k in g I P C o p er a tio n

th r ead is b lo c k ed

th r ead is u n b lo c k ed af te r th e o p er a tio n is f u lf illed

m ain th r ead c o n tin u es w itho th er p r o c es s in g

Based on slides by M. L. Liu19

Deadlocks and Timeouts

Connect and receive operations can result in indefinite blocking

For example, a blocking connect request can result in the requesting process to be suspended indefinitely if the connection is unfulfilled or cannot be fulfilled, perhaps as a result of a breakdown in the network .

It is generally unacceptable for a requesting process to “hang” indefinitely. Indefinite blocking can be avoided by using timeout.

Indefinite blocking may also be caused by a deadlock

Based on slides by M. L. Liu20

Indefinite blocking due to a deadlock

" re ce iv e f ro m pro ce s s 2 " is s u e d;

" re ce iv e f ro m pro ce s s 1 " is s u e d;

pro ce s s 1 blo ck e d pe n din g da tafro m pro ce s s 2 .

pro ce s s 2 blo ck e d pe n din g da tafro m pro ce s s 1 .

Pro ce s s 1 Pro ce s s 2

p r o c e s se x e c u t i n g

p r o c e s sb l o c k e d

a n o p e r a t i o n

Based on slides by M. L. Liu21

Data Representation

Data transmitted on the network is a binary stream. An interprocess communication system may provide the capability

to allow data representation to be imposed on the raw data. Because different computers may have different internal storage

format for the same data type, an external representation of data may be necessary.

Data marshalling is the process of (I) flatterning a data structure, and (ii) converting the data to an external representation.

Some well known external data representation schemes are: Sun XDR ASN.1 (Abstract Syntax Notation) XML (Extensible Markup Language)

Based on slides by M. L. Liu22

Data Encoding Protocols

ap p lic a tio n s p ec if ic d a ta en c o d in g lan g u ag e

g en er a l d a ta en c o d in g lan g u ag e

n etw o r k d a ta en c o d in g s tan d ar d

da ta e n co din g s ch e m e s S a m ple S ta n da rdsle v e l o f a bs tra ct io n

X M L :( Ex ten s ib le M ar k u p L an g u ag e)

AS N .1 ( Ab s tr ac t S y n tax N o ta tio n )

S u n X D R ( E x ter n a l D ata R ep r es en ta tio n )

Based on slides by M. L. Liu23

Sample XML filehttp://java.sun.com/xml/docs/tutorial/overview/1_xml.html#intro

XML is a text-based markup language that is fast becoming the standard for data interchange on the Web.

XML has syntax analogus to HTML. Unlike HTML, XML tags tell you what the data

means, rather than how to display it. Example:

<message> <to>[email protected]</to>

<from>[email protected]</from> <subject>XML Is Really Cool</subject> <text> How many ways is XML cool? Let me count the ways...

</text>

</message>

Based on slides by M. L. Liu24

Data Marshalling

"T h is is a tes t . "

"T h is is a tes t . "

1 .2 7 .3 - 1 .5

1 .2

7 .3

- 1 .5

1 1 0 0 1 1 . . . 1 0 0 0 0 1 0 0 . . .

m a rsh a llin g

u n m a rsh a llin g

1 . f la t ten in g o f s tr u c tu r ed d a ta item s2 . c o n v er t in g d a ta to ex te r n a l ( n e tw o r k ) r ep r es en ta t io n

1 . c o n v er t d a ta to in te r n a l r ep r es en ta t io n2 . r eb u ild d a ta s tr u c tu r es .

h o s t A

h o s t B

E x ter n a l to in te r n a l r ep r es en ta t io n an d v ic e v er s ais n o t r eq u ir ed - if th e tw o s id es a r e o f th e s am e h o s t ty p e ; - if th e tw o s id es n eg o tia tes a t c o n n ec tio n .

Based on slides by M. L. Liu25

Text-based protocols

Data marshalling is at its simplest when the data exchanged is a stream of characters, or text.

Exchanging data in text has the additional advantage that the data can be easily parsed in a program and displayed for human perusal. Hence it is a popular practice for protocols to exchange requests and responses in the form of character-strings. Such protocols are said to be text-based.

Many popular network protocols, including FTP (File Transfer Protocol), HTTP, and SMTP (Simple Mail Transfer Protocol), are text-based.

Based on slides by M. L. Liu26

Event diagram

Pro ce s s 1Pro ce s s 2

in te rp r o c es s c o m m u n ic a tio n

ex ec u tio n f lo w

p ro c es s b lo c k ed

E ve nt di ag r am fo r a pr o to c o l

r eq u es t 1

r es p o n s e 1

r es p o n s e2

r eq u es t 2

t im e

Based on slides by M. L. Liu27

Event Diagram for a HTTP session

w eb s er v er w eb b r o w s er

r eq u es t

r es p o n s e

r eq u es t is a m es s ag e in 3 p ar ts : - < c o m m an d > < d o c u m en t ad d d r es s > < HT T P v er s io n > - an o p tio n al h ead er - o p tio n a l d a ta f o r C G I d a ta u s in g p o s t m eth o d

r es p o n s e is a m es s ag e c o n s is t in g o f 3 p ar ts : - a s ta tu s lin e o f th e f o r m at < p r o to c o l> < s ta tu s c o d e> < d es c r ip tio n > - h ead er in f o r m atio n , w h ic h m ay s p an s ev er a l lin es ; - th e d o c u m en t its e lf .

Based on slides by M. L. Liu28

Sequence Diagram

Pro ce s s A Pro ce s s B

in te r p r o c es s c o m m u n ic a tio n

r eq u es t 1

r es p o n s e 1

r eq u es t 2

r es p o n s e 2

Based on slides by M. L. Liu29

sequence diagram for a HTTP session

Pro ce s s A Pro ce s s B

in te r p r o c es s c o m m u n ic a tio n

r eq u es t 1

r es p o n s e 1

r eq u es t 2

r es p o n s e 2

Based on slides by M. L. Liu30

Protocol

In a distributed application, two processes perform interprocess communication in a mutually agreed upon protocol.

The specification of a protocol should include (i) the sequence of data exchange, which can be described using a time event diagram.

(ii) the specification of the format of the data exchanged at each step.

Based on slides by M. L. Liu31

HTTP: A sample protocol

The Hypertext Transfer Protocol is a protocol for a process (the browser) to obtain a document from a web server process.

It is a request/response protocol: a browser sends a request to a web server process, which replies with a response.

Based on slides by M. L. Liu32

The Basic HTTP protocol

w eb s er v er w eb b r o w s er

r eq u es t

r es p o n s e

r eq u es t is a m es s ag e in 3 p ar ts : - < c o m m an d > < d o c u m en t ad d d r es s > < HT T P v er s io n > - an o p tio n a l h ead er - o p tio n a l d a ta f o r C G I d a ta u s in g p o s t m eth o d

r es p o n s e is a m es s ag e c o n s is t in g o f 3 p ar ts : - a s ta tu s lin e o f th e f o r m at < p r o to c o l> < s ta tu s c o d e> < d es c r ip tio n > - h ead er in f o r m atio n , w h ic h m ay s p an s ev er a l lin es ; - th e d o c u m en t its e lf .

W e w ill ex p lo r e HT T P in d e ta ils la te r th is q u ar te r .

Based on slides by M. L. Liu33

A sample HTTP session

Script started on Tue Oct 10 21:49:28 2000 9:49pm telnet www.csc.calpoly.edu 80 Trying 129.65.241.20... Connected to tiedye2-srv.csc.calpoly.edu. Escape character is '̂ ]'. GET /~mliu/ HTTP/1.0 HTTP Request HTTP/1.1 200 OK HTTP response status line Date: Wed, 11 Oct 2000 04:51:18 GMT HTTP response header Server: Apache/1.3.9 (Unix) ApacheJ Serv/1.0 Last-Modified: Tue, 10 Oct 2000 16:51:54 GMT ETag: "1dd1e-e27-39e3492a" Accept-Ranges: bytes Content-Length: 3623 Connection: close Content-Type: text/html <HTML> document content <HEAD> <TITLE> Mei-Ling L. Liu's Home Page </TITLE> </HEAD> <BODY bgcolor=#ffffff> …

Based on slides by M. L. Liu34

IPC paradigms and implementations

Paradigms of IPC of different levels of abstraction have evolved, with corresponding implementations.

remo te p ro ce du re /me tho d

socke t API

da ta transmiss io n s er ia l/p ar a lle l c o m m u n ic a tio n

Un ix s o c k et AP I , W in s o c k

R em o te P r o c ed u r e C all ( R P C ) , J av a R M I

le v e l o fa bs tra ct io n

I PC pa ra dig m s Ex a m ple I PC I m ple m e n ta t io n s