basic interference

13
Basic Interference and Classes of Interferometers - James C. Wyant Page 1 Optics 505 - James C. Wyant Page 1 of 26 Basic Interference and Classes of Interferometers Basic Interference Two plane waves Two spherical waves Plane wave and spherical wave Classes of Interferometers Division of wavefront Division of amplitude Optics 505 - James C. Wyant Page 2 of 26 Optical Detectors Respond to Square of Electric Field r E = r E 1 + r E 2 = E 1 ˆ a 1 e i ω 1 t + α 1 ( ) + E 2 ˆ a 2 e i ω 2 t + α 2 ( ) Irradiance at each point varies cosinusoidally with time at the difference frequency I = I 1 + I 2 + 2 I 1 I 2 a 1 ˆ a 2 )cos (ω 1 ω 2 )t + α 1 α 2 [ ] I = Constant r E 1 + r E 2 2 = Constant E 1 2 + E 2 2 + 2 E 1 E 2 ˆ a 1 ˆ a 2 ( ) cos ( ω 1 ω 2 )t + α 1 α 2 [ ] [ ]

Upload: chia-cheng-liao

Post on 27-Nov-2014

51 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 1

Optics 505 - James C. Wyant Page 1 of 26

Basic Interference and Classes of Interferometers

• Basic Interference–Two plane waves–Two spherical waves–Plane wave and spherical wave

• Classes of Interferometers–Division of wavefront–Division of amplitude

• Basic Interference–Two plane waves–Two spherical waves–Plane wave and spherical wave

• Classes of Interferometers–Division of wavefront–Division of amplitude

Optics 505 - James C. Wyant Page 2 of 26

Optical Detectors Respond to Square of Electric Field

����E =

��E 1 +

��E 2 = E1ˆ a 1ei ω1t+α 1( ) + E2 ˆ a 2ei ω2t+α 2( )

Irradiance at each point varies cosinusoidally with time at the difference frequency

I = I 1 + I 2 + 2 I 1I 2( ˆ a 1 ⋅ ˆ a 2)cos (ω1 − ω2)t + α1 − α2[ ]

I = Constant��E 1 +

��E 2

2

= Constant E12 + E2

2 + 2E1E2 ˆ a 1 ⋅ ˆ a 2( )cos (ω1 − ω2)t + α1 − α2[ ][ ]

Page 2: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 2

Optics 505 - James C. Wyant Page 3 of 26

Interference Fringes

I = I 1 + I 2 + 2 I 1I 2( ˆ a 1 ⋅ ˆ a 2)cos α1 −α2( )

Dark interference fringe

α1 − α 2 = 2π m + 12

Bright interference fringe

α1 −α2 = 2πm

Let ω1 = ω2

I = I 1 + I 2 + 2 I 1I 2( ˆ a 1 ⋅ ˆ a 2)cos (ω1 − ω2)t + α1 − α2[ ]

Optics 505 - James C. Wyant Page 4 of 26

Interference of Two Plane Waves

θ1θ2k1

k2

x

y��

��E 1 = E1ei

r

k 1⋅r r −ωt+φ1( )ˆ a 1��

E 2 = E2eir

k 2 ⋅r r −ωt+φ2( )ˆ a 2

��α = α1 − α2 =��k 1 ⋅ ��

r −��k 2 ⋅ ��

r + φ1 − φ2

��

��k 1 = k cosθ1 ˆ i + sinθ1 ˆ j ( )��k 2 = k cosθ2 ˆ i + sinθ2 ˆ j ( )��r = x ˆ i + y ˆ j , k = 2π

λ

Dark fringe

α = 2π m + 12( )

Bright fringeα = 2πm

= k x cosθ1− cosθ 2( )+ y sinθ 1 − sinθ 2( )[ ]

Let φ1 = φ2

Page 3: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 3

Optics 505 - James C. Wyant Page 5 of 26

Fringe Spacing

I = I 1 + I 2 + 2 I 1I 2 ( ˆ a 1 ⋅ ˆ a 2 )cos α1 − α2( )

∆y = λsinθ1 − sinθ2

Straight equi-spaced fringes

Look in x=0 planeFringe spacing

Bright fringe α = α1 − α2 = 2πm = k x cosθ1 − cosθ2( )+ y sinθ1 − sinθ2( )[ ]

Optics 505 - James C. Wyant Page 6 of 26

Fringe Visibility

AC

DC

I1 + I2

I

I1 + I2 + 2( ˆ a 1 ⋅ ˆ a 2) I1I2

I1 + I2 − 2( ˆ a 1 ⋅ ˆ a 2) I1I2

Fringe Visibility = V = Imax − IminImax + Imin

if ˆ a 1 ⋅ ˆ a 2 = 1

V = 2 I1I2I1 + I2

= ACDC

∆y

Page 4: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 4

Optics 505 - James C. Wyant Page 7 of 26

Fringe Spatial Frequency(1) (2)

(1)

(2)

/2φ/2φ

νs = 2sin φ / 2λ νs = sin φ

λ

φ

φ (Degrees )

νs

(l / mm)

( )

λ=633 nm

Optics 505 - James C. Wyant Page 8 of 26

Moiré Pattern - Two Plane Waves

Page 5: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 5

Optics 505 - James C. Wyant Page 9 of 26

Effect of Polarization Direction

x

yEp

Ep

Es

Es

θ1

θ2

Dependence of ˆ a 1 ⋅ ˆ a 2 on angle for s and p polarization

s polarization: ˆ a 1 ⋅ ˆ a 2 =1 for all anglesp polarization: ˆ a 1 ⋅ ˆ a 2 depends upon angle

Optics 505 - James C. Wyant Page 10 of 26

Interference of Two Spherical Waves

��

��E 1 = ˆ a 1

B1��r − ��

r 1ei k

r

r − r

r 1 −ωt+φ1[ ]

��E 2 = ˆ a 2

B2��r − ��

r 2ei k

r

r −r

r 2 −ωt+φ2[ ]

S1

S2

��P(��r )

����r − ��

r 1

����r − ��

r 2

Page 6: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 6

Optics 505 - James C. Wyant Page 11 of 26

Two Spherical Waves - Fringe Shape

��

α = 2πλ

��r − ��

r 1 − ��r − ��

r 2{ } + φ1 − φ2

= Constant for given fringe

Hyperbolic Fringes

��

��E 1 = ˆ a 1

B1��r − ��

r 1ei k

r

r − r

r 1 −ωt+φ1[ ]

��E 2 = ˆ a 2

B2��r − ��

r 2ei k

r

r −r

r 2 −ωt+φ2[ ]��

I1 = B1��r − ��

r 1≈ Constant

I2 = B2��r − ��

r 2≈ Constant

Optics 505 - James C. Wyant Page 12 of 26

Moiré Pattern - Spherical Waves

Page 7: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 7

Optics 505 - James C. Wyant Page 13 of 26

Spherical Waves - Special Case #1

Same result as for two plane waves

if xo >> 2c then

mλ = 2cyxo

2c

xo

����r − ��

r 1

����r − ��

r 2

Optics 505 - James C. Wyant Page 14 of 26

Moiré Pattern - Straight Line Fringes

Page 8: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 8

Optics 505 - James C. Wyant Page 15 of 26

Spherical Waves - Special Case #2

Fringes are concentric circles

r = 2c−mλc Yo spatial frequency = 1

∆r = 2cyo

2λ r

2c

Yo

x

y

��

For bright fringemλ =

��r − ��

r 1 − ��r − ��

r 2

= 2c − x2 + z2( )Yo

2 c

Optics 505 - James C. Wyant Page 16 of 26

Concentric Circular Fringes

Page 9: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 9

Optics 505 - James C. Wyant Page 17 of 26

Interference of Plane Wave andSpherical Wave

xo

θ

α = 2πλ ysin θ − xo 1 + y2 + z2

2xo2

If xo >> y and z thenx

y

If θ = 0 bright fringe when y2 + z2

2xo= −(mλ + xo) = m’λ

Circular fringes of radius r = 2xom’λ

Optics 505 - James C. Wyant Page 18 of 26

Two Basic Classes of Interferometers

• Division of Wavefront• Division of Amplitude

Page 10: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 10

Optics 505 - James C. Wyant Page 19 of 26

Division of Wavefront (Young’s Two Pinholes)

Source

Two Pinholes Interference of twospherical waves

Optics 505 - James C. Wyant Page 20 of 26

Division of Wavefront(Lloyd’s Mirror)

S2

1S

Interference of two spherical waves

Mirror

Page 11: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 11

Optics 505 - James C. Wyant Page 21 of 26

Division of Wavefront(Fresnel’s Mirrors)

S

S 1

S2

M1

M2

Optics 505 - James C. Wyant Page 22 of 26

Division of Wavefront(Fresnel’s Biprism)

S

2S

1S

Page 12: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 12

Optics 505 - James C. Wyant Page 23 of 26

Division of Amplitude(Beamsplitter)

Beamsplitter

Optics 505 - James C. Wyant Page 24 of 26

Division of Amplitude(Diffraction)

θ

d sin θ = mλ

Diffraction Grating

Page 13: Basic Interference

Basic Interference and Classes of Interferometers - James C. Wyant

Page 13

Optics 505 - James C. Wyant Page 25 of 26

Division of Amplitude andDivision of Wavefront

Angular Displacement

Wollaston Prism

OA

OA

E

OE

O

Savart Plate

Lateral Displacement

Polarization

Optics 505 - James C. Wyant Page 26 of 26

Division of Amplitude andDivision of Wavefront

Plane Parallel Plate