basic thermodynamic concepts system -...

Download BASIC THERMODYNAMIC CONCEPTS SYSTEM - …staff.ui.ac.id/system/files/users/ir.mahmud/material/thermohidrok... · BASIC THERMODYNAMIC CONCEPTS SYSTEM Definition: Region of space which

If you can't read please download the document

Upload: doantuong

Post on 06-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • BASIC THERMODYNAMIC CONCEPTS SYSTEM Definition: Region of space which is under study Surrounding: the whole universe excluding the system Example: Ci : all deposits Co : all withdrawals Cc : others (service charge, interest, etc.) The bank is the system chosen for study. The money flows to, and from the surroundings. Equations (for a given period of time E and B): CE CB = Ci - Co Cc

    BANK

    Cash In Ci Cash Out Co

    Cc

  • The engineer using thermodynamics is an accountant. Instead of using

    money we uses mass and energy terms.

    mE mB = mi - mo mc

    In term of Energy: Total Energy: U + PE + KE U : Internal Energy PE : Potential Energy KE : Kinetic Energy H (Enthalpy) = U + PV

    mE-mB

    mi mo

    mc

    (U +PE+KE)E - (U +PE+KE)B

    (H+PE+KE)i (H+PE+KE)o

    Q, W, Ec

  • (U+PE+KE)E (U+PE+KE)B = (H+PE+KE)i - (H+PE+KE)o +Q W Ec This is the First Law of Thermodynamics

    Q : Heat

    W : Work

    More complex system:

  • Thermodynamic properties are variables depending only on the state of

    substance. Properties are functions of the state and in no way dependent on

    its history.

    It follows that a change in a property is dependent only on the initial and

    final states and in no way dependent upon the method or path followed in

    going from one state to another.

    Heat and Work are not functions of the state and, therefore are not

    properties.

    Intensive properties : not dependent upon the mass of substance

    Examples : temperature, pressure, fugacity, etc.

    Extensive properties : dependent upon the mass of substance

    Examples : volume, enthalpy, entropy, etc.

    Thermodynamics utilizes concepts that may be related to pressure, volume,

    and temperature (measurable variables) and to each otherin a systematic

    manner.

  • A process may take place under conditions:

    Adiabatic : no heat added to or removed from system

    Isothermal : constant temperature

    Isobaric : constant pressure

    Isochoric : constant volume

    Isentropic : constant entropy

    Isenthalpic : constant enthalpy

    Entropy & the Second Law of Thedrmodynamics

    First Law: - merely keeps track of the energy and mass quantities if the

    process does proceed.

    - does not able to describe how a process must proceed.

    Entropy (S): - measure of randomness, Boltzmann (1844-1906):

    S = k ln W

    - can be calculated from pressure and temperature

    - thermal process, term Q/Tb is used to calculate entropy

    crossing system boundary.

  • Actual Process: SE SB > Si - So + Q/Tb Sc Perubahan entropy selalu positif untuk proses nyata. Entropy balance: SE SB = Si - So + Q/Tb + Sp Sc

    This is known as the Second Law of Thermodynamics.

    Application: Compressor or Expander,

    reversible process (ideal) Sp = 0

    adiabatic Q = 0

    Therefore, for this case, entropy is constant: S = 0

  • Unit of Properties

    Properties Unit (SI, British) Intensive/Extensive

    Length

    Volume

    Specific Volume

    Mass

    Mass density

    Temperature

    Pressure

    Work

    Heat

    Power

    Entropy

    Specific Heat Capacity

    Thermal conductivity

    viscosity

  • Some Examples of Application:

  • 1. Suatu aliran memasok steam pada 620 psia dan 700oF untuk turbin

    (expander) adiabatic reversible yang mengeluarkannya ke suatu collector

    terinsulasi yang dipasang suatu piston tanpa friksi dan tekanannya dijaga

    konstan 23 psia. Tambahan steam dimasukkan ke kolektor melalui

    throttling valve sehingga temperature di dalam collector tetap 270 oF,

    sebagaimana dapat dilihat pada gambar di bawah. Jika tangki collector

    mempunyai luas permukaan 37.18 ft2, berapa lb (pounds) steam yang

    melalui turbin, diperlukan untuk mengangkat piston setinggi 1 ft.

    (Abaikan perubahan energi potensial dan kinetic pada steam serta panas

    dan friksi sepanjang jalur perpipaan).

    Diketahui: h (23 psia, 270 oF) = 1175 Btu/lbm; v(23 psia, 270 oF) = 18.6 ft3/lbm h (620 psia, 700 oF) = 1350 Btu /lbm; s (620 psia, 700 oF) = 1.584 Btu /lbmoR h1(23 psia, s=1.584 Btu /lbmoR) = 1065 Btu /lbm Jawab:

    System (1): Isi tangki

    Constraints: Q = Pe = Ke =0

    P= 23 psia, T =270 oF; frictionless piston & lines

    1

    2

    3

    Steam, 620 psia, 700 oF

    Collector, 23 psia, 270 oF

    Expander

    Throttle valve

    4

  • Interactions: Aliran masuk, stream #3

    Neraca massa: ( ) 312 mmm t =

    Neraca Entrophy: ( ) pt SmsTQ

    SS ++= 3312

    atau ( ) 331122 msmsms t =

    karena aliran #3 mempunyai variable yang sudah fix, P= 23 psia, T =270 oF, maka s1t = s2t, jadi:

    ( ) 3312 msmms tt = dan h (23 psia,270 oF) = 1175 Btu/lbm; v(23 psia,270 oF) = 18.6 ft3/lbm

    m4 (sehubungan dengan kenaikan piston 1 ft) = lbm..

    ).)((vV

    0261818371

    ==

    Jumlah massa di atas berasal dari dua aliran: dari turbin dan dari valve.

    System (2): Isi dari mixing T

    Interaksi: Aliran masuk #1 dan #2

    Aliran keluar #3

    Constrains: Steady state; Pe = Ke = W = Q = 0

    Neraca massa: 312 mmm &&& =+

    Neraca Energi: 331221 mhmhmh &&& =+

  • Maka: )hh(

    m)hh(m

    21

    3131

    =

    &&

    System (3): Isi valve

    Interaksi: aliran masuk #0

    Aliran keluar #2

    Constrains: Steady state; Pe = Ke = W = Q = 0

    Neraca massa: 20 mm && =

    Neraca energi: 2200 mhmh && =

    h0 (620 psia, 700 oF) = 1350 Btu /lbm, maka h2 = 1350 Btu /lbm

    System (3): Isi turbin

    Interaksi: aliran masuk #0

    Aliran keluar #1

    Constrains: Steady state, reversible; Pe = Ke = Q = 0

    Neraca entrophy: ( ) pSmss += 1100 &

    atau 10 ss =

    s0 (620 psia, 700 oF) = 1.584 Btu /lbmoR, maka s1 = 1.584 Btu /lbm

    oR

    dan h1(23 psia, s=1.584 Btu /lbmoR) = 1065 Btu /lbm

    Jadi: ftkenaikan

    lbm.

    )().)((

    )hh(m)hh(

    m1

    24113501065

    0213501175

    21

    3131 =

    =

    =&

    &