battery pack modeling and bms

Upload: anonymous-tzixahx1

Post on 06-Jul-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Battery pack modeling and BMS

    1/24

    Today: Battery pack modeling and BMS

    •   Battery pack: Stack battery cells in parallel and series

    •   BMS: Monitor

     battery

     state

     (voltage,

     SOC,

     SOH),

     perform

     cell

     

    balancing, communicate with vehicle controller

    1

     DC bus

     DC-DC converter 

     Battery

     Management System ( BMS )

    Control bus

    V bat 

    +

    _

    V  DC 

    +

    _

     Electric drive

     propulsioncomponents

    Vehiclecontroller 

    ncells

    (+protection)in

    series

    Conventional Battery System

  • 8/17/2019 Battery pack modeling and BMS

    2/24

    Packaging: Single Cylindrical Cells

    2

  • 8/17/2019 Battery pack modeling and BMS

    3/24

    Packaging: Prismatic Cells

    3

  • 8/17/2019 Battery pack modeling and BMS

    4/24

    Battery Packs

    4

    Nissan Leaf Ford C‐Max Energi

  • 8/17/2019 Battery pack modeling and BMS

    5/24

    Temperature Effects: Cell Characteristics

    5

    Cnom = 20 Ah cell tested at 0.5C charge/discharge rate

    Reference: S. Chackoa, Y. M. Chunga, Thermal modeling of  Li‐ion polymer battery 

    for electric

     vehicle

     drive

     cycles,

     Journal

     of 

     Power

     Sources,

     Volume

     213,

     1 

    September 2012, Pages 296–303

  • 8/17/2019 Battery pack modeling and BMS

    6/24

    Temperature effects: aging and cycle life

    6

    •   Crystal formation around the electrodes, reduces the 

    effective surface area

    •   Passivation: growth of  a resistive  layer that impedes the 

    chemical reactions

    •  Corrosion consumes some of  the active chemicals

    Aging leads to:

    •   Increased series

     resistance,

     reduced

     power

     rating

    •   Reduced capacity

    End of  life: drop to 80% of  the original power or capacity rating

    All of  aging processes are accelerated with increased 

    temperature

  • 8/17/2019 Battery pack modeling and BMS

    7/24

    Battery system electrical circuit model

    assumption: identical

     cells

    7

  • 8/17/2019 Battery pack modeling and BMS

    8/24

    Battery Simulink Model

    8

    ECEN5017Battery Model (D)

    Mp = number of cells in parallel

    Ns = number of cells in series

    SOC

    Open-circuit voltage

    as a function of SOC

    Series resistances

    Diffusion

    2

    SOC

    1

    Vbat

    positive Ibat

    output

    voltage

    loop

    negative Ibat

    1-D T(u)

    Voltage-vs-SOC

    Characteristic

     >= 0

    Switch

    Rp/Mp

    Series resistance

    for Ibat>0

    Rn/Mp

    Series resistance

    for Ibat

  • 8/17/2019 Battery pack modeling and BMS

    9/24

    Battery Simulink Model

    9

    Scope

    Repeating

    Sequence

    Stair 

    Product

    Ibat

    Vbat

    SOC

    Li-ion battery

    1

    s

    Integrator 

    -1

    Gain

    Ibat

    Vbat

    SOC

    Ebat

    Example:  Mp = 2, Ns = 100

    Ro+ = Ro

    ‐ = 10 m, SOC(0) = 50%, Cnom = 5 Ah, 

    VM = 20 mV, tH = 50 s, R1 = 10 m, 1 = 100 s

  • 8/17/2019 Battery pack modeling and BMS

    10/24

    Battery waveforms (an example)

    10

    300

    350

    400

    0 10 20 30 40 50 600

    50

    100

    -10

    0

    10

    0

    2

    4x 10

    6

    92.3%

  • 8/17/2019 Battery pack modeling and BMS

    11/24

    Charging

    11

  • 8/17/2019 Battery pack modeling and BMS

    12/24

    CCCV Charging example

    12

    360

    370

    380

    390

    0 10 20 30 40 50 600

    50

    100

    -10

    0

    10

  • 8/17/2019 Battery pack modeling and BMS

    13/24

    Effects of  cell mismatches and the need for 

    battery management

     system

     (BMS)

    13

    Reference: Davide Andrea, Battery Management Systems for Large Lithium‐IonBattery 

    Packs, Artech House 2011, http://book.liionbms.com/

    Mismatches in cell characteristics

    •   Capacity

    •   Leakage (self ‐discharge) current

    •   Other parameters: series resistance, …

    Mismatches in cell SOC’s during operation

    Animations at: http://liionbms.com/balance/index.html

  • 8/17/2019 Battery pack modeling and BMS

    14/24

    Cell versus system capacity [Ah]

    14

    Discharge, assuming equal 

    starting SOC=100%

    ii   SOC C Q min,1

    iC C    minmin  

    01

    min  C Q

    minC C system  

  • 8/17/2019 Battery pack modeling and BMS

    15/24

    Charging and discharging a system with 

    mismatched cells

    15

    System must sense individual cell 

    voltages or

     (better)

     employ

     

    individual cell SOC estimators

  • 8/17/2019 Battery pack modeling and BMS

    16/24

    16

    Discharge, assuming unequal 

    starting SOC’s

    iioi   SOC SOC C Q min,,  

    minC C system  

    System capacity with unbalanced SOC’s

    iioisystem   SOC SOC C C Q min,,min  

    0min,   iSOC 

  • 8/17/2019 Battery pack modeling and BMS

    17/24

    Passive “top” balancing

    17Animated example: http://liionbms.com/balance/index.html

  • 8/17/2019 Battery pack modeling and BMS

    18/24

    Example: TI bq76PL536A

    18

  • 8/17/2019 Battery pack modeling and BMS

    19/24

    19

  • 8/17/2019 Battery pack modeling and BMS

    20/24

    20

  • 8/17/2019 Battery pack modeling and BMS

    21/24

    21

  • 8/17/2019 Battery pack modeling and BMS

    22/24

    Active balancing

    22

    Example: switched‐capacitor charge shuttling

  • 8/17/2019 Battery pack modeling and BMS

    23/24

    Active balancing architectures

    23

    http://liionbms.com/php/wp_passive_active_balancing.php

  • 8/17/2019 Battery pack modeling and BMS

    24/24

    Cell versus system capacity [Ah] with 

    charge re

    ‐distribution

    24

    Discharge, assuming equal 

    starting SOC=100%

    isystem   C C