bayesian and fuzzy kriging interpolation techniques...

37
BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES FOR SPATIAL ESTIMATION IN MINING FIELD GHANIM MHMOOD DHAHER A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mathematics) Faculty of Science Universiti Teknologi Malaysia MARCH 2014

Upload: others

Post on 05-Feb-2020

32 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

 

 

BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES FOR

SPATIAL ESTIMATION IN MINING FIELD

GHANIM MHMOOD DHAHER

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Mathematics)

Faculty of Science

Universiti Teknologi Malaysia

MARCH 2014

Page 2: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

iii

This dissertation is dedicated to my family for their endless support and

encouragement.

Page 3: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

iv  

ACKNOWLEDGEMENT

“In the Name of Allah, Most Gracious, Most Merciful”

First and foremost, Alhamdulillah, it is with the assistance and grace of Allah

Almighty that I was able to finish this dissertation.

I would like to express my sincere appreciation to my supervisor Prof. Dr.

Muhammad Hisyam Lee for his great advice and generous help during the period of

my study and also, who had the patience and wisdom to guide me in order to

overcome all the academic obstacles that I faced during my study. My overwhelming

gratitude to my evaluators, I am also grateful for their helpful suggestions.

A special thanks to my parents and my siblings for their unlimited moral

support, to everyone in my extended family, and for their lessons on how to be

patient and strong. I thank them very much for always being there for me and I ask

Allah the almighty to grant them Paradise.

Last but not least, I would like sincerely to thank all the lecturers, staff,

friends and my fellow postgraduate friends for their emotional support and cognitive,

thanks for all the care and concern. I wish you more and brighter success in this

world and the Hereafter.

Page 4: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

v  

ABSTRACT

The focus of this research is in the area of spatial estimation. Such a study is

very important in order to improve the spatial prediction performance. Many

techniques of prediction that are based on the regionalized variables, and the surface

trend change from linear to quadratic or cubic that produces inaccurate results in the

prediction process. In this thesis, Bayesian and fuzzy kriging methods are suggested

to solve the problem of uncertainty, which requires obtaining a minimum error in the

prediction process. This study aims to improve the mixed approaches among

methods of spatial prediction that are used for evaluation of prediction. The study

also finds the performance of variation interpolation methods of minerals needed to

develop the relationship between Bayesian techniques and fuzzy kriging and apply

the results for further modeling a spatial relationship. This spatial prediction assumes

stationary property. The findings of this study are mathematical models of

covariance functions. The variogram and cross variogram functions are computed for

all compass directions for the phenomena under the study and its parameters are

estimated. Another aspect is to obtain Bayesian predictor, kriging predictor, and

Bayesian kriging variance which represent the minimum variance of prediction. In

addition, the constraints weights of linear prediction were computed. The practical

side of this study includes the applications of the Bayesian and fuzzy kriging

techniques on real spatial data with their locations in the mining fields of Australia,

Canada, and Colombia. All the computations were carried out by using Matlab

software. In conclusion, this study uses two different methods (Bayesian and fuzzy

kriging techniques) for incorporating the spatial autocorrelation in order to improve

the accuracy of uncertainty and estimation with minimum error. The approach

combines more than one prediction methods to determine a model which is based on

a cross validation that satisfies the best optimal prediction.

Page 5: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

  vi  

ABSTRAK

Tumpuan kajian ini adalah dalam bidang penganggaran ruang. Kajian ini

sangat penting untuk mempertingkatkan prestasi ramalan ruang. Pelbagai teknik

ramalan berdasarkan pembolehubah regionalisasi dan perubahan jalan permukaan

daripada linear kepada kuadratik atau kubik menghasilkan keputusan yang tidak tepat

dalam proses ramalan. Kaedah Bayesian dan kriging kabur dicadangkan untuk

menyelesaikan masalah ketidaktentuan yang memerlukan supaya ralat minimum

dalam proses ramalan dapat diperoleh matlamat kajian ini adalah untuk meningkatkan

pendekatan gabungan antara kaedah bagi ramalan ruang yang digunakan dalam

penilaian ramalan. Prestasi bagi kaedah interpolasi variasi juga ditemukan bagi

mineral yang diperlukan untuk membangunkan hubungan antara teknik Bayesian dan

kriging kabur dan melanjutkan dapatan bagi pemodelan atau hubungan ruang.

Ramalan ruang ini mengandaikan ciri pegun. Dapatan kajian ini adalah model

bermatematik bagi fungsi kovarians. Fungsi variogram dan variogram bersilang dikira

untuk semua arah kompas bagi fenomena dalam kajian dan parameternya dianggarkan.

Aspek lain adalah untuk mendapatkan peramal Bayesian, peramal kriging dan varian

kriging Bayesian yang mewakili varians minimum bagi ramalan. Tambahan lagi,

kekangan pemberat bagi ramalan linear dikira. Bahagian praktikal kajian ini termasuk

penggunaan teknik Bayesian dan kriging kabur bagi data ruang sebenar dengan lokasi

di kawasan perlombongan di Australia, Canada dan Colombia. Semua pengiraan

dilakukan menggunakan perisian Matlab. Kesimpulannya, kajian ini menggunakan

dua kaedah yang berbeza (Teknik Bayesian dan kriging kabur) untuk menggabungkan

auto korelasi ruang bagi meningkatkan ketepatan bagi ketidaktentuan dan

mendapatkan penganggaran dengan ralat yang minimum. Pendekatan yang digunakan

menggabungkan lebih daripada satu kaedah ramalan untuk menentukan suatu model

berasaskan pengesahan bersilang bertujuan memenuhi ramalan optima terbaik.

Page 6: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

vii  

LIST OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi

TABLE OF CONTENTS vii LIST OF TABLES xi LIST OF FIGURES xiii LIST OF SYMBOLS xvi LIST OF ABBREVIATIONS xxi LIST OF APPENDICES xxii

1 INTRODUCTION 1

1.1 Overview 1

1.2 Research Background 2

1.3 Significance of the Study 3

1.4 Research Questions 4

1.5 Problem Statement 4

1.6 Objectives of the Study 5

1.7 Scope of the Study 5

1.8 Thesis Organization 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Origins of Kriging 8

2.3 Application of Kriging Technique 8

2.4 Application of Universal Kriging

Page 7: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

viii  

Technique 10

2.5 Application of Cokriging Technique 10

2.6 Application of Bayesian Approach 11

2.7 Application of Fuzzy Approach 12

2.8 Other Applications of Interpolation Methods 13

3 RESEARCH METHODOLOGY 16

3.1 Geostatistics 16

3.2 Regionalized Variables 18

3.3 The Experimental Variogram Function 20

3.4 Theoretical Statistics Assumptions 22

3.4.1 Stationary 22

3.4.2 Strict or Strong Stationary 22

3.4.3 Continuous 23

3.4.4 Isotropy 24

3.5 Variogram Parameters 26

3.5.1 Further Variogram Proprties 27

3.5.2 Behavior of Variogram Near the Origin 27

3.6 Covariance Function 29

3.6.1 Some Covariance Functions 31

3.7 Spatial Prediction 33

3.7.1 Theory of Kriging 34

3.7.2 Simple Kriging 34

3.7.3 Ordinary Kriging 36

3.7.4 Kriging with Trend 40

3.7.5 Universal Kriging 41

3.7.6 Estimation of the Trend 42

3.7.7 Robust Estimation 43

3.7.8 Zone of Uncertainty 44

3.8 Multivariate Geostatistics 44

3.8.1 Structural Multivariate Tools 45

3.8.2 Cross Covariance 46

3.8.3 Cross Variogram 46

Page 8: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

ix  

3.8.4 Relation between Cross Covariance and Cross Variogram

48

3.8.5 Symbolic and Hypotheses 48

3.8.6 Cokriging 49

3.8.7 Model Performance 51

3.8.8 Prediction Quality 52

3.9 Nonparametric Covariogram Function 53

3.9.1 Matérn Covariance Function 53

3.9.2 Bayesian Method 53

3.9.3 Bayesian Kriging 55

3.9.4 Bayesian Variance 56

3.9.5 Bayesian Approach to Kriging 56

3.10 Fuzzy Logic 57

3.10.1 Membership Function 59

3.10.2 Fuzzy Kriging 60

3.10.3 Fuzzy Variogram 61

3.10.4 Bayesian Fuzzy Kriging 62

4  DATA ANALYSIS AND RESULTS 64

4.1 Mineral Ore Data 64

4.2 Nickel and Cobalt Data from Colombia l 64

4.2.1 Data Resource 66

4.2.2 Results 66

4.2.3 Discussion 74

4.3 Copper and Nickel from Korf Property in British 76 4.3.1 Data Resource 77

4.3.2 Results 78

4.3.3 Discussion 82

4.4 Zinc and Lead Data from Australia 83

4.4.1 Data Resource 84

4.4.2 Results 85

4.4.3 Discussion 92

4.5 Gold and Silver Data from Australia 93

4.5.1 Data Resource 95

Page 9: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

x  

4.5.2 Results 95

4.5.3 Discussion 100

4.6 Chromium and Copper Data from Colombia 101

4..6.1 Data Resource 101

4.6.2 Results 102

4.6.3 Discussion 108

4.7 Lead metal from Australia 109

4.7.1 Data Resource 110

4.7.2 Results 111

4.7.3 Discussion 114

5 CONCLUSION AND FUTURE WORKS 115 5.1 Conclusion 115 5.5 Future Works 117 REFERENCES 118 Appendices A-D 129-138

Page 10: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xi  

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Summary of Some Studies on Prediction of Mineral Ores 14

3.1 Some Models of Covariance Functions 31

3.2 Examples of Spatial Data with their locations 37

3.3 Some Membership Functions 59

4.1 Variogram Function for Nickel Ore 67

4.2 Results Variogram Function for Cobalt 68

4.3 Cressie-Hawkins Robust Estimator for Nickel 69

4.4 Haslett Robust  Estimator for Nickel 69

4.5 Cressie-Hawkins Robust Estimator for Cobalt 71

4.6 Haslett Robust Estimator for Cobalt 71

4.7 Variogram Function for Copper 78

4.8 Variogram Function for Nickel 79

4.9 The Parameters of Variogram Function 81

4.10 Comparison Between Kriging and Cokriging 81

4.11 Cross Validation of Copper and Nickel 82

4.12 Semivariogram Function for Zinc 85

4.13 Semivariogram for Lead 88

4.14 Cross-semivariogram for Zinc and Lead 90

4.15 Prediction of Five Values for Lead 91

4.16 Prediction of Five Values for Zinc 91

4.17 Semivariogram Function for Gold 96

4.18 Semivariogram Features for Gold 97

4.19 Semivariogram Function for Silver 97

4.20 Semivariogram Features for Silver 98

Page 11: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xii  

4.21 Prediction Values Using Kriging 98

4.22 Prediction Values Using Bayesian Kriging Variance 99

4.23 Variogram Function for Chromium 103

4.24 Variogram Function for Copper 104

4.25 Data Statistics for Chromium and Copper 105

4.26 Prediction for Chromium and Copper 108

4.27 Features of Gaussian Model. 112

4.28 Cross Validation of Gaussian Model 113

4.29 Prediction Five Values 114

Page 12: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xiii  

LIST OF FIGURS

FIGURE NO. TITLE PAGE

3.1 Set of known values and oZ unknown value 18

3.2 Lag h between Observations 19

3.3 Angels from 0 to 360 19

3.4 Graphical displays of experimental

semivariogram and semivariogram model

21 3.5 Continuous Semivariogram 23

3.6 Types of Isotropy (i) Isotropy, (ii) Anisotropy and (iii) Geometry Anisotropy

25

3.7 Semivariogram Function 26

3.8 Semivariogram function near the Origin: (i) Parabolic behavior, (ii) Approximately linear behavior, (iii) Nugget Effect and (iv) Pure Nugget Effect

28

3.9 Semivariogram and covariance functions: (i) Semivariogram function, (ii) Covariance function and (iii) Semivariogram and covariance functions.

30 3.10 Covariance Models: (i) Gaussian model, (ii)

Exponential model and (iii) Spherical model

32 3.11 Covariance Models: (i) Linear model, (ii) Power

model and (iii) Pure Nugget model

33 3.12 Simple Kriging 35

3.13 Ordinary Kriging 36

3.14 Estimation of unknown value oZ 38

3.15 Universal Kriging 41

3.16 Fuzzy Set A 58

3.17 Some Membership Functions 60

4.1 El Roble Mine of Colombia 65

4.2 Nickel Ore 66

Page 13: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xiv  

4.3 Cobalt Ore 66

4.4 Varogram Function for Nickel 67

4.5 Varogram Function for Cobalt 68

4.6 Cressie-Hawkins Robust Estimator for Nickel 70

4.7 Haslett Robust Estimator for Nickel 70

4.8 Cressie-Hawkins Rbust Estimator for Cobalt 72

4.9 Haslett Robust Estimator for Cobalt 73

4.10 Contour map of Krof Mineral Tenures . 76

4.11 Copper Ore 77

4.12 Nickel Ore 77

4.13 Variogram Function for Copper 79

4.14 The variogram Function for Nickel. 80

4.15 Average Variogram for Copper and Nickel. 80

4.16 Locations of El Roble Mine in Australia 83

4.17 Zinc Ore 84

4.18 Lead Ore 84

4.19 Variogram Curves of Zinc 86

4.20 Average Variogram Function for Zinc 87

4.21 Variogram Curves of Lead 88

4.22 Average Variogram for Lead 89

4.23 Semivariogram and Crosssemivariogram 90

4.24 Scotia Project Gold Occurrences in Australia 93

4.25 Eloise Mine in Australia 94

4.26 Gold Ore 95

4.27 Silver Ore 95

4.28 Variogram Curves of Gold 96

4.29 Variogram Curves for Silver 98

4.30 El Roble Mine of Colombia 101

4.31 Chromium Ore 102

Page 14: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xv  

4.32 Copper Ore 102

4.33 Variogram Function for Chromium 103

4.34 Variogram Function for Copper 105

4.35 Cressie-Hawkins Robust Estimator for Chromium 106

4.36 Cressie-Hawkins pRobust Estimator for Copper 107

4.37 Lead Ore 110

4.38 Variogram Curves of Lead 111

4.39 Gaussian Models of Lead 111

4.40 Gaussian or normal distribution 112

4.41 Histogram of Gaussian distribution 113

Page 15: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xvi  

LIST OF SYMBOLS

( )x - Locations x of Spatial Variable

( )x or ( )x h - Locations ( )x h of Spatial Variable

( )Z x - Regionalized Variable of location ( )x

( )oZ x - Regionalized Variable of location ( )ox

( )Z x h - Regionalized Variable of location ( )x h

Z , or Z - Vector of Real Data

Z , d - Sample Mean

h - Euclidian Distance. or Lag

( , )x y - Points of location

( , )N x y , or ( )N h

- Number of pairs of observations

i - The Weights in Estimation of Ordinary Kriging

- The Weights Transpose

- The Weights Vector

i - The Weight in Estimation of Universal Kriging

(x, )h - Semivariogram Function

2 (x, )h - Variogram Function

( )h - Estimator of Semivariogram Function

*ij - Cross Semivariogram Function

( )C h , - Covariance Function

12 ( )C h - Cross Covariance Function

1 C , 1 K - Inverse Matrix

1 - Covariance Inverse

Page 16: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xvii  

oC - Nugget Effect

oC C - Sill

a - Range

ˆ( )z x - Predictor Values of Variable

bz - Variable of Bayes

- Mean of Stationary Spatial Process

( )x , ( )m x - Mean of Non-Stationary Spatial Process

2 , 2E - Variance Parameter

2OK - Ordinary Kriging Variance

2uK - Universal Kriging Variance

2COK - COKriging Variance

LP - Lagrange Multiple

P - Dimensions

P(A) - Probability of Event A

P(x) - Probability of Event x

P(m) - Probability of Event m

P(D) - Probability of Event D

P(x|A) - Probability x Condition A

P(A|x) - Probability A Condition x

P(x, A) - Joint Probability of x and A

P(m|D) - Probability m Condition D

P(D|m) - Marginal Likelihood

P(AB)  - Probability of Event Union

P(AB) - Probability of Event Intersection

,d - The Matérn Covariance

- Correlation Coefficient

12 h - Cross Correlation Coefficient

Page 17: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xviii  

(x) - Random Error Vector

- Vector Unknown Parameter

BK

- Posterior of Bayesian Kriging

- For all variables

D - Domain (or Region)

D2 - Special Distance

R - Real Numbers

pR - Real Numbers R in P Dimension Space

- Infinity

- Summation

- Double Summation

- Integral

F - Information Function

TF - Matrix Transpose

- Angle (or Trend)

uK - Bessel Function

A - Fuzzy Set

A x - Membership Function

Ax - Membership Function of Fuzzy Set A

M - Left Spreads

mM - Model Value

M - Right Spreads

Ax - Membership Function of Fuzzy Set A

- Trend Parameter

C - Covariance Matrices

- Change in or Difference

Page 18: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xix  

- Absolute Value

- Euclidian Norm on pR

- Approximate

- Approximate to Equal to

- Equal by Definition

- Go to or Lead

- Matrix

, - The Set of

,   - Brackets

( , )a b   - Open Interval

[ , ]a b   - Closed Interval

  - Direct Sum

E(Z| ) - Conditional Expectation of Z

E( ) - Expectation Value

Var( ) - Variance

I - Identity Matrix

f ‐  Non Linear Function  

Page 19: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xx  

LIST OF ABBREVIATIONS

SK - Simple Kriging

OK - Ordinary Kriging

UK - Universal Kriging

COK - Cokriging

COV - Covariance

KED - Kriging with the External Drift

RK - Regression Kriging

RF - Random Function

BLUE - Best Linear Unbiased Estimator

ME - Mean Error

MAE - Average Absolute Error

MSE - Mean Square Error

KRMSE - Kriged Random Mean Square Error

CORMSE - Cokriged Mean Square Error

Page 20: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

xxi  

 

LIST OF APPENDICES

APPENDIX NO. TITLE PAGE

A Publications and Attended Conferences 129

B Maps of Mineral Ores Locations 130

C Some Data of Mineral Ores 133

D Contour Maps of Mineral Ores 137

Page 21: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

CHAPTER 1

INTRODUCTION

1.1 Overview

Geostatistics is centrally focused areas of applied statistics. This branch of

statistics is concerned with the spatial or temporal outlook of the data studied and the

corresponding contour distribution of that data. Using geology, which is at the root

of geostatistics, was pioneered by two researchers Krige (1951) and Matheron

(1963). It was originally meant to project changes in the quality of ore from

particular mines.

In the mid-nineties, Krige, a seasoned engineer working in South African

mines, developed a model for interpolating true random spatial variables of a sample

space. Krige’s spatial statistic model was later modified by Matheron, a French

mathematician create the best kriging. The trend of kriging was evident in the

research conducted by Journel and Huijbregts (1978), Ripley (1981), Lam (1983),

Davis (1986), and Cressie (1990) in their geostatistical investigation of various data

sets.

Page 22: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

2  

1.2 Research Background

The spatial statistics theory has its roots from the theory of regionalized

random spatial variables. This spatial statistics theory is concerned with spatial data

such as deposits of mineral ore, oil reserves and data on rainfall distribution,

epidemics, or data on various types of pollution. These spatial variables may be

generated from geographic locations on the earth’s surface, underground or from the

atmosphere.

Spatial interpolation has close connections to geology and it entails a series of

mathematical computational methods. It is also; concerned with the spatial

phenomena. It uses methods that emphasis regionalized random variables so as to

generate spatial distribution. Studies of spatial statistics based on regionalized

variables theory have successfully formulated mathematical models for determining

the nature of the spatial distribution through use of functions such as a variogram.

A variogram is one of the most commonly employed functions used for modeling in

spatial statistics.

A variogram functions is employed to determine existing variations in

observed phenomenon. The function was employed in studies by Journel (1992),

Cressie (1993), and Chiles and Defflar (1999). The variogram function uses spatial

prediction. Spatial prediction uses the kriging method to estimate the Best Linear

Unbiased Estimator (BLUE) for a set of spatial real data.

Page 23: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

3  

There are various types of kriging including simple kriging, ordinary kriging

(which is the most commonly used), anisotropic kriging (uses accounting geometric

variance), universal kriging (uses local accounting trends), cokriging (where there is

more than one variables). Each of these kriging techniques types employs either

a semivariogram or a variogram function.

The kriging school of thought uses geostastistical interpolation to estimate the

value of unknown parameters using available location data (Cressie, 1985; Burrough,

1986). Some of the key studies that employed spatial interpolation models are

Burrough and Mcdonnel (2000), and Cressie (2003). Other works that employed

universal kriging, include Martinez and Zinck (2004) and Gooavaerts (1997a) who

estimated parameters using approaches such as maximum likelihood estimation, least

squares quadratic method, and Bayesian. Bayesian kriging is; where model

parameters are generated with the aid of regionalized random variables.

1.3 Significance of the study

The significance of the current study lies in the fact that it will further

enhance understanding of contour maps using regionalized random variables; and

outline situations where the kriging technique for estimating the parameters of

experimental functions and knowledge properties can be used.

Page 24: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

4  

1.4 Research Questions

The spatial estimation of interpolation methods was based on the following

research questions:

i. Does mineral ore data satisfy the stationary assumptions?

ii. Are isotropic variations accounted for?

iii. Is the robust estimator trend required?

iv. In which method do different variogram estimation techniques, contribute to

variations in the estimated covariance parameters?

v. How can a reasonable estimate of the nugget variance be achieved?

vi. How can we obtain a mathematical model that fits with covariance

functions?

vii. Which model provides the best spatial estimation performance?

1.5 Problem Statement

Spatial interpolation techniques are an essential input for the development of

spatial prediction models that use a stochastic process. In practice, location

estimation using geostatistics or spatial statistics is associated with some level of

precision error and uncertainty. This can be attributed to the fact that the surface

trend changes from linear to quadratic or cubic thereby resulting in the inaccuracy.

As such, the current research seeks to solve this problem by developing prediction

models for enhancing the spatial prediction performance with minimal prediction

error. Therefore, Bayesian kriging with fuzzy is proposed as a mixed approach to

solve this prediction problem. The main motivation is to jointly handle different

types of uncertain information such as uncertainty in the variogram parameters and

uncertainty property in the variogram model. Kriging possesses advantages over the

interpolation method as it has the ability to determine an uncertainty estimate for the

value of the regionalized variable.

Page 25: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

5  

1.6 Objectives of the research

The objectives of the current research are as follows:

i. To analyze the spatial data using regionalized variables in the mining

industry.

ii. To make a comparison between various types of kriging models (ordinary,

universal, universal cokriging, Bayesian) to know the best performance.

iii. To establish the ability and accuracy of fuzzy method for enhancing the

spatial prediction.

iv. To combine kriging techniques with the Bayesian fuzzy kriging so as to

observe their output.

v. To identify the uncertainty features present in the mining industry and to

analyze the effect of these features on the prediction process.

vi. To establish a mathematical model and to compare it with the covariance

functions; and study the performance of the variation interpolation model.

vii. To enhance the performance of the spatial prediction models and to ascertain

the environment effect of mineral ores in the study area.

1.7 Scope of the study

The current study was concerned with the analysis of data generated from

metal ore mines and how the contour maps of the data are distributed in the study

area. The idea was to allow for predictions that use spatial data and the theory of

random spatial process to explore for minerals such as gold, silver, nickel, lead, zinc

and copper.

Page 26: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

6  

1.8 Thesis Organization

The thesis is organized into five chapters. Chapter 1 includes an introduction

of spatial statistics and gives an idea of research background, significance of the

study problem statement, objectives of the research and the scope of the study.

Chapter 2 provides a review of the literature on kriging which includes the origins of

kriging, applications of the kriging, universal kriging, and cokriging techniques,

applications of the Bayesian and fuzzy approach, and other applications of

interpolation methods. Chapter 3 contains the research methodology that starts with

introduction of geostatistics and goes on defining regionalized variables, the

experimental variogram function, and spatial predictions. Chapter 4 illustrates the

data analysis and the results based on the real spatial data in different areas of

Colombia, Australia, and Britain, by using interpolation methods for predictions.

Finally, Chapter 5 is reserved for conclusions and recommendations for future work.

Page 27: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

 

 

REFERENCES

Bandemer, H. and Gebhardt, A. (2000). Bayesian fuzzy kriging. Freiberg (Sachs),

Germany. Fuzzy Sets and Systems. 112, 405-418.

Beliaeff, B. and Cochard, M. L. (1995). Applying geostatistics to identification of

spatial patterns of fecal contamination in a mussel farming area. (Havre de

la Vanlee, France), Water Research. 29, 1541-1548. 

Bivand, R. S. Pebesma, E. and Virgilio, R. (2008). Applied spatial data analysis

with R, R series. New York. Springer.

Brochu, Y. Marcotte, D. and Chapuis, R. (2002). Kriging of Hydraulic Head Field

for a Confined Aquifer. GEOENV2002.

Brus, D. J. and Heuvelink, G. ( 2007). Optimization of sample patterns for

universal kriging of environmental variables. Geoderman. 138(1): 86-95.

Bourennane, H. and King, D. (2003) Using multiple external drifts to estimate a

soil variable, Geoderma. 114(1): 1-8.

Budiman, M. Jasper A. and Alex, B. (2011) Confronting uncertainty in model

based geostatistics using Markov Chain Monte Carlo simulation.

Asturalia, Elsevier Geoderma. 163, 150-162.

Buland, A. Kolbjørnsen, O. and Omre, H. (2003). Rapid spatially coupled AVO

inversion in the Fourier domain. Geophysics. 68, 824-836.

Burrough, P. (1986) Principals of geographical information systems for land

resources assessment. Oxford, Clarendon Press.

Burrough, P. and McDonnell, R. (1998). Principles of Geographical Information

Systems. NewYork: Oxford University Press Inc, page 333.

Burrough, P. and McDonnell, R. (2000). Principles of Geographical Information

Systems. New York, Oxford University Press.

Page 28: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

119  

 

Burgess, T. M. and Webster, R. (1980). Optimal interpolation and is arithmic

mapping of soil properties: I. The semivariogram and punctual kriging.

Journal of Soil Science. 31, 15–331.

Carlin, B. P. and Louis, T. A. (1997) Bayes and empirical Bayes methods for data

analysis. Journal of Statistics and Computing. 7, 153–154.

Chalkiadakis, G. and Boutilier, C. (2004). Bayesian reinforcement learning for

coalition formation under uncertainty, Proceedings of the Third Joint

Conference on Autonomous Agents and Multiage Systems, IEEE Computer

Society.

Chalk, G. and Bouti, C. (2004). Bayesian Reinforcement Learning for Coalition

Formation under Uncertainty. New York, USA.

Chang, C. L. Lo, S. L., and Yu, S.L. (2005). Applying fuzzy theory and genetic

algorithm to interpolate precipitation. Journal of Hydrology. 314, 92–104. 

Chilés, J. and Delfiner, P. (1999). Conditioning by Kriging. In: Geostatistics:

Modeling Spatial Uncertainty, edited by V. Barnett et al., 465-472, John

Christensen, R. (2001). Linear Wiley and Sons, New York. models for

multivariate time series and spatialy data. Spring verlag New York 393.

Cressie, N. A. and Hawkins, D. (1980). Robust estimation of the variogram.

Mathematical Geology. 12, 115-125.

Cressie, N. A. (1985). Fitting Variogram Models by Weighted Least Squares.

Journal of the international association for Math. Geol. 17, 563–586.

Cressie, N. A. (1986). .Kriging non stationary data, Journal of the international

association for Mathematical Geology. 81, 625-634.

Cressie, N. A. (1990). The Origins of Kriging. Journal of the international

association for Mathematical Geology. 22(3): 239-252.

Cressie, N. A. (1991). Modeling Growth with random sets in spatial statistics and

imaging. Institute of mathematical statistics. Hayward. 20, 31-45.

Cressie, N. A. (1993). Statistics for Spatial Data. (2nd Edition), John Wiley and

Sons, New York.

Cressie, N. A. (2003). Statistics for Spatial Data.Revised Edition, New York,

John Wiley and Sons.

Page 29: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

120  

 

Cressie, N. A. and Johansson, G. (2008). Fixed rank kriging for very large

statistical Society: Series B (Statistical spatial data sets), Journal of the

Royal Methodology. 70, 209-226.

Curran, P. (1988). The semivariogram in remote sensing: an introduction. Remote

Sensing of Environment.

Dagdelen, K. and Nieto, A. (1997). Geostatistics applied to mine waste

characterization at Leadville, Colorado, USA, International Journal of

Surface Mining Reclamation and Environment. XI (4): 175-188.

Daly, C. Neilson, R. and Phillips, D. L. (1994). A statistical-topographical model

for mapping climatological precipitation over mountainous terrain.

Journal of Application, Meteor. l33, 140–158.

David, M. (1977). Geostatistics Ore resource estimation, Elsevier, Amsterdam.

Davis, J. C. (1986). Statistics and data analysis in geology. ( 2nd Edition). Wiley,

New York.

Delhomme, J. P. (1978). Kriging in the hydrosciences. Advances in Water

Resources, 1, 251-266.

Diggle, P. J. (1983). Statistical analysis of spatial point paterns. academic press,

London, England.

Diggle, P. J. and Ribeiro, J. (2007). Model- based Geostatistics. Springer Science,

Business Media, LLC, 288.

Diggle, P. J. Ribeiro, P. J., and Christensen, O. (2003). An introduction to model

based geostatistics. Book chapter in spatial statistics and computational

methods. Springer, New York. 173, 43–86.

Diggle, P . J. Menezes, R. and Su T. l. (2010). Geostatistical inference under

preferential sampling Journal of the Royal Statistical Society: Series C

(Applied Statistics) Article first published online: 9 FEB 2010.

Dirks, K. Hay, J. Stow, C. and Harris, D. (1998). High-resolution studies of

rainfall on Norfolk Island. Part II: Interpolation of rainfall data. Journal of

Hydrology. 208(3): 187–193.

Dingman, S. Seely, D. and Reynolds, J. (1988). Application of kriging to

estimating mean annual precipitation in a region of orographic influence.

Water Resource Bull. 24(2): 329–339.

Page 30: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

121  

 

Dowd, P. (1984). The variogram and kriging: robust and resistant estimators.

In: Geostatistics for Natural Resources, edited by V.G., 91-106.

Dubois, G. and Galmarini, S. (2004). Introduction to the spatial interpolation

and comparison. Applied GIS. 1(2): 9-11.

Dutina, I. (2013).  Atico updates activities in preparation for operating the

El Roble Mine. Technical report. Colombia. Vancouver, BC V6C 1X8.

Ecker, M. and Gelfand, A. (1999). Bayesian modeling and inference for

anisotropic spatial data. Mathematical Geology. 31(1): 67-83.

Eldeiry, A. and Garcia, L. ( 2009). Comparison of Regression Kriging and

Cokriging Techniques to Estimate Soil Salinity Using Landsat Image.

Department of Civil and Environmental Engineering, ColoradoState

University Fort Collins, CO 80523-1372 . Hydrology Days 27.

Fewell, M. P. (1995). The atomic nuclide with the highest mean binding energy.

American Journal of Physics. 63(7): 653–58.

Fisher, R. A. (1935). The logic of inductive inference, Journal of the Royal

Statistical Society. 98, 39-54.

Fisher, R. A. and Yates, F. (1938). Statistical Tables for Biological, Agricultural

and Medical Research, (5th edition, 1957). Edinburgh: Oliver and Boyd.

Fleming, K. L. (2000). Evaluating farmer defined management zone maps for

variable rate fertilizer application. Precis. Agric. 2, 201–215.

Genton, M. G. (1998). Highly robust variogram estimation.Mathematical.

Geology, Geoderma. 106, 173-190.

Grauso, S. Diodato, N. and Verrubbi, V. (2010). Calibrating a rainfall erosivity

assessment model atregional scale in Mediterranean area. Environ Earth

Sci. 60, 1597-1606.

Goovaerts, P. (1997a). Geostatistics for natural resources evaluation. Oxford

University Press, New York.

Goovaerts, P. (1997b). Kriging with a trend model In: Geostatistics for natural

resources evaluation. Edited by A.G. Journal, Oxford University Press,

New York. 139-152.

Goovaerts, P. (1997c). Visualization of spatial uncertainty. In: Geostatistics for

natural resources evaluation, edited by A.G. Journal, 431-434, Oxford

University Press, New York.

Page 31: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

122  

 

Goovaerts, P. (1997d). The practice of modeling. In: Geostatistics for natural

resources evaluation, edited by A.G. Journal. 97-107, Oxford University

Press, New York.

Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into

the spatial interpolation of rainfall. Journal of Hydrology 228, 113–129.

Gorsich, D. J. and Genton, M. G. (2000). Variogram Model Selection via

Nonparametric Derivative Estimation. Cambridge, Massachusetts

Mathematical Geology. 32 (3): 249-270.

Hambidge, K. M. and Krebs, N. F. (2007). Zinc deficiency: a special challenge.

J. Nutr. 137 (4): 1101–5.

Handcock, M. S. and Stein, M. L. (1993). A Bayesian analysis of kriging.

Technometrics. 35(4): 403-410

Hengl, T. Heuvelink, Q. B. M. and Stein, A. (2003b). Comparison of kriging with

external drift and regression kriging technical note. ITC,

<http//www.itc.nl/library/Academic-output/ (5 Dec 2011)>.

Hengl, T. (2007). A practical guide to geospatial mapping of environmental

variables. JRC, Scientific and Technical Research series, office for official

Publications of the European Communities, Luxembourg, page 143.

Hevesi, J. Istok, J. and Flint, A. (1992). Precipitation estimation in mountainous

terrain using Multivariate geostatistics: P1, J. application of Meteorology.

31, 661-688.

Hofstra, N. Haylock, M. New, M. Jones, P. and Frei, C. (2008). Comparison of

six methods for the interpolation of daily European climate dat. Journal of

Geophysical Research 113, D21110, doi10.1029/2008JD010100.

Huijbregts, C. J. and Matheron, G. (1970). Universal kriging an optimal

an approach to trend surface analysis.special volume CIMM Montreal. 12,

159-169.

Isaaks, E. H. and Srivastava, R. M. (1989). An introduction to applied

geostatistics. Oxford University Press, 561 P. N.Y.

Johansson, B. (2000). Precipitation and temperature in the HBV model: A

comparison of interpolation methods, SMHI Reports. Hydrology

Gostatistics: Models and tools for the earth sciences, Mathematical

Geology. 18, 119-140.

Page 32: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

123  

 

Johansson, B. and Chen, D. (2005). The influence of wind and topography on

precipitation distribution in Sweden: Statistical analysis and modeling,

International Journal of Climatology. 23, 1523-1535.

John, A. and William, A. (2010). Assessment report: Soil Geochemical survey and

Core Dilling on Krof property .British, Columbia,Canada

NAD83Zone10N Map: 092H052, MinFile: 092HNW070.

John, A. (2012). Breakaway Resources Limited, Annual Report for the Year

Ended 30 June 2012, ABN 16 061 595 051

Johnston, K. VerHoef, J. M. Krivoruchko, K. and Lucus, N. (2001). Using Arc

GIS Geostatistical Analyst. Redlands, ESRI, 300.

Journel, A. (1992). Geostatistics models and tools for the earth science.

Mathematical Geology. 18. 119-140.

Journel, A. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic press,

London.

Kim, D. Park, J. and Joo, Y. (2005). Fuzzy Classifier with Bayes Consequent.

3809, 1130-1133.

Khorsandi, N. Mahdian, M. Pazira, E. Nikkami, D. and Chamheridar, (2012).

Spatial variability of imprecise values of rainfall Erosivity index, world

applied science journal, ISSN. 18(2): 243-250.

Krebs, R. E. (2006). The history and use of our earth's chemical elements:

A reference guide (2 ed.). Greenwood Publishing Group. Page 107.

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems

on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining

Society of South Africa. 52, 119-139.

Kolmogorov, A. N. (1941). The local structure of tutbulence in an incompressible

fluid at every large Reynolds numbers. Doklady Academii Nauk SSSR. 30,

301-05.

Kotas, J. and Stasicka, Z (2000). Chromium occurrence in the environment and

methods of its speciation. Environmental Pollution. 107(3): 263–283.

Kuhlman, K. and Pardo, I. (2010). Universal cokriging of hydraulic accounting

for boundary conditions, Journal of hydrology. 384, 14-25.

Kumar, V. and Ramadevi, (2006). Kriging of groundwater levels a case study;

Journal of Spatial Hydrology. 6(1): 81–94.

Page 33: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

124  

 

Lacher, R. C. (1993). Expert networks paradigmatic conflict, technological

rapprochement. Minds and Machines.

Lark, R. M. (2000a). Designing sampling grids from imprecise information on

soil variability, an approach based on the fuzzy kriging variance. Bedford,

Great Britain. Geoderma. 98, 35-59.

Lark, R. M. (2000b). Ageostatistical extension of the sectioning procedure for

handling differences of scale between functional models of soil processes

and information on one or more input variables. Geoderma. 95, 89–112.

Lark, R. M. (2000c). A comparison of some robust estimators of the variogram

for use in soil survey. European Journal of Soil Science. 51, 137–157.

Lark, R. M. (2008). Some results on the spatial breakdown point of robust point

estimates of the variogram. Mathematical Geosciences. 40, 729–751.

Lark, R. M. Culis, B. R. and Welham, S. J. (2006). On spatial prediction of soil

properties in the presence of a spatial rend: the empirical best linear

unbiased predictor. European Journal of Soil Science. 57, 787-799.

Lam, N. (1983). Spatial interpolation methods. The American Cartographer. 10,

129-149.

Liao, H. Chen, W. and Seinfeld, J. H. (2006). Role of climate change in global

predictions of future tropospheric ozone and aerosols. Journal of

Geophysical Research. 111(1): 1-4.

Lioyd, C. D. (2005). Assessing the effect of integrating elevation data into the

estimation of monthly precipitation in Great Britain. Journal of Hydrology.

308, 128–150.

Lopez, F. Jurado, M., Pena, J. and Garcia, L. (2005). Using geostatistical and

remote sensing approaches for mapping soil properties. European Journal

of Agronomy. 23(3): 279-289.

Mabit, L. Bernard, C. Makhlouf, M. and Laverdiere, M. R. (2008). Spatial

variability of erosion and soil organic matter content estimated from

measurements and geostatistics. Geoderma. 145(3): 245-251.

Marchant, B. P. Saby, N. Jolivet, C. Arrouays, D. and Lark, R. (2011). Spatial

prediction of soil properties with copulas. Geoderma. 162, 327–334.

Matérn, B. (1986). Spatial Variation. (2nd Edition). Springer-Verlag, Berlin,

Heidelberg, New York, London, Paris, Tokyo.

Page 34: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

125  

 

Matheron, G. (1963). Principles of Geostatistics, Journal of Economic Geology.

58, 1246–1266.

Matheron, G. (1971). The Theory of Regionalised Variables and its Applications:

Les Cahiers du Centre de Morphologie Math´ematique de Fontainebleau,

No. 5, Paris, France.

Matheron, G. (1973). The intrinsic random functions and their application.

Journal of Advance Application Probability. 5, 439-68.

Mark, F. and Peter K.(1997) . A geostatistical approach to contaminant source

identification Department of Civil Engineering, Stanford, California,

Water Resource Management. 33(4): 537-546.

Martínez, A. (1995). Estimation of mean annual precipitation as affected by

elevation using multivariate geostatistics, Water Resource Management.

9, 139–159.

Martinez, L. J. and Zinck, J. A. (2004). Temporal variation of soil compaction

and deterioration of soil quality in pasture areas of Colombian Amazonia.

Soil and Tillage Research. 75, 3–17.

McBratney, A. B., Webster, R. Burgess, T. M. (1981). The design of optimal

sampling schemes for local estimation and mapping of regionalised

variables. Computers and Geosciences. 7, 331–334.

Meyers, D. (1994). Spatial interpolation: an overview. Geoderma. 62, 17-28.

Miller, J. Franklin, J. and Aspinall, R. (2007). Incorporating spatial dependence

in predictive vegetation models. Ecol. Modelling. 202(3):225-242.

Mingoti and Rosa, G. (2008). A note on robust and non-robust variogram

estimators. Universidad Federal de Minas Gerais. 61(1): 370-4467.

Mueller, T. G. and Pierce, F. (2003). Soil carbon maps:Enhancing spatial

estimates with simple terrain attributes at multiple scales soil. Am. Journal.

67, 258-267.

Muller, W. G. and Zimmerman, D. L. (1999). Optimal designs for variogram

estimation. Environ metrics. 10, 23–37.

Myers, D. E. (1982). Matrix formulation of co-kriging. Mathematical geology.

14, 249-257.

Myers, D. E. (1991). Interpolation and estimation with spatially located data.

Lab. Syst. 11: 209-228.

Page 35: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

126  

 

Nielsen, A. A. (2004). Kriging, Builduy 321, Dk-2.800, Denmark, page 2.

Oman, H. (1992). Not invented here? Check your history. Aerospace and

Electronic Systems Magazine. 7 (1): 51–53.

Omre, and Halvorsen, K. B. (1989) The Bayesian bridge between simple and

universal kriging, Mathematical geology. 21, 767-786.

Pardo, E. (1997). A computer program for the inference of spatial covariance

parameters by maximum likelihood and restricted maximum likelihood.

Computers and Geosciences. 23, 153–162.

Pardo, E. and Chica, M. (2004). Estimation of gradients from sparse data

byuniversal kriging. University of Granada, Granada,Water Resources, 40:

17.

Pardo, E. Dowd, P. A. (1998). Maximum likelihood inference of spatial

covariance parameters of soil properties. Soil Science. 163, 212–219.

Philip, R. and Kitanidis, P.K. (1989). Geostatistical Estimation of Hydraulic Head

Gradients Ground Water. 27(6): 855–865.

Prudhomme, C. and Reed, D. W. (1999). Mapping extreme rainfall in

a mountainous regionusing geostatistical technique: A case study in

Scotland. International Journal of Climatology. 19, 1337-1356.

Ripley, B. D. (1981). Spatial statistics, New York, John Wiley.

Robertson, G. P. (1987). Geostatistics in ecology: Interpolating with known

variance. Ecology. 68(3): 744-748.

Rudolf, D. (2003). Introduction to geostatistics and variogram analysis. Vienna

University of Technology.

Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data

Analysis Texts in Statistical Science. Chapman and Hall.

Shilton, S. Trow, J. Hii, V. and Archer, N. (2005). Accuracy implications of using

the WG-AEN Good practice Guide Toolkits. Forum Acusticum.

Simbahan, G. Dobermann, A. Goovaerts, J. P. and Haddix, M. L. (2006). Fine-

resolution mapping of soil organic carbon based on multivariate secondary

data. Geoderma. 132, 471-489.

Smith, William F. and Hashemi, Javad (2003). Foundations of Materials Science

and Engineering. McGraw-Hill Professional. Page 223.

Page 36: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

127  

 

Stein, M. and Handcock, M. (1989). Some Asymptotic Properties of kriging with

the covariance is Misspecified, Math. Geology. 21(2): 171-189.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for kriging.

Springer. New York.

Student, Mercer, E. B. and Hall, A.D. (1911). Appendix to the experimental error

of field trials. Journal of Agricultural science. 4, 107-32.

Sumfleth, K. and Duttmann, R. (2008). Prediction of soil property distribution in panddy soillandscapes using terrain data and satellite information as indecators. Ecological indicators. 8(5): 485-502.

Thurmer, K.; Williams, E; Reutt-Robey, J. (2002). Autocatalytic Oxidation of Lead Crystallite Surfaces. Science. 297 (5589): 2033–5.

Tveito, O. E. and Schöner, W. (2002) . Application of spatial interpolation of climatological and meteorological elements by the use of geographical information systems (GIS), No. 28.

Wackernagel, H. (2003). Multivariate Geostatistcs: An introduction with application. Springer, Varlg Berlin, Germany, page 256.

Webster, R. and Oliver, M. A. (2007). Geostatistics for Environmental Scientists,

Statistics in Practice Series, John Wiley and Son, page 315.

Webster, R. and Oliver, M.A. (2001a). Reliability of the experimental variogram.

In:Geostatistics for Environmental Scientists, John Wiley and Sons,

Chichester. edited by V. Barnett, 78-92.

Webster, R. and Oliver, M. A. (2001b). Authorized models. In: Geostatistics for

Environmental Scientists, John Wiley and Sons, Chichester. edited by V.

Barnett.

Whittle, P. (1956). On the variation of yield variance with plot size. Biometrika

43, 337-343.

Willbold, M.; Elliott, T.; Moorbath, S. (2011). The tungsten isotopic composition

of the Earth's mantle before the terminal bombardment. Nature. 477

(7363): 195–198.

Wim, C. M. and Jack, P.C. Kleijnen (2002). Kriging for Interpolation in Random

Simulation Department of Information Management. Tilburg University

(KUB), Netherlands, Center for Economic Research.

Yates, F. and Cochran, W. G. (1938). The analysis of groups of experiments.

Journal of Agricultural Science. 28, 556-580.

Page 37: BAYESIAN AND FUZZY KRIGING INTERPOLATION TECHNIQUES …eprints.utm.my/id/eprint/78037/1/GhanimMhmoodDhaherPFS2014.pdf · kriging kabur dan melanjutkan dapatan bagi pemodelan atau

128  

 

Yeh, T. C. Gutjahr, A. L. and Jin, M. (1995). An iterative cokriging-like technique

for groundwater flow modelling. Ground Water. 33(1): 33–41.

Zadeh, L. (1975). The Calculus of Fuzzy Restrictions in Fuzzy Sets Applications to

Cognitive and Decision Making Processes, edited by Academic Press,

New York, 1-39.

Zhang, J. and Goodchild, M. (2002). Uncertainty in Geographical Information.

Taylor and Francis, London.

Zhang, R. Myers, D. and Warrick, A. (1992). Estimation of the spatial

distribution of the soil chemicals using pseudo cross-variograms. Soil Sci.

Soc. Am. Journal. 56, 1444–1452.

Zhu, Q. and Lin, H.S. (2010). Comparing ordinary kriging and regression

kriging for soil proportion in contrasting land scapes. Pedospheve. 20:

594-606.

Zidek, J. V. and Lee, N. D. (1999). Interpolation with Uncertain spatial

covariance: A Bayesian alterative to kriging. Journal of Multivariate

Analysis. 43(2): 351-374.

Zimmerman, D. and Cressie, N. (1992). Mean square prediction error in the

spatial linear model with estimated covariance parameters. 44, 27-43.

Zimmerman, D. Pavlik, C., Ruggles, A. and Armstrong, M. (1999). An

experimental comparison of ordinary and universal kriging and inverse

distance weighting. Journal of Mathematical Geology. 31(4): 376-389.