bayesian estimation of multilevel hierarchical linear

76
Bayesian Estimation of Multilevel Hierarchical Linear & Logistic Regression Models Edps 590BAY Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2019

Upload: others

Post on 12-Jun-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bayesian Estimation of Multilevel Hierarchical Linear

Bayesian Estimation of Multilevel Hierarchical

Linear & Logistic Regression ModelsEdps 590BAY

Carolyn J. Anderson

Department of Educational Psychology

c©Board of Trustees, University of Illinois

Fall 2019

Page 2: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Overview

Hierarchical data

Simple example: anorexia data

Bayesian Estimation

Anorexia data

More complex example: 20 schools of NELS

Logistic Regression: GSS 5 vocabulary items

There is a bit in Kruschke (see chapter on hierarchial models) anda nice example in Gelman (look for schools example).

C.J. Anderson (Illinois) Multilevel Models Fall 2019 2.1/ 76

Page 3: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Examples of Hierarchies or Clustering(a) Individuals within groups

Level 2

Level 1

Group 1

person11

person12

. . .person1n1

Group 2

person21

person22

. . .person2n2

. . . Group N

personN1

personN2

. . .personNnN

(b) LongitudinalLevel 2

Level 1

Person 1

time11

time12

. . .time1t1

Person 2

time21

time22

. . .time2t2

. . . Person N

timeN1

timeN2

. . .timeNtN

(c) Repeated Measures

Level 2

Level 1

Person 1

trial11

trial12

. . .trialn1

Person 2

trial1

trial2

. . .trialn2

. . . Person N

trialN1

trialN2

. . .trialNnN

C.J. Anderson (Illinois) Multilevel Models Fall 2019 3.1/ 76

Page 4: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

More Examples of Hierarchies

peer groups schools person companies

kids students test items employees

neighborhoods schools clinics

families classes doctors

children students patients

C.J. Anderson (Illinois) Multilevel Models Fall 2019 4.1/ 76

Page 5: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

The Problem of Clustered Data

Observations within groups are more similar than observationsfrom other groups.

Mathematically, let yij be a response for person i within group j . yi ′j be a response for person i ′ within group j . ykj′ be a response for person k within group k .

Typically, r(yij , yi ′j) > r(yij , ykj ′)

Furthermore, r(yij , yi ′j ′) 6= 0

We have violated the independence assumption needed fornearly all classical statistical methods

The standard errors of means or regression coefficients are toosmall.

This leads to inflated Type I errors.

C.J. Anderson (Illinois) Multilevel Models Fall 2019 5.1/ 76

Page 6: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Advantages of Taking in Account Clustering

Takes care of dependencies in data and gives correct standarderrors, confidence intervals, and significance tests.

Statistically efficient estimates of regression coefficients.

With clustered/multilevel/hierarchially structured data, canuse covariates measured at any of the levels of the hierarchy.

Model all levels simultaneously.

Study contextual effects.

Theories can be rich.

C.J. Anderson (Illinois) Multilevel Models Fall 2019 6.1/ 76

Page 7: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Same Model, Different Names

Hierarchical Linear Models

Multilevel Analysis using Linear Mixed Models

Variance Components Analysis

Random coefficients Models

Growth curve analysis

All are special cases of Generalized Linear Mixed Models (GLMMs)

They can be estimated using Bayesian methods.

C.J. Anderson (Illinois) Multilevel Models Fall 2019 7.1/ 76

Page 8: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

GraphicallyLet’s re-consider the Anorexia example but add a more multilevelaspect to this example:

Weight Before Treatment

ano.wide$weight1

Fre

quency

70 75 80 85 90 95

05

10

15

20

25

Weight After Treatment

ano.wide$weight2

Fre

quency

70 75 80 85 90 95 100

05

10

15

20

Change in Weight

ano.wide$change

Fre

quency

−10 0 10 20

05

10

15

1.0 1.2 1.4 1.6 1.8 2.0

70

80

90

100

Change for Each Girl

Before/After Treatment

Weig

ht in

Pounds

C.J. Anderson (Illinois) Multilevel Models Fall 2019 8.1/ 76

Page 9: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Different intercepts and slopes

1.0 1.2 1.4 1.6 1.8 2.0

70

80

90

100

Change for Each Girl

Before/After Treatment

Weig

ht in

Pounds

C.J. Anderson (Illinois) Multilevel Models Fall 2019 9.1/ 76

Page 10: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Different intercepts and slopes With only 2 time points, we cannot even estimate a linear

model for each girl because 2 points define a line. We assume a random distribution for both the intercept and

slope. We use all the girl’s data to find this intercept and slope for

the “average” girl In particular, for girl j and time i

yij = β0j + β1jTimeij + ǫij

where the models for regression coefficients are

β0jβ1jǫij

∼ MVN

γ00γ100

,

τ00 τ10 0τ10 τ22 00 0 σ2

i .i .d .

C.J. Anderson (Illinois) Multilevel Models Fall 2019 10.1/ 76

Page 11: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Usual Presentation of the Model Level 1

yij = β0j + β1jTimeij + ǫij

where ǫij ∼ N(0, σ2) i .i .d .Level 2:

β0j = γ00 + U0j

β1j = γ10 + U1j

where(

U0j

U1j

)

∼ MVN

((00

)

,

(τ00 τ10τ10 τ22

))

i .i .d .

Linear Mixed Model:

yij = γ00 + γ10︸ ︷︷ ︸

fixed

+U0j + U1j + σ2

︸ ︷︷ ︸

random

C.J. Anderson (Illinois) Multilevel Models Fall 2019 11.1/ 76

Page 12: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Bayesian Estimation of Simple: Model 0

Random effect ANOVA (null HLM)

weightij = β0j + ǫij = γ00 + U0j + ǫij

dataList ← list(

y = ano$weight,sdY = sd(ano$weight),n = length(ano$weight),ng= length(ano$weight)/2,girl= ano$girl

)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 12.1/ 76

Page 13: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 0model0 <- ‘‘model

for (i in 1:n) y[i] ∼ dnorm(mu[i],precision)

mu[i] ← beta0j[girl[i]]

for (j in 1:ng)

beta0j[j] ∼ dnorm(g0,ptau)

g0 ∼ dnorm(0,1/(100*sdYˆ2))tau ∼ dunif(0.0001,200)

ptau ← 1/tauˆ2sigma ∼ dunif(0.0001,2000)

precision ← 1/sigmaˆ2’’

writeLines(model0, con="model0.txt")C.J. Anderson (Illinois) Multilevel Models Fall 2019 13.1/ 76

Page 14: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Starting Values

start1 = list("g0"=mean(ano$weight),"sigma"=sd(ano$weight), "tau"=.5,

.RNG.name="base::Wichmann-Hill", .RNG.seed=523)

start2 = list("g0"=rnorm(1,0,3), "sigma"=5, "tau"=1,

.RNG.name="base::Marsaglia-Multicarry",

.RNG.seed=57)

start3 = list("g0"=rnorm(1,3,4), "sigma"=10, "tau"=5,

.RNG.name="base::Super-Duper", .RNG.seed=24)

start4 = list("g0"=rnorm(1,-3,10), "sigma"=50,

"tau"=20, .RNG.name="base::Mersenne-Twister",

.RNG.seed=72100)

start <- list(start1,start2,start3,start4)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 14.1/ 76

Page 15: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Run Model 0

model0.runjags ← run.jags(model=model0,

method="parallel",

monitor=c("g0", "sigma", "tau"),

data=dataList,

n.chains=4,

sample=20000,

burnin=5000,

inits=start,

thin=15)

print(model0.runjags)

summary(model0.reml)

plot(model0.runjags)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 15.1/ 76

Page 16: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Results Model 0

JAGS model summary statistics from 80000 samples (thin = 15;chains = 4; adapt+burnin = 6000):

Lower95 Median Upper95 Mean SD Modeg0 82.488 83.784 85.058 83.783 0.65056 –sigma 5.1143 6.0916 7.1706 6.1273 0.53325 –tau 0.8393 3.3142 5.1464 3.1954 1.0518 –

MCerr MC%ofSD SSeff AC.150 psrfg0 0.0034139 0.5 36315 0.011125 0.99999sigma 0.0039559 0.7 18171 0.050108 1tau 0.011611 1.1 8206 0.15418 1.0003

Total time taken: 37.7 seconds

C.J. Anderson (Illinois) Multilevel Models Fall 2019 16.1/ 76

Page 17: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: g00

Iteration

g0

81

82

83

84

85

86

0 50000 150000 250000

g0

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

82 83 84 85 86

g0

% o

f to

tal

0

1

2

3

81 82 83 84 85 86

Lag

Auto

corr

ela

tion o

f g0

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 17.1/ 76

Page 18: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: σ

Iteration

sig

ma

56

78

0 50000 150000 250000

sigma

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

5 6 7 8

sigma

% o

f to

tal

0

1

2

3

5 6 7 8

Lag

Auto

corr

ela

tion o

f sig

ma

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 18.1/ 76

Page 19: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: τCould be better (see lower left)

Iteration

tau

02

46

0 50000 150000 250000

tau

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

0 2 4 6

Auto

corr

ela

tion o

f ta

u

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45C.J. Anderson (Illinois) Multilevel Models Fall 2019 19.1/ 76

Page 20: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Add some Complexity: Model 1

weightij = β0j + β1Timeij + ǫij

= γ00 + γ10Timeij + U0j + ǫij

dataList ← list(

y = ano$weight,time = ano$time,sdY = sd(ano$weight),n = length(ano$weight),ng= length(ano$weight)/2,girl= ano$girl

)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 20.1/ 76

Page 21: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 1model1 <- ‘‘model

for (i in 1:n) y[i] ∼ dnorm(mu[i],precision)

mu[i] ← beta0j[girl[i]] + g1*time[i]

for (j in 1:ng)

beta0j[j] ∼ dnorm(g0,ptau)

g0 ∼ dnorm(0,1/(100*sdYˆ2))g1 ∼ dnorm(0,1/(100*sdYˆ2))tau ∼ dunif(0.0001,200)

ptau ← 1/tauˆ2sigma ∼ dunif(0.0001,2000)

precision ← 1/sigmaˆ2’’

C.J. Anderson (Illinois) Multilevel Models Fall 2019 21.1/ 76

Page 22: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Run Model 1

Add g1 to list of starting values.

Suggestion: thin=10

Now run and see how it does.

C.J. Anderson (Illinois) Multilevel Models Fall 2019 22.1/ 76

Page 23: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 2: Let’s Add treatment

80

85

90

95

Weight Change by Treatment

When Weight Measured

Weig

ht

Before After

Treatment

ControlCognitiveFamily

C.J. Anderson (Illinois) Multilevel Models Fall 2019 23.1/ 76

Page 24: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Run Model 2: Add treatment

weightij = (g0 + U0j)︸ ︷︷ ︸

β0j

+g1 ∗ timeij + g2 ∗ Rx1ij + g3 ∗ Rx3ij + ǫij

Create dummy codes for treatmentano$Rx1 <- ifelse(ano$Rx==1,1,0)ano$Rx3 <- ifelse(ano$Rx==3,1,0)Note: Rx1 = Cognitive, and Rx3 = Family.

Add Rx1 and Rx2 to dataList

Add to model just like in linear regression

Add starting values for g2 and g3.

Run model.

Did it converge? How does it look?

C.J. Anderson (Illinois) Multilevel Models Fall 2019 24.1/ 76

Page 25: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Run Model 2: Still a bit Squirrely

Iteration

tau

01

23

45

0 50000 100000 150000 200000

tau

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6

tau

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

0 2 4 6

Lag

Auto

corr

ela

tion o

f ta

u

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 25.1/ 76

Page 26: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

More Models

Model 3: Random intercept but add interactions betweentime and treatments.

Model 4: Model 3 except add random slope (and NO randomintercept)

Model 5: Random intercept and slope but τ01 areun-correlated (NO interactions) — let’s look at this one

Really can’t do correlated random intercept and slope becausenot enough time points.

C.J. Anderson (Illinois) Multilevel Models Fall 2019 26.1/ 76

Page 27: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5

weightij = g00 + g1 ∗ timeij + g2 ∗ Rx1ij + g3 ∗ Rx3ij +

+U0j + U1j ∗ timeij + ǫij

dataList ← list(

y = ano$weight,time = ano$time,rx1 = ano$Rx1,rx3 = ano$Rx3,sdY = sd(ano$weight),n = length(ano$weight),ng= length(ano$weight)/2,girl= ano$girl)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 27.1/ 76

Page 28: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5model5 ← "model for (i in 1:n) y[i] ∼ dnorm(mu[i],precision)

mu[i] ← g0 + g1*time[i] + g2*rx1[i] + g3*rx3[i]

+ U0j[girl[i]] + U1j[girl[i]]*time[i]

for (j in 1:ng) U0j[j] ∼ dnorm(0,ptau0)

U1j[j] ∼ dnorm(0,ptau1)

g0 ∼ dnorm(0,1/(100*sdYˆ2))g1 ∼ dnorm(0,1/(100*sdYˆ2))g2 ∼ dnorm(0,1/(100*sdYˆ2))g3 ∼ dnorm(0,1/(100*sdYˆ2))

ptau0 ∼ dgamma(0.001,0.001)

tau0 ← 1/sqrt(ptau0)

tau1 ∼ dunif(0.0001,200)

ptau1 ← 1/tau1ˆ2

sigma ∼ dunif(0.0001,2000)

precision ← 1/sigmaˆ2"

C.J. Anderson (Illinois) Multilevel Models Fall 2019 28.1/ 76

Page 29: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5

After adding starting values for all parameters,model5.runjags ← run.jags(model=model5,

method="parallel",

monitor=c("g0", "g1", "g2", "g3",

"sigma", "ptau0", "tau1"),

data=dataList,

sample=20000,

n.chains=4,

thin=20,

inits=start)

print(model5.runjags)

plot(model5.runjags)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 29.1/ 76

Page 30: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density g0

Iteration

g0

72

74

76

78

80

82

0e+00 1e+05 2e+05 3e+05 4e+05

g0

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

75 80 85

g0

% o

f to

tal

0

1

2

3

4

5

70 75 80 85

Lag

Auto

corr

ela

tion o

f g0

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 30.1/ 76

Page 31: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density g1

Iteration

g1

02

4

0e+00 1e+05 2e+05 3e+05 4e+05

g1

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6

g1

% o

f to

tal

0

1

2

3

4

0 2 4 6

Lag

Auto

corr

ela

tion o

f g1

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 31.1/ 76

Page 32: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density g2

Iteration

g2

−2

02

46

0e+00 1e+05 2e+05 3e+05 4e+05

g2

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

−2 0 2 4 6 8

g2

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5

Lag

Auto

corr

ela

tion o

f g2

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 32.1/ 76

Page 33: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density g3

Iteration

g3

05

10

0e+00 1e+05 2e+05 3e+05 4e+05

g3

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10

g3

% o

f to

tal

0

1

2

3

4

0 5 10

Lag

Auto

corr

ela

tion o

f g3

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 33.1/ 76

Page 34: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density sigma

Iteration

sig

ma

45

67

0e+00 1e+05 2e+05 3e+05 4e+05

sigma

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

4 5 6 7

sigma

% o

f to

tal

0

1

2

3

4

4 5 6 7

Lag

Auto

corr

ela

tion o

f sig

ma

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 34.1/ 76

Page 35: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density ptau1

Iteration

pta

u0

01000

2000

3000

4000

5000

0e+00 1e+05 2e+05 3e+05 4e+05

ptau0

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000

ptau0

% o

f to

tal

0

20

40

60

80

0 2000 4000 6000 8000

Lag

Auto

corr

ela

tion o

f pta

u0

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 35.1/ 76

Page 36: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: Trace & Density ptau0

Iteration

pta

u0

01000

2000

3000

4000

5000

0e+00 1e+05 2e+05 3e+05 4e+05

ptau0

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000

ptau0

% o

f to

tal

0

20

40

60

80

0 2000 4000 6000 8000

Lag

Auto

corr

ela

tion o

f pta

u0

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 36.1/ 76

Page 37: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

This “looks” better: tau1

Iteration

tau1

01

23

4

0e+00 1e+05 2e+05 3e+05 4e+05

tau1

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

tau1

% o

f to

tal

0

1

2

3

4

0 1 2 3 4 5

Lag

Auto

corr

ela

tion o

f ta

u1

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 37.1/ 76

Page 38: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 5: StatisticsJAGS model summary statistics from 80000 samples (thin = 20;chains = 4; adapt+burnin = 5000):

Lower95 Median Upper95 Mean SDg0 74.503 77.678 80.821 77.675 1.6103g1 0.98671 2.7887 4.5941 2.7846 0.92155g2 -0.44021 2.3134 5.1091 2.3 1.4138g3 0.91706 4.2921 7.6316 4.2688 1.7173sigma 4.2966 5.1457 6.1231 5.1802 0.47197ptau0 0.032431 11.653 659.89 126.71 330.29tau1 1.4083 2.5115 3.5236 2.4871 0.53629

MCerr MC%ofSD SSeff AC.400 psrfg0 0.0083055 0.5 37589 -0.0047055 1.0002g1 0.0046962 0.5 38508 0.0012152 1.0001g2 0.0070581 0.5 40126 -0.0026701 1.0001g3 0.0087671 0.5 38369 0.0033132 1.0001sigma 0.0025477 0.5 34320 0.0087721 1.0001ptau0 3.7299 1.1 7841 0.18711 1.0018tau1 0.0036089 0.7 22082 0.016333 1.0009

Total time taken: 49.7 secondstau0 = 1/sqrt(ptau0) = 1/sqrt(126.71) = 0.0888C.J. Anderson (Illinois) Multilevel Models Fall 2019 38.1/ 76

Page 39: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

More Complex Models and Data

Mini outline:

The NELS Data from Kreft & deLeeuw: N = 23 schools Lots of possible variables Graph of some data

Start with some simple models . . . and then

Correlated random intercept and random slope Non-conjugate priors Conjugate priors: Wishart distribution

C.J. Anderson (Illinois) Multilevel Models Fall 2019 39.1/ 76

Page 40: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Nels Data:Possible VariablesLevel 1 (student) Level 2 (school)

STUDENT = STUDENT ID SCHOOL = SCHOOL IDSEX = STUDENT SEX SCHTYPE = SCHOOL TYPERACE = STUDENT RACE CLASSSTR= CLASSHOMEW = TIME ON MATH STRUCTURE

HOMEWORK SCHSIZE = SCHOOL SIZESES = SOCIOECONOMIC STATUS URBAN = URBANICITYPARED = PARENTAL EDUCATION GEO = GEOGRAPHIC REGIONMATH = MATH SCORE MINORITY= PERCENTWHITE = WHITE RACE MINORITY

BINARY RATIO = STUDENT-TEACHERRATIO

C.J. Anderson (Illinois) Multilevel Models Fall 2019 40.1/ 76

Page 41: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Math x Homework by SchoolVariability in math ~ homew| school

Time Spent Doing Homework

Math

Score

s

30

40

50

60

70

0 2 4 6

school.id school.id

0 2 4 6

school.id school.id

0 2 4 6

school.id

school.id school.id school.id school.id

30

40

50

60

70school.id

30

40

50

60

70school.id school.id school.id school.id school.id

school.id school.id school.id school.id

30

40

50

60

70school.id

30

40

50

60

70school.id

0 2 4 6

school.id school.id

C.J. Anderson (Illinois) Multilevel Models Fall 2019 41.1/ 76

Page 42: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Math x Homework: Expectation for Model?

0 1 2 3 4 5 6 7

30

40

50

60

70

NELS: Linear Regression by School

(for where there is data)

Time Spent Doing Homework

Math

Score

s

C.J. Anderson (Illinois) Multilevel Models Fall 2019 42.1/ 76

Page 43: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

The ModelsThe models that are in the R script on course web-site (in lmermodel formula):

Model 1: math∼ 1 + homew + (1 | school.id)

Model 2: math∼ 1 + homew + (1 |school.id)+ (0 + homew | school.id)

Model 3: math∼ 1 + homew + (1 + homew | school.id)Conjugate priors, which means we need to know about theWishart distribution.

Model 4: math ∼ 1 + homew + ses + public+ homew*public + (1 + homew | school.id)

Note: Before running Gibbs sampling, we’ll use rjags for smallnumber of iterations to do quick checks that model complies andinitializes OK (i.e., easy to make mistakes).C.J. Anderson (Illinois) Multilevel Models Fall 2019 43.1/ 76

Page 44: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 1 as HLM Level 1:

mathij = β0j + β1jhomeworkij + ǫij

Level 2:

β0j = γ00 + U0j

β1j = γ10

where(

U0j

ǫij

)

((00

)

,

(τ00 00 σ2

))

iid

Linear Mixed Model:

mathij = γ00 + γ10homeworkij + U0j︸ ︷︷ ︸

school conditional mean

+ǫij

C.J. Anderson (Illinois) Multilevel Models Fall 2019 44.1/ 76

Page 45: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 1 in Rri.mod1 ← "model

for (i in 1:n) y[i] ∼ dnorm(mu[i],precision)

mu[i] ← g0 + U0j[school.id[i]] + g1*hmwk[i]

for (j in 1:N)

U0j[j] ∼ dnorm(0,ptau)

g0 ∼ dnorm(0,1/(100*sdYˆ2))g1 ∼ dnorm(0,1/(100*sdYˆ2))

tau ∼ dunif(0.0001,200)

ptau ← 1/tauˆ2

sigma ∼ dunif(0.0001,2000)

precision ← 1/sigmaˆ2"C.J. Anderson (Illinois) Multilevel Models Fall 2019 45.1/ 76

Page 46: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: g0

Iteration

g0

40

42

44

46

48

50

6000 8000 10000 12000 14000

g0

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

42 44 46 48 50 52

g0

% o

f to

tal

0

1

2

3

40 42 44 46 48 50 52

Lag

Auto

corr

ela

tion o

f g0

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 46.1/ 76

Page 47: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: g1

Iteration

g1

1.5

2.0

2.5

3.0

3.5

6000 8000 10000 12000 14000

g1

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

1.5 2.0 2.5 3.0 3.5

g1

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.5 2.0 2.5 3.0 3.5

Lag

Auto

corr

ela

tion o

f g1

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 47.1/ 76

Page 48: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: sigma

Iteration

sig

ma

7.5

8.0

8.5

9.0

9.5

6000 8000 10000 12000 14000

sigma

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

8.0 8.5 9.0 9.5 10.0

sigma

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

7.5 8.0 8.5 9.0 9.5 10.0

Lag

Auto

corr

ela

tion o

f sig

ma

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 48.1/ 76

Page 49: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace & Density: tau

Iteration

tau

46

8

6000 8000 10000 12000 14000

tau

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

4 6 8 10 12

tau

% o

f to

tal

0

1

2

3

4

2 4 6 8 10 12

Lag

Auto

corr

ela

tion o

f ta

u

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 49.1/ 76

Page 50: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Model 1: Statistics

JAGS model summary statistics from 40000 samples (chains = 4;adapt+burnin = 5000):

Lower95 Median Upper95 Mean SDg0 43.909 46.344 48.737 46.346 1.2327g1 1.8331 2.3992 2.9263 2.3967 0.27808sigma 7.9444 8.4543 8.9964 8.4615 0.2708tau 3.2825 4.8041 6.8194 4.9202 0.92725

MCerr MC%ofSD SSeff AC.10 psrfg0 0.02616 2.1 2221 0.33119 1.0029g1 0.0033394 1.2 6934 0.016903 1.0004sigma 0.0018039 0.7 22536 -0.0071621 1tau 0.0084287 0.9 12103 0.021921 1.0002

Total time taken: 10.1 seconds

C.J. Anderson (Illinois) Multilevel Models Fall 2019 50.1/ 76

Page 51: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

e.g., Fitted Regression Lineswill look something like

0 1 2 3 4 5 6 7

30

40

50

60

70

Fitted from Random Intercept

math~ 1 + homew + (1 |school.id)

Time Spent Doing Homework

Ma

th S

co

res

C.J. Anderson (Illinois) Multilevel Models Fall 2019 51.1/ 76

Page 52: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 2 as HLM

Level 1:

mathij = β0j + β1jhomeworkij + ǫij

Level 2:

β0j = γ00 + U0j

β1j = γ10 + U1j

where

U0j

U1j

ǫij

000

,

τ00 0 00 τ11 000 0 σ2

iid

Linear Mixed Model:

mathij = γ00 + γ10homeworkij + U0j + U1jhomeworkij + ǫij

C.J. Anderson (Illinois) Multilevel Models Fall 2019 52.1/ 76

Page 53: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 3 as HLM Level 1:

mathij = β0j + β1jhomeworkij + ǫij

Level 2:

β0j = γ00 + U0j

β1j = γ10 + U1j

where

U0j

U1j

ǫij

(00

)

,

τ00 τ10 0τ10 τ11 00 0 σ2

iid

Linear Mixed Model:

mathij = γ00 + γ10homeworkij + U0j + U1jhomeworkij + ǫij

C.J. Anderson (Illinois) Multilevel Models Fall 2019 53.1/ 76

Page 54: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Prior for τsFor conjugate priors, we need a distribution for the matrix T ,

T =

(τ00 τ10τ10 τ11

)

.

However, similar to the univariate case where we use precision, wedo so here. For the multivariate case we use

T

−1 = Ω ∼Wishart

For a single variance, we know that

1/σ2 ∼ chi-square

A multivariate generalization to the chi-square is the Wishartdistribution, which is defined as

Wm(·|Σ) = Wishart distribution with m degrees of freedom

= The distribution of

m∑

j=1

Z

j

Z

j

where Zj

∼ Np(0,Σ) and independent. For us,

T

−1 = Ω ∼Wishart

C.J. Anderson (Illinois) Multilevel Models Fall 2019 54.1/ 76

Page 55: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

The Wishart Distribution Let zj ∼ N(0, σ2) iid , we know

z2j ∼ χ2

∑m

j=1 z2j ∼ χ2

m

1/σ2 ∼ χ2.

A multivariate generalization to the chi-square is the Wishartdistribution and gives of the sampling distribution of covariancematrix. Let Zj = (z1, . . . , zp)

′ ∼ MVN(0,Σ). The Wishart isdefined by

Wm(·|Σ) = Wishart distribution with m degrees of freedom

= The distribution ofm∑

j=1

Z

j

Z

j

where Zj

∼ Np(0,Σ) and independent. For us,

T

−1 = Ω ∼Wishart and T = Ω−1

C.J. Anderson (Illinois) Multilevel Models Fall 2019 55.1/ 76

Page 56: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

R model 3re.mod2 ← "model # Likelihood: the data model

for (i in 1:n) y[i] ∼ dnorm(meanY[i],precision)

meanY[i] ← betaj[school.id[i],1]

+ betaj[school.id[i],2]*hmwk[i]

# Random Effects: dmnorm is multivariate normal

density

for (j in 1:N) betaj[j,1:2] ∼ dmnorm(mu[1:2],Omega[1:2,1:2])

# Priors

precision ∼ dgamma(0.01,0.01)

sigma ← 1/sqrt(precision)

mu[1] ∼ dnorm(0,1/(100*sdYˆ2))mu[2] ∼ dnorm(0,1/(100*sdYˆ2))

Omega[1:2,1:2] dwish(R[,],2.1)

R[1,1] ← 1/2.1

R[1,2] ← 0

R[2,1] ← 0

R[2,2] ← 1/2.1

Tau ← inverse(Omega)

"

C.J. Anderson (Illinois) Multilevel Models Fall 2019 56.1/ 76

Page 57: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 3

Run the R script for this model.

What do you think? Converged? Good Model?

How might we improve the model?

C.J. Anderson (Illinois) Multilevel Models Fall 2019 57.1/ 76

Page 58: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 4 – add predictors Level 1:

mathij = β0j + β1jhomeworkij + β2jsesij + ǫij

Level 2:

β0j = γ00 + γ01publicj + U0j

β1j = γ10 + γ11publicj + U1j

β2j = γ20

and

U0j

U1j

ǫij

000

,

τ00 τ10 0τ10 τ11 00 0 σ2

iid

What is the Linear Mixed Model?

C.J. Anderson (Illinois) Multilevel Models Fall 2019 58.1/ 76

Page 59: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

NELS Model 4 – add predictors

Let’s look at R-code and fit the model to data.

Although I didn’t do it, you can use Students t-distribution if youthink this might be a better likelihood for the data (i.e., if you areconcerned about outliers).

C.J. Anderson (Illinois) Multilevel Models Fall 2019 59.1/ 76

Page 60: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Prelude to Stan and brmsWe will cover Hamletonian sample, Stan and the package brms in alater lecture; however, I wanted to give you a little taste of how easy(good and bad thing) it is to estimate multilevel models using brms.Bare bones example using default priors:

library(lme4)

model2.lmer ← lmer(math ∼ 1 + homew + ses +

public.fac + homew*public.fac

+ (1 + homew|school.id),

data=nels, REML=TRUE,

control = lmerControl(optimizer

="Nelder Mead"))

library(brms)

model2.brm ← brm(math ∼ 1 + homew + ses + public.fac

+ homew*public.fac

+ (1 + homew|school.id),

data=nels, cores=4, save all pars=TRUE)

Let’s give it a try. . .C.J. Anderson (Illinois) Multilevel Models Fall 2019 60.1/ 76

Page 61: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

IRT as Multlevel Logistic RegressionJust change link to logit and use Bernoulli for likelihood.

We will use 5 (out of the 11 available) GSS vocabulary items fromthe 2004 General Social Survey (1155 respondents).

A =

1 if item is A0 otherwise

. . . E =

1 if item is E0 otherwise

The Random effects logistic regression model:

log

(Pr(Yij = 1)

1− Pr(Yij = 1)

)

= U0j + γ1Aij + γ2Bij + . . .+ γ10Eij

or

Pr(Yij = 1) =1

1 + exp(−(U0j + γ1Aij + γ2Bij + . . .+ γ10Eij))

C.J. Anderson (Illinois) Multilevel Models Fall 2019 61.1/ 76

Page 62: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Multilevel Logistic Regression: R code

log

(Pr(Yij = 1)

Pr(Yij = 0)

)

= U0j + γ1Aij + γ2Bij + . . .+ γ10Eij

dataList leftarrow list(

id=vo5$id,y=vo5$y,A=vo5$A,B=vo5$B,C=vo5$C,D=vo5$D,E=vo5$E,n=length(vo5$y),Nid=length(unique(vo5$id))

)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 62.1/ 76

Page 63: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

The Modellogreg1 ← "model for (i in 1:n) y[i] ∼ dbern(p[i])

p[i] ← 1/(1 + exp(-eta[i]))

eta[i] ← theta[id[i]] + ba*A[i] + bb*B[i] + bc*C[i] +

bd*D[i] + be*E[i]

for (j in 1:Nid) theta[j] ∼ dnorm(0,ptau)

ptau ∼ dgamma(0.01,0.01)

tau ← 1/sqrt(ptau)

ba ∼ dnorm(0,1/1000)

bb ∼ dnorm(0,1/1000)

bc ∼ dnorm(0,1/1000)

bd ∼ dnorm(0,1/1000)

be ∼ dnorm(0,1/1000)

"writeLines(logreg1,con="logreg1.txt")C.J. Anderson (Illinois) Multilevel Models Fall 2019 63.1/ 76

Page 64: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Test Run

Before running for real, even this takes some time because this is avery long data file.

start1 ← list(”ba”=2,”bb”=3.0,”bc”=-1.5,”bd”=3.0, ”be”=2.0, ”ptau”=.001)

logreg1.chk ← run.jags(

model=logreg1,

sample=100,

data=dataList,

inits=start1,

monitor=c("ba","bb", "bc", "bd",

"be","tau"),

n.chains=1 )

C.J. Anderson (Illinois) Multilevel Models Fall 2019 64.1/ 76

Page 65: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

The Full Run: 59.7 Minutes later. . .

JAGS model summary statistics from 40000 samples (chains = 4;adapt+burnin = 4500):

Lower95 Median Upper95 Mean SDba 1.6311 1.8047 1.9782 1.8056 0.088319bb 2.8249 3.0865 3.3483 3.088 0.13313bc -1.559 -1.4046 -1.2529 -1.4054 0.078671bd 3.0128 3.2819 3.574 3.2844 0.14347be 1.7719 1.9457 2.1286 1.9467 0.091723tau 0.94462 1.0258 1.11 1.0265 0.042328

C.J. Anderson (Illinois) Multilevel Models Fall 2019 65.1/ 76

Page 66: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

59.7 Minutes later. . .

MCerr MC%ofSD SSeff AC.10 psrfba 0.00063142 0.7 19565 0.0055738 1.0003bb 0.00096278 0.7 19121 0.004305 1.0002bc 0.0006287 0.8 15658 0.014761 1.0001bd 0.00099655 0.7 20727 0.0043572 1.0003be 0.00063587 0.7 20808 0.010457 1.0001tau 0.00066735 1.6 4023 0.14941 1.0008

Total time taken: 59.7 minutes (I ran the chains in parallel)

C.J. Anderson (Illinois) Multilevel Models Fall 2019 66.1/ 76

Page 67: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Correlations

ba

bb

bc

bd

be

tau

ba

bb bc

bd

be

tau

1

−1

0

C.J. Anderson (Illinois) Multilevel Models Fall 2019 67.1/ 76

Page 68: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace and Density: ba

Iteration

ba

1.6

1.7

1.8

1.9

2.0

2.1

6000 8000 10000 12000 14000

ba

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

1.6 1.8 2.0

ba

% o

f to

tal

0

1

2

3

4

1.4 1.6 1.8 2.0 2.2

Lag

Auto

corr

ela

tion o

f ba

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 68.1/ 76

Page 69: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace and Density: bb

Iteration

bb

2.6

2.8

3.0

3.2

3.4

3.6

6000 8000 10000 12000 14000

bb

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

2.8 3.0 3.2 3.4 3.6

bb

% o

f to

tal

0

1

2

3

2.6 2.8 3.0 3.2 3.4 3.6

Lag

Auto

corr

ela

tion o

f bb

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 69.1/ 76

Page 70: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace and Density: bc

Iteration

bc

−1.6

−1.4

−1.2

6000 8000 10000 12000 14000

bc

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

−1.6 −1.5 −1.4 −1.3 −1.2 −1.1

bc

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

2.5

−1.6 −1.4 −1.2

Lag

Auto

corr

ela

tion o

f bc

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 70.1/ 76

Page 71: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace and Density: bd

Iteration

bd

2.8

3.0

3.2

3.4

3.6

3.8

6000 8000 10000 12000 14000

bd

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

3.0 3.2 3.4 3.6 3.8

bd

% o

f to

tal

0.0

0.5

1.0

1.5

2.0

2.5

2.8 3.0 3.2 3.4 3.6 3.8

Lag

Auto

corr

ela

tion o

f bd

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 71.1/ 76

Page 72: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace and Density: be

Iteration

be

1.8

2.0

2.2

6000 8000 10000 12000 14000

be

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

1.8 2.0 2.2

be

% o

f to

tal

0

1

2

3

4

1.6 1.8 2.0 2.2

Lag

Auto

corr

ela

tion o

f be

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 72.1/ 76

Page 73: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Trace and Density: tau

Iteration

tau

0.9

1.0

1.1

1.2

6000 8000 10000 12000 14000

tau

EC

DF

0.0

0.2

0.4

0.6

0.8

1.0

0.90 0.95 1.00 1.05 1.10 1.15 1.20

tau

% o

f to

tal

0

1

2

3

4

0.9 1.0 1.1 1.2

Lag

Auto

corr

ela

tion o

f ta

u

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25 30 35 40 45

C.J. Anderson (Illinois) Multilevel Models Fall 2019 73.1/ 76

Page 74: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Multilevel Logistic Regression as an IRT model

Pr(Yij = 1) =1

1 + exp(−(U0j + γ1Aij + γ2Bij + . . .+ γ10Eij))

and for say item 2,

Pr(Yij = 1) =1

1 + exp(−(U0j + γ2))

Set Uoj = θ and γ2 = −b

What is this model?

C.J. Anderson (Illinois) Multilevel Models Fall 2019 74.1/ 76

Page 75: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Average (i.e., U0j = θj = 0) Fitted ICCs

−4 −2 0 2 4

0.2

0.4

0.6

0.8

1.0

5 Vocabulary Item Characteristic Curves: Rasch

Theta (ability, knowledge, etc)

P(ite

m=

corr

ect)

Item

ABCDE

C.J. Anderson (Illinois) Multilevel Models Fall 2019 75.1/ 76

Page 76: Bayesian Estimation of Multilevel Hierarchical Linear

Overivew Hierarchical Data Simple HLM Estimation Simple More Complex: NELS Logistic Regression

Multilevel Logistic Regression at IRT model

Pr(Yij = 1) =1

1 + exp(−(U0j + γ1Aij + γ2Bij + . . .+ γ10Eij))

and for say item 2,

Pr(Yij = 1) =1

1 + exp(−(U0j + γ2))

This is a Rasch model.

For faster way to fit this model to data, see R script.

Other IRT model can be fit using Bayesian methods (as multilevelmodels).

C.J. Anderson (Illinois) Multilevel Models Fall 2019 76.1/ 76