beam deflections using double integration...beam deflections using double integration steven...

21
Beam Deflections Using Double Integration Steven Vukazich San Jose State University

Upload: others

Post on 13-May-2020

60 views

Category:

Documents


0 download

TRANSCRIPT

Beam Deflections Using Double IntegrationStevenVukazich

SanJoseStateUniversity

𝑑"𝑦𝑑π‘₯"

=𝑀𝐸𝐼

Recall the Moment-Curvature Relationshipfor Small Deformations

In order to solvethis differential equation for y and πœƒ we need:β€’ Moment equation (from statics);β€’ Two boundary (or continuity)

conditions on y or πœƒ;β€’ Information on E and I.

PM

w

x

y πœƒ π‘₯ =𝑑𝑦𝑑π‘₯

𝑦 π‘₯

Example Problem

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

Find the equation of the elastic curve for the simply supported beam subjected to the uniformly distributed load using the double integration method. Find the maximum deflection. EI is constant.

L

Free Body Diagram of the Beam

Need to find the moment function M(x)

Ax

Ay By

A

w

x

y

B

L

0𝑀1

οΏ½

οΏ½

= 0+

Free Body Diagram of the Beam

Ax

Ay By

A

w

x

y

B

L

12𝑀𝐿

23𝐿

𝐡; =13𝑀𝐿

Free Body Diagram of the Beam

Ax

Ay By

A

w

x

y

B

L

12𝑀𝐿

23𝐿

𝐴; =16𝑀𝐿

0𝐹;

οΏ½

οΏ½

= 0+

0𝐹?

οΏ½

οΏ½

= 0+

Free Body Diagram of the BeamShowing Known Reactions

A

w

x

y

B

L

13𝑀𝐿

16𝑀𝐿

a

a

Cut the beam at a-a to find the moment function M(x)

x

M

V16𝑀𝐿

𝑀 =𝑀𝐿π‘₯

Free Body Diagram of Segment to the Left of a–a

x

M

V16𝑀𝐿

𝑅 =12π‘₯

𝑀𝐿π‘₯ =

𝑀2𝐿π‘₯"

23π‘₯

13π‘₯

a

a

a

a 0𝑀A

οΏ½

οΏ½

= 0+

𝑀 =𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

Need Two Boundary Conditions on y or πœƒ

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 0 = 0

𝑦 𝐿 = 0

Solve the Differential Equation

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 0 = 0

𝑦 𝐿 = 0𝑑"𝑦𝑑π‘₯"

=𝑀𝐸𝐼

𝑀 =𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

For constant EI

𝐸𝐼𝑑"𝑦𝑑π‘₯"

= 𝑀

𝐸𝐼𝑑"𝑦𝑑π‘₯"

=𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

𝐸𝐼𝑑"𝑦𝑑π‘₯"

=𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C

First Integration

D𝐸𝐼𝑑"𝑦𝑑π‘₯"

οΏ½

οΏ½

𝑑π‘₯ = D𝑀𝐿6π‘₯ βˆ’

𝑀6𝐿π‘₯C 𝑑π‘₯

οΏ½

οΏ½

𝐸𝐼𝑑𝑦𝑑π‘₯

= βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H

πΈπΌπœƒ = βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H

𝑦 0 = 0

𝑦 𝐿 = 0

Second Integration

D𝐸𝐼𝑑𝑦𝑑π‘₯

οΏ½

οΏ½

𝑑π‘₯ = D βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H 𝑑π‘₯οΏ½

οΏ½

𝐸𝐼𝑑𝑦𝑑π‘₯

= βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" + 𝐢H

𝐸𝐼𝑦 = βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C + 𝐢Hπ‘₯ + 𝐢"

Use the two boundary conditions to find C1 and C2

Find Constants C1 and C2

𝑦 0 = 0

𝑦 𝐿 = 0

𝐸𝐼𝑦 = βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C + 𝐢Hπ‘₯ + 𝐢"

𝐸𝐼 0 = βˆ’π‘€

120𝐿0 I +

𝑀𝐿36

0 C + 𝐢H 0 + 𝐢"

𝐸𝐼 0 = βˆ’π‘€

120𝐿0 I +

𝑀𝐿36

0 C + 𝐢H 0 + 𝐢"

𝐢" = 0

𝐸𝐼 0 = βˆ’π‘€

120𝐿𝐿 I +

𝑀𝐿36

𝐿 C + 𝐢H 𝐿 + 𝐢"

𝐢H =𝑀𝐿C

120βˆ’π‘€πΏC

36= βˆ’

7𝑀𝐿C

360

Functions for y and πœƒ

𝐸𝐼𝑦 = βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πΈπΌπœƒ = βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

𝑦 π‘₯ =1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

Functions for y and πœƒ

A

w

x

y

𝑦 π‘₯Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 π‘₯ =1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

πœƒ π‘₯ =𝑑𝑦𝑑π‘₯

Questions

A

w

x

y

𝑦 π‘₯

Modulus of Elasticity = EMoment of Inertia = I

B

L

𝑦 π‘₯ =1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

πœƒ π‘₯ =𝑑𝑦𝑑π‘₯

How can we find the maximum displacement?Where does the maximum displacement occur?How can we find the rotation at the supports?

Answers

A

w

x

y

𝑦max

Modulus of Elasticity = EMoment of Inertia = I

B

L𝑦 π‘₯ =

1𝐸𝐼

βˆ’π‘€

120𝐿π‘₯I +

𝑀𝐿36

π‘₯C βˆ’7𝑀𝐿C

360π‘₯

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360

πœƒ = 0

ymax occurs where πœƒ = 0

πœƒA is πœƒ(0) πœƒB is πœƒ(L)

?

πœƒ 𝐿

πœƒ 0

Point Where Maximum Deflection Occurs

π‘ž =βˆ’π‘ Β± 𝑏" βˆ’ 4π‘Žπ‘οΏ½

2π‘Ž

πœƒ π‘₯ =1𝐸𝐼

βˆ’π‘€24𝐿

π‘₯F +𝑀𝐿12

π‘₯" βˆ’7𝑀𝐿C

360= 𝟎

Set πœƒ = 0

βˆ’124π‘ž" +

𝐿"

12π‘ž βˆ’

7𝐿F

360= 𝟎

Let π‘ž = π‘₯" Multiply both sides by TUVW

π‘ž =βˆ’ 𝐿"12 Β±

𝐿F144 βˆ’ 4 βˆ’ 1

24 βˆ’ 7𝐿F360

οΏ½

2 βˆ’ 124

= 𝐿" ± 12𝐿F

144βˆ’

16

7𝐿F

360οΏ½

= 𝐿" ± 12𝐿"1270

οΏ½

π‘ž = 𝐿" Β± 4𝐿"130

οΏ½= 1 + 4

130οΏ½ , 𝟏 βˆ’ πŸ’

πŸπŸ‘πŸŽοΏ½ 𝐿"

π‘₯ = 1 βˆ’ 4130οΏ½

�𝐿 = 0.51893𝐿

Maximum Deflection

A

w

x

y

𝑦max

Modulus of Elasticity = EMoment of Inertia = I

B

L

πœƒ = 0

πœƒ 𝐿

πœƒ 0

1 βˆ’ 4130οΏ½

�𝐿 = 0.51893𝐿

𝑦max =1𝐸𝐼

βˆ’π‘€

120𝐿0.5193𝐿 I +

𝑀𝐿36

0.5193𝐿 C βˆ’7𝑀𝐿C

3600.5193𝐿 = βˆ’0.006522

𝑀𝐿F

𝐸𝐼

Slope at Supports

A

w

x

y

Modulus of Elasticity = EMoment of Inertia = I

B

L

πœƒ1 = πœƒ 0 =1𝐸𝐼

βˆ’7𝑀𝐿C

360= βˆ’

7𝑀𝐿C

360𝐸𝐼= βˆ’0.01944

𝑀𝐿C

𝐸𝐼

πœƒ 𝐿

πœƒ 0

πœƒ` = πœƒ 𝐿 =1𝐸𝐼

βˆ’π‘€24𝐿

𝐿F +𝑀𝐿12

𝐿" βˆ’7𝑀𝐿C

360=𝑀𝐿C

45𝐸𝐼= 0.02222

𝑀𝐿C

𝐸𝐼

Compare to Tabulated Solution in AISC Manual

π‘Š =12𝑀𝐿