benchmark companies inc po box 473768 aurora co 80047 magnetism

35
Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Upload: conner-latimer

Post on 14-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Benchmark Companies Inc

PO Box 473768

Aurora CO 80047

Magnetism

Page 2: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

History #1

Term comes from the ancient Greek city of Magnesia, at which many natural magnets were found. We now refer to these natural magnets as lodestones (also spelled loadstone; lode means to lead or to attract) which contain magnetite, a natural magnetic material Fe3O4.

Pliny the Elder (23-79 AD Roman) wrote of a hill near the river Indus that was made entirely of a stone that attracted iron.

Page 3: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

History #2

Chinese as early as 121 AD knew that an iron rod which had been brought near one of these natural magnets would acquire and retain the magnetic property…and that such a rod when suspended from a string would align itself in a north-south direction.

Use of magnets to aid in navigation can be traced back to at least the eleventh century.

Page 4: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Finally, the Science

Not until 1819 was a connection between electrical and magnetic phenomena shown. Danish scientist Hans Christian Oersted observed that a compass needle in the vicinity of a wire carrying electrical current was deflected!

In 1831, Michael Faraday discovered that a momentary current existed in a circuit when the current in a nearby circuit was started or stopped

Shortly thereafter, he discovered that motion of a magnet toward or away from a circuit could produce the same effect.

Page 5: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Let This Be a Lesson!

Joseph Henry (first Director of the Smithsonian Institution) failed to publish what he had discovered 6-12 months before Faraday

Page 6: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

The Connection is Made

SUMMARY: Oersted showed that magnetic effects could be produced by moving electrical charges; Faraday and Henry showed that electric currents could be produced by moving magnets

Page 7: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

A Sheep in a Cow Suit?

All magnetic phenomena result

from forces between electric

charges in motion.

Page 8: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Looking in More Detail

Ampere first suggested in 1820 that magnetic properties of matter were due to tiny atomic currents

All atoms exhibit magnetic effects

Medium in which charges are moving has profound effects on observed magnetic forces

Page 9: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

1. There are North Poles and South Poles.

2. Like poles repel, unlike poles attract.

3. Magnetic forces attract only magnetic materials.

4. Magnetic forces act at a distance.

5. While magnetized, temporary magnets act like permanent magnets.

What We Will Learn About Magnetism

Page 10: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Top Ten continued

6. A coil of wire with an electric current flowing through it becomes a magnet.

7. Putting iron inside a current-carrying coil increases the strength of the electromagnet.

8. A changing magnetic field induces an electric current in a conductor.

Page 11: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Top Ten Continued

9. A charged particle experiences no magnetic force when moving parallel to a magnetic field, but when it is moving perpendicular to the field it experiences a force perpendicular to both the field and the direction of motion.

10. A current-carrying wire in a perpendicular magnetic field experiences a force in a direction perpendicular to both the wire and the field.

Page 12: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

For Every North, There is a SouthEvery magnet has at least one north pole and one south pole.  By convention, we say that the magnetic field lines leave the North end of a magnet and enter the South end of a magnet. 

If you take a bar magnet and break it into two pieces, each piece will again have a North pole and a South pole.  If you take one of those pieces and break it into two, each of the smaller pieces will have a North pole and a South pole.  No matter how small the pieces of the magnet become, each piece will have a North pole and a South pole. 

S N S N S N

Page 13: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

No Monopoles Allowed

It has not been shown to be possible to end up with a single North pole or a single South pole, which is a monopole ("mono" means one or single, thus one pole). 

Note: Some theorists believe that magnetic monopoles may have been made in the early Universe. So far, none have been detected.

S N

Page 14: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Magnets Have Magnetic Fields

We will say that a moving charge sets up in the space around it a magnetic field,

and

it is the magnetic field which exerts a force on any other charge moving through it.

Magnetic fields are vector quantities….that is, they have a

magnitude and a direction!

Page 15: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Defining Magnetic Field DirectionMagnetic Field vectors as written as B

Direction of magnetic field at any point is defined as the direction of motion of a charged particle on which the magnetic field would not exert a force.

Magnitude of the B-vector is proportional to the force acting on the moving charge, magnitude of the moving charge, the magnitude of its velocity, and the angle between v and the B-field. Unit is the Tesla or the Gauss (1 T = 10,000 G).

Page 16: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

The Concept of “Fields”

A magnet has a ‘magnetic field’ distributed throughout the surrounding space

Michael Faraday realized that ...

Page 17: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Magnetic Field Lines

Magnetic field lines describe the structure of magnetic fields in three dimensions.They are defined as follows. If at any point on such a line we place an ideal compass needle, free to turn in any direction (unlike the usual compass needle, which stays horizontal) then the needle will always point along the field line.

Field lines converge where the magnetic force is strong, and spread out where it is weak. For instance, in a compact bar magnet or "dipole," field lines spread out from one pole and converge towards the other, and of course, the magnetic force is strongest near the poles where they come together.

Page 18: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Field Lines Around a Magnet

Page 19: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Field Lines Around a Doughnut Magnet

Page 20: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Field Lines Around a Bar Magnet

Page 21: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Field Lines Around a Magnetic Sphere

Page 22: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Field Lines of Repelling Bars

Page 23: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Field Lines of Attracting Bars

Page 24: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Action at a Distance Explained

Although two magnets

may not be touching,

they still interact

through their

magnetic fields.

This explains the ‘action

at a distance’, say of a

compass.

Page 25: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Force on the ChargeRight Hand Rule!Put your fingers in

the direction of motion of the charge, curl them in the direction of the magnetic field. Your thumb now points in the direction of the magnetic force acting on the charge. This force will bend the path of the moving charge appropriately.

Page 26: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Magnetic Force on Current-Carrying Wire

Since moving charges experience a force in a magnetic field, a current-carrying wire will experience such a force, since a current consists of moving charges. This property is at the heart of a number of devices.

Page 27: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Electric MotorAn electric motor, is a machine which converts electrical energy into mechanical (rotational or kinetic) energy.   

A current is passed through a loop which is immersed in a magnetic field. A force exists on the top leg of the loop which pulls the loop out of the paper, while a force on the bottom leg of the loop pushes the loop into the paper. The net effect of these forces is

to rotate the loop.

Page 28: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Electromagnet (Magnetism from Electricity)

An electromagnet is simply a coil of wires which, when a current is passed through, generate a magnetic field, as below.

Page 29: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Magnetic Properties of Matter

In other words….materials which produce magnetic fields with no apparent circulation of charge.

All substances - solid, gas, and liquid - react to the presence of a magnetic field on some level. Remember why?

How much they react causes them to be put into several material “types”.

Page 30: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Magnet - isms

Ferromagnetism - When a ferromagnetic material is placed near a magnet, it will be attracted toward the region of greater magnetic field.  This is what we are most familiar with when our magnet picks up a bunch of paperclips.  Iron, cobalt, nickel, gadolinium, dysprosium and alloys containing these elements exhibit ferromagnetism because of the way the electron spins within one atom interact with those of nearby atoms.   They will align themselves, creating magnetic domains forming a permanent magnet.   If a piece of iron is placed within a strong magnetic field, the domains in line with the field will grow in size as the domains perpendicular to the field will shrink in size. 

Page 31: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

Making a Magnet from a Ferromagnetic Material

• domains in which the magnetic fields of individual atoms align

• orientation of the magnetic fields of the domains is random

• no net magnetic field.

• when an external magnetic field is applied, the magnetic fields of the individual domains line up in the direction of the external field

• this causes the external magnetic field to be enhanced

Page 32: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

A Ferromagnet in the Middle

If we look at a solenoid, but rather than air, wrap it around a nice iron core. What happens to the change in flux for a given current?

Can you see why ferromagnetic materials are often put in the middle of current-carrying coils?

Page 33: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

More Magnet - isms Diamagnetism - When a diamagnetic material is placed near a magnet, it will be repelled from the region of greater magnetic field, just opposite to a ferromagnetic material.  It is exhibited by all common materials, but is very weak.   People and frogs are diamagnetic.  Metals such as bismuth, copper, gold, silver and lead, as well as many nonmetals such as water and most organic compounds are diamagnetic.

Page 34: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

More Magnet - isms Paramagnetism - When a paramagnetic material is placed near a magnet, it will be attracted to the region of greater magnetic field, like a ferromagnetic material.  The difference is that the attraction is weak.  It is exhibited by materials containing transition elements, rare earth elements and actinide elements.  Liquid oxygen and aluminum are examples of paramagnetic materials. 

Page 35: Benchmark Companies Inc PO Box 473768 Aurora CO 80047 Magnetism

End of Lesson