benjamin d. jensen, kristopher e. wise - nasa€¦ · effects of atomic-scale structure on the...

28
Effects of atomic-scale structure on the fracture properties of amorphous carbon carbon nanotube composites Benjamin D. Jensen, Kristopher E. Wise NASA Langley Research Center Gregory M. Odegard Michigan Technological University 13 th U.S. National Congress on Computational Mechanics July 26-30, 2015 https://ntrs.nasa.gov/search.jsp?R=20160006312 2020-06-30T13:27:04+00:00Z

Upload: others

Post on 21-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Effects of atomic-scale structure on the

fracture properties of amorphous

carbon – carbon nanotube composites

Benjamin D. Jensen, Kristopher E. WiseNASA Langley Research Center

Gregory M. OdegardMichigan Technological University

13th U.S. National Congress on Computational Mechanics

July 26-30, 2015

https://ntrs.nasa.gov/search.jsp?R=20160006312 2020-06-30T13:27:04+00:00Z

Page 2: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Overview

Motivation• Carbon nanotubes (CNTs) have high specific stiffness and strength

• Composite design with CNTs will be different than for carbon fibers

• New reactive force field ReaxFF can be applied to model fracture

Objectives1. Estimate maximum CNT composite mechanical properties

2. Compare composite mechanical properties with:

a. Singlewall vs multiwall CNTs

b. Dispersed vs bundled CNT arrangements

c. CNT-matrix crosslinking

2

Page 3: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Bond breaking with ReaxFF

Molecular dynamics using ReaxFF:

– Allows bond breaking and formation to be modeled

– Multibody interactions via bond order function

0

20

40

60

80

100

120

140

1 1.5 2 2.5 3

Po

ten

tia

l E

nerg

y (

kca

l/m

ole

)

Distance (Å)

HarmonicReaxFF

−500

−250

0

250

500

750

1000

1 1.5 2 2.5 3

Fo

rce

(kca

l/m

ole

−Å

)

Distance (Å)

HarmonicReaxFF

3

Page 4: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Modeling Fracture with ReaxFF

New ReaxFFC-2013 parameterization fitted to:

– Diamond strained in the bulk and <001> direction

– Graphene strained in the bulk and axial directions

In-house analysis of ReaxFFC-2013* mechanical properties

of diamond, graphene, amorphous carbon, and CNTs:**

– Improved Poisson contraction response

– Elastic and fracture properties improved over previous

ReaxFFCHO parameterization

*Goverapet Srinivasan, S.; van Duin, A. C. T.; Ganesh, P., J. Phys. Chem. A 2015, 119 (4), 571-580.

**Jensen, B.D.; Wise, K.; Odegard, G.M., Submitted to J. Phys. Chem A

4

Page 5: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Simulation Setup

SWNT Array

SWNT Bundle MWNT Array5

Page 6: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Simulation Setup

1. Continuous/straight CNTs

2. Amorphous carbon (AC) matrix:– Relative simplicity

– High mechanical properties

3. Three CNT arrangements:– SWNT array, MWNT array, SWNT bundle

4. Five crosslinking fractions for each system:– 0%, 5%, 10%, 15%, 20%

6

Page 7: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Equilibration Procedure

−175

−170

−165

−160

−155

0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

E F G O P O P

Po

ten

tia

l E

ne

rgy (

kca

l/m

ol)

Te

mp

era

ture

(K

)

Time (ps)

Equilibration Step

Potential EnergyTemperature

7

Page 8: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

0

1

2

3

4

5

6

0 0.5 1 1.5 2

gc(r

)

r (nm)

all atomsCNT

AC

0

1

2

3

4

5

6

0 0.5 1 1.5 2

gc(r

)

r (nm)

0

1

2

3

4

5

6

0 0.5 1 1.5 2g

c(r

)

r (nm)

a) b) c)

Structuring of amorphous carbon at the CNT interface

Nanotube-centered cylindrical distribution functions, zeroed at the exterior nanotube wall

8

Page 9: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

9

Page 10: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

10

Page 11: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

120

140

160

180

200

220

240

0 0.05 0.1 0.15 0.2 0.25

Axia

l S

pecific

Mod

ulu

s(G

Pa/(

g/c

m3)

Degree of Crosslinking

SWNT arrayMWNT array

SWNT bundle

Results

Axial Specific Moduli

11

• Templating of the matrix substantially increases

the axial modulus

• Dispersion of crosslink sites does not strongly

influence axial modulus

Page 12: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

Axial Specific Moduli

• Templating of the matrix substantially increases

the axial modulus

• Dispersion of crosslink sites does not strongly

influence axial modulus

120

140

160

180

200

220

240

0 0.05 0.1 0.15 0.2 0.25

Axia

l S

pecific

Mod

ulu

s(G

Pa/(

g/c

m3)

Absolute Degree of Crosslinking

SWNT arrayMWNT array

SWNT bundle

12

Page 13: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

Transverse Specific Moduli

• Multiwalled CNT resists CNT flattening, increasing

the transverse modulus

• Lack of crosslinks within the bundle limits

effectiveness of crosslinking for transverse stiffness

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25

Tra

nsvers

e S

pe

cific

Mo

dulu

s (

GP

a/(

g/c

m3)

Degree of Crosslinking

SWNT arrayMWNT arraySWNT bundle

13

Page 14: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

Specific Shear Moduli

• SWNT bundle system has lowest specific shear

moduli in both directions

• Inner MWNT walls reinforce circular shape resulting

in higher out-of-plane specific shear modulus

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25

In−

Pla

ne

Sp

ecific

She

ar

Modu

lus (

GP

a/(

g/c

m3)

Degree of Crosslinking

SWNT arrayMWNT arraySWNT bundle

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25O

ut−

of−

Pla

ne

Sp

ecific

She

ar

Modu

lus (

GP

a/(

g/c

m3)

Degree of Crosslinking

14

Page 15: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25M

ino

r P

ois

son

’s R

atio

Degree of Crosslinking

SWNT arrayMWNT arraySWNT bundle

0.25

0.3

0.35

0.4

0.45

0 0.05 0.1 0.15 0.2 0.25

Ma

jor

Po

isson

’s R

atio

Degree of Crosslinking

Results

Poisson’s Ratios

• Major Poisson’s ratio largest around 7% crosslinking

• MWNT array resists deformation of the circular

cross-section resulting in lower minor ratios

15

Page 16: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

SWNT array axial fracture (9% crosslinked)

16

Page 17: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

MWNT array axial fracture (9% crosslinked)

17

Page 18: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

SWNT bundle axial fracture (9% crosslinked)

18

Page 19: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

Specific Ultimate Stress

• Axial specific strength maximized around 4%

crosslinking

• Transverse strength continually improved through

crosslinking

24

26

28

30

32

34

36

0 0.05 0.1 0.15 0.2 0.25

Axia

l S

p. U

ltim

ate

Str

ess

(GP

a/(

g/c

m3)

Degree of Crosslinking

SWNT arrayMWNT array

SWNT bundle

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2 0.25T

ran

s. S

p. U

ltim

ate

Str

ess

(GP

a/(

g/c

m3)

Degree of Crosslinking

19

Page 20: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Conclusions

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

Axial

Trans.Sp

. M

od

ulu

s (

GP

a/(

g/c

m3))

Ultimate Sp. Strength (GPa/(g/cm3))

SWNT array

MWNT array

SWNT bundle

AC 2.37 g/cm3

AC 2.82 g/cm3

AC 3.35 g/cm3

Pure CNT array

Multiple data points for each system reflect impact of crosslinks to matrix

20

Page 21: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Summary

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

Axial

Trans.Sp

. M

od

ulu

s (

GP

a/(

g/c

m3))

Ultimate Sp. Strength (GPa/(g/cm3))

SWNT array

MWNT array

SWNT bundle

AC 2.37 g/cm3

AC 2.82 g/cm3

AC 3.35 g/cm3

Pure CNT array

Increasing crosslinking

21

Multiple data points for each system reflect impact of crosslinks to matrix

Page 22: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Summary

SWNT vs MWNT– Interface templating has a substantial impact on the matrix properties,

and SWNTs maximize the surface area per CNT mass

– Inner MWNT walls reinforce the circular cross section

Arrays vs bundle– Very weak bonding within bundle reduces the properties that require

transferring load through the bundle

Crosslinking– Crosslinks decrease axial specific modulus, increase transverse

modulus

– Axial specific ultimate strength is maximized around 4% crosslinking

– Transverse specific ultimate strength is continually increased with crosslinking

– Crosslinking may inhibit void nucleation at the CNT/matrix interface

22

Page 23: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Acknowledgements

NASA Langley Research Center

- Mia Siochi

- LaRC Nano Incubator Team

Michigan Technological University

- Matthew Radue

- S. Gowtham

- Cameron Hadden

Pennsylvania State University

- Adri van Duin (Penn. State)

- Sriram Srinivasan (Penn. State)

NASA Langley Research CenterFunded in part by

Revolutionary Technological Challenges Program (GRANT NNX09AM50A )

SUPERIOR, a high-performance computing cluster at

Michigan Technological University, was used in

obtaining some of results

23

Page 24: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Questions

24

Page 25: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Supplemental Slides

25

Page 26: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

0

15

30

45

60

75

0 0.075 0.15 0.225 0.3 0.375

a)

Sp

. S

tre

ss (

GP

a/(

g/c

m3)

True Strain

Exterior CNTsInterior CNTs

Composite

0

15

30

45

60

75

0 0.075 0.15 0.225 0.3 0.375

b)

Sp

. S

tre

ss (

GP

a/(

g/c

m3)

True Strain

Individual CNT stress-strain responses

within the maximally crosslinked systemsMWNT array SWNT bundle

• Exterior/functionalized CNTs fracture earlier than

interior/unfunctionalized

26

Page 27: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

0

10

20

30

40

50

60

70

0 50 100 150 200 250

a)

Sp

. S

tre

ss (

GP

a/(

g/c

m3))

Time (ps)

CNTAC

CompositeUltimate

0 50 100 150 200 250

b)

Time (ps)

0

10

20

30

40

50

60

70c)

Sp

. S

tress (

GP

a/(

g/c

m3))

d)

0

10

20

30

40

50

60

70

0 0.075 0.15 0.225 0.3 0.375

e)

Sp

. S

tre

ss (

GP

a/(

g/c

m3))

True Strain

0 0.075 0.15 0.225 0.3 0.375

f)

True Strain

Axial stress-strain response

SWNT

array

MWNT

array

SWNT

bundle

Uncrosslinked Maximum crosslinking

27

Page 28: Benjamin D. Jensen, Kristopher E. Wise - NASA€¦ · Effects of atomic-scale structure on the fracture properties of amorphous carbon –carbon nanotube composites Benjamin D. Jensen,

Results

0

5

10

15

20

0 100 200 300 400 500

a)

Sp

. S

tress (

GP

a/(

g/c

m3))

Time (ps)

0 100 200 300 400 500

b)

Time (ps)

0

5

10

15

20c)

Sp

. S

tress (

GP

a/(

g/c

m3))

d)

CNTAC

CompositeUltimate

0

5

10

15

20

0 0.15 0.3 0.45 0.6 0.75

e)

Sp

. S

tre

ss (

GP

a/(

g/c

m3))

True Strain

0 0.15 0.3 0.45 0.6 0.75

f)

True Strain

Transverse specific stress-strain response

28