berben group electrocatalytic reduction of carbon dioxide

1
(1) Taheri, A.; Berben, L. A. Chem. Commun. Chem. Commun 2016, 52, 1768. (2) Taheri, A.; Thompson, E. J.; Fettinger, J. C.; Berben, L. A. ACS Catal. 2015, 5, 7140!7151. (3)Loewen, N. D.; Emily J. Thompson, M. K.; Carolina L. Banales, T. W. M.; Fettinger, J. C.; Berben, L. A. Chem. Sci. 2015. (4) Rail, M. D.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 18577. (5) Taheri, A.; Berben, L. a. Inorg. Chem. 2015, 55, 378. (6) Kang, P.; Meyer, T. J.; Brookhart, M. Chem. Sci. 2013, 4, 3497. (7) Chen, Z.; Meyer, T. J. Angew. Chemie - Int. Ed. 2013, 52, 700. (8) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231!7234. (9) Podlovchenko, B. I.; Kolyadko, E. a.; Lu, S. J. Electroanal. Chem. 1994, 373, 185. (10) Min, X.; Kanan, M. W. J. Am. Chem. Soc. 2015, 137 , 4701. (11) Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. (12) Curtis, C. J.; Miedaner, A.; Ellis, W. W.; Dubois, D. L. J. Am. Chem. Soc. 2002, 124, 1918. (13) Connelly, S. J.; Wiedner, E. S.; Appel, A. M. Dalt. Trans. 2015, 44, 5933. (14) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Organometallics 2011, 30, 4308. Electrocatalytic Reduction of Carbon Dioxide Using Molecular Iron Carbonyl Clusters Introduction Natalia D. Loewen , Atefeh Taheri , Louise A. Berben* Department of Chemistry; University of California Davis, One Shields Ave, Davis, CA 95616 Berben Group UCDAVIS Acknowledgements We thank Dr. J. C. Fettinger and the current and previous members of Berben group, especially Emily Thompson, Thomas Myers, Michael Kagan. We thank the University of California Davis, the NSF CAREER Award (CHE-1055417), and the Alfred P. Sloan foundation for funding. N. D. L. thanks the UC Davis Chemistry Department for a Bradford-Borge Fellowship and the US Department of Education for a GAANN Fellowship. Thermochemical measurements Mechanistic studies of H + and CO 2 reduction Infrared spectroelectrochemistry (IR-SEC) was used to determine pK a and "G H- of hydrides Reaction E°(V) pH 7 E° (V) pH 0 CO 2 + 2H + + 2e - ! CO + H 2 O -0.76 -0.34 V CO 2 + H + + 2e - ! HCOO - -0.67 -0.46 CO 2 + 2H + + 2e - ! HCOOH -0.85 -0.35 V CO 2 + 6H + + 6e - ! CH 3 OH + H 2 O -0.62 -0.21 V CO 2 + 8H + + 8e - ! CH 4 + H 2 O -0.48 -0.07 V Multielectron Reduction of CO 2 (vs. SCE in water): Electrocatalytic formate production from CO 2 in aqueous solutions: Catalyst E a % b j c stability d IrHL(S) 2 e -1.65 93 0.6 25 hr IrHL(S) 2 CNT f -1.65 83 3.5 2 Pb -1.4 98 0.3 < 4 Pd on Pt -0.83 100 0.3 nr 10% Pd on C -0.77 99 4 < 3 SnO 2 NC g -1.8 93 5.5 18 [Fe 4 N(CO) 12 ] - -1.2 96 3.8 > 24 a Applied potential (V vs. SCE), b Faradaic yield, formate, c Current density (mAcm -2 ), d duration of reported controlled potential electrolysis experiment (hr) e L: PNP pincer ligand, S: MeCN f CNT: Carbon nanotubes, g nanocrystals, [Fe 4 C(CO) 12 ] 2- Iron Cluster Electrocatalysts for CO 2 and H 2 reduction:. Compound pK a MeCN H 2 O !G˚ H- (kcal mol -1 ) MeCN H 2 O [HFe 4 C(CO) 12 ] 2- 24.6 ± 1 < 13 44 < 15 [HFe 4 N(CO) 12 ] - 20.3 13 ± 1 49 15.5 [HFe 4 N(CO) 11 (PPh 3 )] - 23.7 nd 45-46 nd H 2 55.5 25.1 76 34.2 HCOO - - - 44 24.1 Figure 4. (Left) IR-SEC spectrum at -1.4 V in MeCN/H 2 O (95:5) showing reduction of [Fe 4 N(CO) 12 ] to afford hydride. Inset: Normalized difference spectra. (Right) IR-SEC spectra in MeCN at -1.4 V showing reduction of [Fe 4 N(CO) 12 ] with benzoic acid present. Inset: Normalized difference spectra. Fe N Fe Fe Fe OC OC L CO OC CO OC CO OC OC CO CO Fe N Fe Fe Fe OC OC L CO CO OC CO OC OC CO CO Fe N Fe Fe Fe OC OC L CO OC CO OC CO OC OC CO CO 1. 1e 2. H + 1e CO 2 HCO 2 - 1- CO H 1- L: CO, PPh 3 Figure 1. CVs of [Fe 4 N(CO) 11 (PPh 3 )] in MeCN under 1 atm N 2 (black), with 5% H 2 O (red), and sparged with CO 2 (blue). Figure 2. CVs of [Fe 4 N(CO) 11 (Ph 2 P(CH 2 ) 2 OH)] - in MeCN under 1 atm N 2 (black), with 5% H 2 O (red), and sparged with CO 2 (blue). CV studies probed the kinetics of CO 2 and H + reduction by [Fe 4 N(CO) 11 (PPh 3 )] and [Fe 4 N(CO) 11 (Ph 2 P(CH 2 ) 2 OH)] - . Order in catalyst, H + , and CO 2 were used to propose mechanisms Figure 3. CVs of [Fe 4 N(CO) 11 (Ph 2 P(CH 2 ) 2 OH)] - with increasing catalyst conc. demonstrate 1 st order behavior under 1 atm N 2 . [Fe 4 N(CO) 12 ] - [Fe 4 N(CO) 11 (PPh 3 )] - [Fe 4 N(CO) 11 (Ph 2 P(CH 2 CH 2 OH)] - Thermochemical properties in MeCN and H 2 O: References Fe N Fe Fe Fe OC OC OC CO OC L OC CO OC OC CO CO 1- Fe C Fe Fe Fe OC OC OC CO OC CO OC CO OC OC CO CO 2- L: CO, PPh 3 , Ph 2 P(CH 2 ) 2 OH Fe N Fe Fe Fe OC OC PPh 2 CO OC CO OC CO OC OC CO CO Fe N Fe Fe Fe OC OC CO CO OC CO OC OC CO CO 1. 1e 2. H + 1e H + HH 1- CO H 1- Fe N Fe Fe Fe OC OC CO OC CO OC CO OC OC CO CO 1- HO PPh 2 HO PPh 2 HO

Upload: others

Post on 01-Nov-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Berben Group Electrocatalytic Reduction of Carbon Dioxide

(1) Taheri, A.; Berben, L. A. Chem. Commun. Chem. Commun 2016, 52, 1768. (2) Taheri, A.; Thompson, E. J.; Fettinger, J. C.; Berben, L. A. ACS Catal. 2015, 5, 7140!7151. (3)!Loewen, N. D.; Emily J. Thompson, M. K.; Carolina L. Banales, T. W. M.; Fettinger, J. C.;

Berben, L. A. Chem. Sci. 2015.

(4) Rail, M. D.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 18577. (5) Taheri, A.; Berben, L. a. Inorg. Chem. 2015, 55, 378. (6) Kang, P.; Meyer, T. J.; Brookhart, M. Chem. Sci. 2013, 4, 3497. (7) Chen, Z.; Meyer, T. J. Angew. Chemie - Int. Ed. 2013, 52, 700. (8) Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231!7234. (9) Podlovchenko, B. I.; Kolyadko, E. a.; Lu, S. J. Electroanal. Chem. 1994, 373, 185. (10) Min, X.; Kanan, M. W. J. Am. Chem. Soc. 2015, 137, 4701.

(11) Zhang, S.; Kang, P.; Meyer, T. J. J. Am. Chem. Soc. 2014, 136, 1734. (12) Curtis, C. J.; Miedaner, A.; Ellis, W. W.; Dubois, D. L. J. Am. Chem. Soc. 2002, 124, 1918. (13) Connelly, S. J.; Wiedner, E. S.; Appel, A. M. Dalt. Trans. 2015, 44, 5933. (14) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Organometallics 2011, 30, 4308.

Electrocatalytic Reduction of Carbon Dioxide Using Molecular Iron Carbonyl Clusters

Introduction

Natalia D. Loewen, Atefeh Taheri, Louise A. Berben* Department of Chemistry; University of California Davis, One Shields Ave, Davis, CA 95616

Berben Group UCDAVIS

Acknowledgements We thank Dr. J. C. Fettinger and the current and previous

members of Berben group, especially Emily Thompson, Thomas Myers, Michael Kagan. We thank the University of California Davis, the NSF CAREER Award (CHE-1055417), and the Alfred P. Sloan foundation for funding. N. D. L. thanks the UC Davis Chemistry Department for a Bradford-Borge Fellowship and the US Department of Education for a GAANN Fellowship.

Thermochemical measurements Mechanistic studies of H+ and CO2 reduction •! Infrared spectroelectrochemistry (IR-SEC) was used

to determine pKa and "GH- of hydrides

Reaction E°(V) pH 7

E° (V) pH 0

CO2 + 2H+ + 2e- ! CO + H2O -0.76 -0.34 V CO2 + H+ + 2e- ! HCOO- -0.67 -0.46

CO2 + 2H+ + 2e- ! HCOOH -0.85 -0.35 V CO2 + 6H+ + 6e- ! CH3OH + H2O -0.62 -0.21 V

CO2 + 8H+ + 8e- ! CH4 + H2O -0.48 -0.07 V

Multielectron Reduction of CO2 (vs. SCE in water):

Electrocatalytic formate production from CO2 in aqueous solutions:

Catalyst E a % b j c stability d

IrHL(S)2e -1.65 93 0.6 25 hr

IrHL(S)2 CNTf -1.65 83 3.5 2

Pb -1.4 98 0.3 < 4 Pd on Pt -0.83 100 0.3 nr

10% Pd on C -0.77 99 4 < 3

SnO2 NC g -1.8 93 5.5 18

[Fe4N(CO)12]- -1.2 96 3.8 > 24 a Applied potential (V vs. SCE), b Faradaic yield, formate, c Current density (mAcm-2), d duration of reported controlled potential electrolysis experiment (hr) e L: PNP pincer ligand, S: MeCN f CNT: Carbon nanotubes, g nanocrystals,

[Fe4C(CO)12]2-

Iron Cluster Electrocatalysts for CO2 and H2 reduction:.

Compound pKa

MeCN H2O !G˚H- (kcal mol-1) MeCN H2O

[HFe4C(CO)12]2- 24.6 ± 1 < 13 44 < 15 [HFe4N(CO)12]- 20.3 13 ± 1 49 15.5

[HFe4N(CO)11(PPh3)]- 23.7 nd 45-46 nd H2 55.5 25.1 76 34.2

HCOO- - - 44 24.1

Figure 4. (Left) IR-SEC spectrum at -1.4 V in MeCN/H2O (95:5) showing reduction of [Fe4N(CO)12]– to afford hydride. Inset: Normalized difference spectra. (Right) IR-SEC spectra in MeCN at -1.4 V showing reduction of [Fe4N(CO)12]– with benzoic acid present. Inset: Normalized difference spectra.

Fe

N

FeFe Fe

OC

OC

LCOOC

COOC CO

OCOC CO

CO

Fe

N

FeFe Fe

OC

OC

LCO

COOC CO

OCOC CO

CO

Fe

N

FeFe Fe

OC

OC

LCOOC

COOC CO

OCOC CO

CO

1. 1e2. H+

1e

CO2HCO2-

1-

COH

1-

L: CO, PPh3

Figure 1. CVs of [Fe4N(CO)11(PPh3)]– in MeCN under 1 atm N2 (black), with 5% H2O (red), and sparged with CO2 (blue).

Figure 2. CVs of [Fe4N(CO)11(Ph2P(CH2)2OH)]- in MeCN under 1 atm N2 (black), with 5% H2O (red), and sparged with CO2 (blue).

•! CV studies probed the kinetics of CO2 and H+ reduction by [Fe4N(CO)11(PPh3)]– and [Fe4N(CO)11(Ph2P(CH2)2OH)]-.

•! Order in catalyst, H+, and CO2 were

used to propose mechanisms

Figure 3. CVs of [Fe4N(CO)11(Ph2P(CH2)2OH)]- with increasing catalyst conc. demonstrate 1st order behavior under 1 atm N2.

[Fe4N(CO)12]- [Fe4N(CO)11(PPh3)]- [Fe4N(CO)11(Ph2P(CH2CH2OH)]-

Thermochemical properties in MeCN and H2O:

References

Fe

N

FeFe Fe

OC

OC

OCCOOC

LOC CO

OCOC CO

CO

1-

Fe

C

FeFe Fe

OC

OC

OCCOOC

CO

OC CO

OCOC CO

CO

2-

L: CO, PPh3, Ph2P(CH2)2OH

Fe

N

FeFe Fe

OC

OC

PPh2

COOC

COOC CO

OCOC CO

CO

Fe

N

FeFe Fe

OC

OC

CO

COOC CO

OCOC CO

CO

1. 1e2. H+

1e

H+HH

1-

COH

1-

Fe

N

FeFe Fe

OC

OC

COOC

COOC CO

OCOC CO

CO

1-HO

PPh2HOPPh2HO