beyond epica · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 yr 6 2024-25...

14
Beyond EPICA: The quest for a 1.5 million year ice core © PNRA Luca Vitturani

Upload: others

Post on 30-Jul-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Beyond EPICA:

The quest for a 1.5 million year ice core

© PNRA – Luca Vitturani

Page 2: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

© British Antarctic Survey

Page 3: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

© Alfred-Wegener-Institut / Yves Nowak (CC-BY 4.0)

Page 4: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Criteria to find an old age

Old and relatively stable ice sheet

Low accumulation rate

Low horizontal velocity

Avoid basal melting

Modelling gives old ages

Central regions of East Antarctica

Requires high resolution survey

Page 5: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Age and temperature model (Parrenin 2017)

inverse modelling to extract parameters from dated horizons (in red)

Forward modelling with these parameters to extrapolate downward and draw the old ice horizons (in purple, the deepest is 1.5 Myears)

Using internal layering to assess where is the 1.5 Myr horizon

UTIG airborne radar survey (Young et al. 2017)

BE-OI Ground based survey with Delores radar in 2017-2018 (Mulvaney, Ritz, Frezzotti)

Page 6: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

© BE-OI - Ritz, Mulvaney, Frezzotti

Page 7: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Logistic: Traverse module plus 5 tents: drilling, workshop, 2 sleeping, recreationTime plan: 6 seasons of 70 daysPersonnel: 2 logistics, 7 drillers, 3 loggers, 3 scientists at Concordia Station

Logistic Plan

Photo: © ENEA – M. Frezzotti

Page 8: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Logistic Plan

RES survey: 22.500 km5000 man/day in the fieldAir cargo: 22 tonsFuel: 100 m3

Cargo traverse: 80 tonsOverall EU funding ≈ 13 M€

Mario Zucchelli

Photos: © ENEA – M. Frezzotti

Page 9: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

yr 12019-20

yr 22020-21

yr 32021-22

yr 42022-23

yr 52023-24

Yr 62024-25 Sub-Total

Logistic LDC 2 4 2 2 2 4 16

Driller LDC 4 7 7 7 5 30

Researcher LDC 3 1 3 3 3 2 15

Researcher

Concordia 2 2 2 6

Tot Pax 5 9 14 14 14 11 67

Transport by

traverse IN

Fuel 10 m3

Transport from Hb to

DdU of the heavy

drilling system, drill

fluid, camp facility,

core boxes

Casing tube, camp

facility (10 tons) ,

fuel (20 m3),

drilling system (10

tons), Drilling fluid

(10 tons) Core

box 10 m3,

Fuel 40 m3, drill

fluid 20 m3

Fuel 20 m3, drill

fluid 20 m3Fuel 20 m3,

Transport

material

to DdU

Set-up

drill

camp

Return and

clean

camp

DrillingBorehole

logging

Transport ice

sample to EU

laboratories

Core processing at Concordia

Ice core stored at ConcordiaPurchase

material

Transport

material to

Concordia

CRESIS,

pRES-GPS

site

refinement

Start in June 2019

Logistic Plan

Page 10: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Marine sediment records (bottom, black line) provide the combined sea level and deep sea temperature record over manymillion years back in time. Existing ice core record of Antarctic temperature (middle, red line) and atmospheric CO2 (top, lightblue line) going back only 800 kyr. Selected marine and blue-ice proxy records provide time slices of CO2 at low resolutionand precision, but no full continuous record (top left).

Climate and CO2 records over the last 1.5 Myr

(BE-OIC proposal, 2018)

Page 11: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

All hypotheses aremainly centered onthe idea that itbecame harder todeglaciate after theMPT.

Two main hypotheses

• The first relies on a reduction in the CO2 concentration ofthe atmosphere [Berger et al., 1999], so that less energy isavailable for deglaciation during insolation maxima.

• The second depends on slow changes in the bedrockmaterial underlying the northern ice sheets fromsedimentary regolith to crystalline rock. This changedetermines ice sheet area and thickness [Clark et al., 2006],and hence its vulnerability to orbital energy inputs.

Paillard, Nature 2017

Page 12: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

Special insights from a 1.5 Myr ice core

• Greenhouse gases (CO2, CH4, N2O) and their isotopes

• Antarctic temperature and precipitation

• ice sheet altitude

• sea ice in the 40k world

• granite weathering proxy CF4

• mean ocean temperature using noble gas thermometry

• magnetic anomalies in cosmogenic isotopes

• ...

© AWI – Jan Tell

Page 13: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

• Unless we understand the transition from 40 kyr cycles to 100 kyr cycles, we don’t really understand current climate

• Why did we have the Mid-Pleistocene Transition (MPT) around 900 kyr ago?

• Why do we now live in a 100 kyr world?

UNDERLYING

SCIENCE ISSUES

© French Polar Institute / CNRS – Thibaut Vergoz

Page 14: Beyond EPICA · yr 1 2019-20 yr 2 2020-21 yr 3 2021-22 yr 4 2022-23 yr 5 2023-24 Yr 6 2024-25 Sub-Total Logistic LDC 2 4 2 2 2 4 16 Driller LDC 4 7 7 7 5 30 Researcher LDC 3 1 3 3

The quest for a 1.5 million year ice core

© AWI – Jan Tell

© AWI – Jan Tell

© BAS – Robert Mulvaney

© PNRA- Luca Vitturani

© French Polar Institute / CNRS – Thibaut Vergoz