bilevel programming applied to power system vulnerability ... › lasee › pdf ›...

81
Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 1 B B i i l l e e v v e e l l p p r r o o g g r r a a m m m m i i n n g g a a p p p p l l i i e e d d t t o o p p o o w w e e r r s s y y s s t t e e m m v v u u l l n n e e r r a a b b i i l l i i t t y y a a n n a a l l y y s s i i s s u u n n d d e e r r m m u u l l t t i i p p l l e e c c o o n n t t i i n n g g e e n n c c i i e e s s J J o o s s é é M M . . A A r r r r o o y y o o E E - - m m a a i i l l : : J J o o s s e e M M a a n n u u e e l l . . A A r r r r o o y y o o @ @ u u c c l l m m . . e e s s D D e e p p a a r r t t a a m m e e n n t t o o d d e e I I n n g g e e n n i i e e r r í í a a E E l l é é c c t t r r i i c c a a , , E E l l e e c c t t r r ó ó n n i i c c a a , , A A u u t t o o m m á á t t i i c c a a y y C C o o m m u u n n i i c c a a c c i i o o n n e e s s U U n n i i v v e e r r s s i i d d a a d d d d e e C C a a s s t t i i l l l l a a L L a a M M a a n n c c h h a a

Upload: others

Post on 04-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 1

BBiilleevveell pprrooggrraammmmiinngg aapppplliieedd ttoo ppoowweerr ssyysstteemm vvuullnneerraabbiilliittyy aannaallyyssiiss uunnddeerr mmuullttiippllee

ccoonnttiinnggeenncciieess

JJoosséé MM.. AArrrrooyyoo

EE--mmaaiill:: JJoosseeMMaannuueell..AArrrrooyyoo@@uuccllmm..eess DDeeppaarrttaammeennttoo ddee IInnggeenniieerrííaa EEllééccttrriiccaa,, EElleeccttrróónniiccaa,, AAuuttoommááttiiccaa yy CCoommuunniiccaacciioonneess

UUnniivveerrssiiddaadd ddee CCaassttiillllaa –– LLaa MMaanncchhaa

Page 2: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 2

Contents • Introduction

• Atacker-defender bilevel programming models

• Numerical results

Page 3: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 3

Power system

• Physical components: wires, transformers, etc.

• Electrical companies

• Regulators

• Retailers

• Consumers

• Market

• Networks (transmission, distribution)

Page 4: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 4

Power system

Page 5: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 5

Power system

• Operation ⇒ Mainly performed by private companies

• Operation monitoring ⇒ Government • Critical infrastructure subject to new risks • Risks must be managed by both groups of

entities

Page 6: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 6

Power system

• Critical infrastructure:

q Provision of vital services to society or government (security = high standard of life)

q Closely related to social welfare

q Availability taken for granted

Page 7: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 7

Power system

• However, experience has shown it does fail:

q Recent blackouts (North America, Italy, Greece, central Europe)

q Recent malicious actions

Page 8: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 8

Recent changes in power systems

• Liberalization ⇒ Power markets ⇒ ↑complexity of social network

q Moved from a monopoly controlled by

government to a competitive framework ⇒ New agents and rules

q However, physical network unchanged

Page 9: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 9

Recent changes in power systems

• Internationalization • Different use with respect to the original

design • Use of information and communication

technologies ⇒ Internet

Page 10: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 10

Vulnerability of power systems

• Susceptibility of attack or damage • Characteristic of the design, implementation or

operation of the infrastructure that makes it susceptible of destruction by a threat

Page 11: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 11

Power system Factors that make it vulnerable

• Asocciated with generation and transmission

assets ⇒ Technical weakness

• Market ⇒ Operators driven by economic issues

• Pervasive use of open communication networks (cyber-attacks)

Page 12: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 12

Technical weaknesses

• Failure of critical components (ageing, overheating, etc.)

• Inadequate maintenance • Incorrect tripping of line protections • Incorrect tripping of generators

Page 13: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 13

Technical weaknesses

• Insufficient load shedding • Insufficient communication and cooperation

among operators • Insufficient monitoring by operators • Incorrect action by operators

Page 14: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 14

Types of outages in power systems

• Impact on electricity supply (electrical installations and/or market)

q Unintentional outage ≡ Uncertain random event (with probability distribution)

q Deliberate outage ≡ Uncertain non-random event ⇒ Maximization of damage

Page 15: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 15

Traditional definition of risk

• Objective measure of risk:

Risk = Probability × Consequence • Useful for unintentional outages • Subjective aspects must also be considered

(there is risk when perceived by society)

Page 16: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 16

New risk definitions

• Risk measure under deliberate outages:

Risk = Threat × Vulnerability × Consequence

Risk = Capability × Intention × Vulnerability × Consequence

Probability

Probability

Page 17: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 17

New risk definitions

• Difficulties in risk analysis:

q Estimation of probabilities and consequences of unlikely but catastrophic events

q Need for advances in Statistics

Page 18: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 18

Traditional security assessment

• System designed to survive a set of “credible” contingencies which are selected according to:

q Past events

q Apparent occurrence probability

q Consequences

Page 19: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 19

Traditional security assessment

• N-1 criterion ≡ System survives the loss of any single component

• Considered components:

q Generators

q Power lines

q Transformers

q Compensation devices

Page 20: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 20

Traditional security assessment

• Drawbacks of N-1 criterion:

q Implementation depends on the country (number of credible contingencies)

q Multiple contingencies are not considered

q Failures of communication and information systems are not considered

q Malicious intentionality is not considered

Page 21: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 21

Contents • Introduction

• Atacker-defender bilevel programming models

• Numerical results

Page 22: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 22

Vulnerability analysis under deliberate outages

• Identification of critical system components

under intentional attacks

• Useful for:

q Network planner

q Terrorist (regrettably!!)

Page 23: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 23

Objective of the network planner

• Identification of the extended contingency set the system is most vulnerable

• Implementation of adequate surveillance and

protection actions

Page 24: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 24

Objective of the terrorist

• Identification of an interdiction scheme to:

q Maximize the damage subject to limited destructive resources, or

q Minimize the destructive resources to reach

a pre-specified level of damage

Page 25: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 25

Objective of the terrorist

• Interdictable system components:

q Generators

q Substations

q Buses

q Lines

q Transformers

Page 26: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 26

System operator

• After an attack, the system operator reacts: q Implementation of corrective actions

(generation redispatch, redirection of line power flows, load shedding)

q Objective ⇒ Minimization of system

damage

Page 27: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 27

Measure of damage or vulnerability

• System load shedding ⇒ Involuntary and non-remunerated disconnection of power demanded

• Other measures are possible ⇒ Load

shedding in particular areas, economic cost of unserved energy, etc.

Page 28: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 28

Attacker-defender bilevel model

• Two antagonistic agents operating sequentially

q Terrorist ⇒ Designs interdiction plan

q System operator ⇒ Reacts against the attack

• Each agent optimizes its own objective function over a jointly dependent set

Page 29: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 29

Attacker-defender bilevel model

INTERDICTION PLAN DESIGN

DAMAGE MAXIMIZATION

OR

MINIMIZATION OF DESTRUCTIVE RESOURCES

SELECTION OF CORRECTIVE ACTIONS

DAMAGE MINIMIZATION

(ATTACK PLAN)

TERRORIST

SYSTEM OPERATOR

NETWORK PLANNER

IDENTIFICATION OF VULNERABLE COMPONENTS

Page 30: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 30

Bilevel programming

• 2-player game of non-zero sum and perfect information

• Sequential, non cooperative, 1-round game • Feasibility region implicitly characterized by 2

optimization problems which are solved in a pre-determined sequence

Page 31: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 31

2 players

• Leader, upper-level agent or outer-level agent

q Decision variables x ∈ X

q Optimizes its objective function by selecting a strategy (variables x) that anticipates the reactions of the other player

q The other player’s objective function is

known

Page 32: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 32

2 players

• Follower, lower-level agent or inner-level agent

q Decision variables y ∈ Y

q Reacts against the leader’s strategy (variables x) by selecting its strategy (variables y) to optimize its objective function without considering the external consequencies of its actions

Page 33: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 33

General bilevel formulation

( )y,xF Minyx,

Subject to:

( ) 0y,xG ≤

( )'y,xf minargy'y

Subject to:

( ) 0'y,xg ≤

Page 34: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 34

Mathematical characterization

• Optimization problem • Even with linear constraints ⇒ Non-convex

problem ⇒ Local optima • Development of solution procedures ⇒

Difficult task • Existing methods of limited application

Page 35: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 35

Solution approaches

• Under certain convexity and differentiability conditions ⇒ Conversion to a standard mathematical program

q KKT optimality conditions

q Linear lower-level problem ⇒ Dual problem + Strong duality theorem

q Max-min problems ⇒ Dual problem

Page 36: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 36

Bilevel programming models for vulnerability analysis

• Two antagonistic agents acting sequentially:

q Leader ⇒ Terrorist

q Follower ⇒ System operator

Page 37: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 37

Leader ≡ Terrorist

• Decision variables x ∈ {0,1}

q x = 0 ⇔ System component is destroyed/attacked

q x = 1 ⇔ System component is not

destroyed/attacked

Page 38: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 38

Follower ≡ System operator

• Decision variables ⇒ Network operation (simplified DC model):

q Power flows

q Nodal phase angles

q Generation levels

q Nodal load shedding

Page 39: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 39

Bilevel programming models for vulnerability analysis

• Two models:

q Minimum vulnerability model

q Maximum vulnerability model

Page 40: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 40

Minimum vulnerability model

( )SubBusLineGen

,S,P,P,,v,b,,,,,,,Rec_destMin

cLineGenSubBusLineGen

δδδδθγδδδδ

Subject to:

Feasibility of ( )v,b,,,, SubBusLineGen δδδδ

γ≥γ

∑θ

=γc

c,S,P,P

Sminc

LineGen

Subject to:

Feasibility of ( )θ,S,P,P cLineGen

Terrorist

System operator

Page 41: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 41

Maximum vulnerability model

γδδδδ

Maxv,b,,,, SubBusLineGen

Subject to:

Feasibility of ( )v,b,,,, SubBusLineGen δδδδ

( ) M,,,Rec_dest SubBusLineGen ≤δδδδ

∑θ

=γc

c,S,P,P

Sminc

LineGen

Subject to:

Feasibility of ( )θ,S,P,P cLineGen

System operator

Terrorist

Page 42: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 42

Terrorist’s constraints

{ } g ,1,0Geng ∀∈δ ⇒ Generator attack

{ } l

l

∀∈δ ,1,0Line ⇒ Line attack

{ } i ,1,0Busi ∀∈δ ⇒ Bus attack

{ } s ,1,0Subs ∀∈δ ⇒ Substation attack

{ } l

l

∀∈ ,1,0v ⇒ Line operation

{ } g ,1,0bg ∀∈ ⇒ Generator operation

Page 43: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 43

Terrorist’s constraints

( ) ( )( ) ( )( ) ( )

( ) l

l

ll

l

l

llll

∀δ−

δ−δ−δ−δ−=

,1

1111v

Par

Subs

L''

Line'

Ls

Subs

Busd

Buso

Line

( )( )( ) g ,11b Gen

gBus

gig ∀δ−δ−=

Page 44: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 44

Terrorist’s constraints Destructive resources

( )

∑∑

∑∑

δ+δ+

δ+δ=δδδδ

s

Subs

Subs

i

Busi

Busi

LineLine

g

Geng

Geng

SubBusLineGen

MM

MM,,,Rec_destl

ll

Page 45: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 45

System operator’s constraints: OPF(v,b)

( ) ( )( ) l

lll

l

l

l

∀µθ−θ= ,:xv

P doLine

( ) ( )i ,:dPPSP i

Ccc

id

Line

io

Line

Ccc

Gg

Geng

iii

∀λ=+−+ ∑∑∑∑∑∈==∈∈ ll

l

ll

l

( ) l

lllll

∀ϕφ≤≤− ,,:PPP LineLineLine

Line power flows

Power balances

Line capacities

Page 46: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 46

System operator’s constraints: OPF(v,b)

( ) i ,,: iii ∀εχθ≤θ≤θ−

g ,:PbP0 gGen

ggGeng ∀γ≤≤

c ,:dS0 ccc ∀α≤≤

Angle limits

Generation limits

Load shedding limits

Page 47: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 47

Problem characterization

• Bilevel programming problem • Non-linear (products of variables) • Mixed-integer • Large scale • Solution based on duality theory

Page 48: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 48

Follower’s dual constraints

( ) g 0ggi ∀≤γ+λ

( ) c 1cci ∀≤α+λ

( ) ( ) l

lllll

∀=ϕ+φ+µ+λ+λ− 0do

( )( )i ,0

xv

xv

iiio id

∀=ε+χ+µ

− ∑ ∑= =ll ll l

ll

l

ll

i ,0i ∀≥χ i ,0i ∀≤ε g ,0g ∀≤γ l

l

∀≥φ ,0 l

l

∀≤ϕ ,0 c ,0c ∀≤α

Page 49: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 49

Strong duality theorem

( ) ( )( )

( )∑∑

∑ ∑∑

θχ−ε+γ+

λ+α+φ−ϕ=

iii

g

Genggg

cccic

Line

cc

Pb

dPSl

lll

Page 50: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 50

Conversion to a single level: MINLP

• Optimize terrorist’s objective function

• Subject to:

q Terrorist’s non-linear constraints

q SO’s non-linear primal constraints

q SO’s non-linear dual constraints

q SO’s non-linear strong duality equality

Page 51: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 51

Linearization of product of 0/1 variables

∏=

=n

1iixz , { }1,0x i ∈

• MILP model:

0z ≥

ixz ≤ , n,,1i K=

1nxzn

1ii +−≥∑

=

{ }1,0x i ∈

Page 52: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 52

Linearization of constraints Leader

( ) l

ll

∀δ−≤ ,1v Line

( ) ParLine' L', ,1v

lll

ll ∈∀∀δ−≤

( )( ) l

ll

∀δ−≤ ,1v Buso

( )( ) l

ll

∀δ−≤ ,1v Busd

( ) Subs

Subs L,s ,1v ∈∀∀δ−≤ l

l

Page 53: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 53

Linearization of constraints Leader

( ) ( )( ) ( )( ) ( )

( ) ( ) { }( )

l

l

l

l

l

l

llll

l

∀+

∈++−δ−+

δ−+δ−+δ−+δ−≥

1,

,L:scardLcard31

1111v

Subs

Par

L'

Line'

Ls

Subs

Busd

Buso

Line

Par

Subs

l

l

∀≥ ,0v

Page 54: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 54

Linearization of constraints Leader

( )( ) g ,1b Busgig ∀δ−≤

( ) g ,1b Gengg ∀δ−≤

g ,0bg ∀≥

( )( ) ( ) g ,111b Geng

Busgig ∀−δ−+δ−≥

Page 55: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 55

Linearization of product of 0/1 variable and continuous variable

xpz = , { }1,0x∈ , [ ]maxmin p,pp∈

• MILP model:

rpz −=

maxmin xpzxp ≤≤

( ) ( ) maxmin px1rpx1 −≤≤−

{ }1,0x∈

Page 56: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 56

Linearization of constraints Follower

( ) ( )( )[ ] l

llll

l

l

∀θ−θ−θ−θ= ,~~x1

P ddooLine

( ) l

llll

∀θ≤θ−θ≤θ− ,v~v oo

( ) l

llll

∀θ≤θ−θ≤θ− ,v~v dd

( ) ( ) l

llll

∀θ−≤θ≤θ−− ,v1~vv1 o

( ) ( ) l

llll

∀θ−≤θ≤θ−− ,v1~vv1 d

Page 57: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 57

Linearization of constraints Follower

( ) ( )

( )( )i ,0

x

~

x

~ii

io id

∀=ε+χ+µ−µ

+µ−µ

− ∑ ∑= =ll ll l

ll

l

ll

l

llllll

∀µ≤µ−µ≤µ− ,v~v

( ) ( ) l

lllll

∀µ−≤µ≤µ−− ,1v~1v

Page 58: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 58

Linearization of constraints Follower

( ) ( )( )

( ) ( )∑∑

∑ ∑∑

θχ−ε+γ−γ+

λ+α+φ−ϕ=

iii

g

Genggg

cccic

Line

cc

P~

dPSl

lll

g ,0~b gggg ∀≤γ−γ≤γ−

( ) g ,0~b1 ggg ∀≤γ≤γ−−

Page 59: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 59

Resulting MILP problem

• Optimize terrorist’s objective function

• Subject to:

q Terrorist’s linear constraints

q SO’s linear primal constraints

q SO’s linear dual constraints

q SO’s linear strong duality equality

Page 60: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 60

Contents • Introduction

• Atacker-defender bilevel programming models

• Numerical results

Page 61: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 61

Minimum vulnerability model

• 5-bus example and One-Area IEEE RTS

• Scenario of peak demand

• Only destruction of lines

• Results parameterized as a function of the minimum level of system load shed γ

Page 62: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 62

Minimum vulnerability model

• GAMS and CPLEX 9.0 • Dell PowerEdge 6600, 2 processors, 1.6 GHz,

2 GB of RAM

• Computing time for optimality ≤ 10 seconds

Page 63: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 63

5-bus example

~ ~

~ ~

~

Bus 1 Bus 2

Bus 3

Bus 4 Bus 5

50 MW 170 MW

90 MW

30 MW 300 MW

0.336 pu

0.126 pu 0.215 pu

0.180 pu

0.215 pu

0.130 pu

0 MW ≤ Pg1 ≤ 150 MW 0 MW ≤ Pg2 ≤ 150 MW

0 MW ≤ Pg4 ≤ 150 MW 0 MW ≤ Pg5 ≤ 150 MW

0 MW ≤ Pg3 ≤ 150 MW

Page 64: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 64

5-bus example

# destroyed lines System load shed (MW) Worst combination of destroyed lines

1 050 3-5 4-5

2 150 3-5, 4-5

3 150

1-2, 3-5, 4-5 1-3, 3-5, 4-5 1-4, 3-5, 4-5 2-3, 3-5, 4-5

4 170 1-2, 2-3, 3-5, 4-5

5 170 1-2, 1-3, 2-3, 3-5, 4-5 1-2, 1-4, 2-3, 3-5, 4-5

6 170 1-2, 1-3, 1-4, 2-3, 3-5, 4-5

Page 65: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 65

5-bus example

Range of γ (MW)

Destroyed lines

500 ≤γ<

3-5

15050 ≤γ<

3-5, 4-5

170150 ≤γ<

1-2, 2-3, 3-5, 4-5

Page 66: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 66

IEEE RTS

• 24 buses • 38 lines • 32 generators • 17 loads • Peak demand scenario

(2850 MW) • All lines destroyed ⇒

1607 MW shed

~ ~

~

~

~

~ ~ ~

~

~

~

cable

cable

Bus 18

Bus 17 Bus 21 Bus 22 Bus 23

Bus 20 Bus 19

Bus 16 Bus 14

Bus 15 Bus 13

Bus 12 Bus 11 Bus 24

Bus 3 Bus 9

Bus 4

Bus 5

Bus 10 Bus 6

Bus 8

Bus 1 Bus 2 Bus 7

Page 67: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 67

IEEE RTS

γ (MW)

Destroyed lines Load shed (MW)

0200 16-19, 20-23A, 20-23B 0309 0400 3-24, 9-12, 11-13, 14-16 0442 0600 11-13, 11-14, 12-13, 12-23, 15-24 0648 0800 11-13, 12-13, 12-23, 14-16, 15-24 0842 1000 7-8, 11-13, 12-13, 12-23, 14-16, 15-24 1017

Page 68: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 68

IEEE RTS

~ ~

~

~

~

~ ~ ~

~

~

~

cable

cable

Bus 18

Bus 17 Bus 21 Bus 22 Bus 23

Bus 20 Bus 19

Bus 16 Bus 14

Bus 15 Bus 13

Bus 12 Bus 11 Bus 24

Bus 3 Bus 9

Bus 4

Bus 5

Bus 10 Bus 6

Bus 8

Bus 1 Bus 2 Bus 7

Page 69: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 69

IEEE RTS

Bus Pg(MW) Pd(MW) Sc(MW) Bus Pg(MW) Pd(MW) Sc(MW) 1 192 108 0 13 265 265 0 2 192 97 0 14 0 194 0 3 0 180 180 15 215 317 0 4 0 74 0 16 54 100 0 5 0 71 71 17 0 0 0 6 0 136 136 18 100 333 0 7 300 125 0 19 0 181 0 8 0 171 86 20 0 128 0 9 0 175 175 21 224 0 0

10 0 195 0 22 0 0 0 11 0 0 0 23 600 0 0 12 0 0 0 24 0 0 0

Page 70: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 70

Maximum vulnerability model

• One-Area IEEE RTS and Two-Area IEEE RTS • Maximum demand scenario • Results parameterized as a function of M

Page 71: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 71

Maximum vulnerability model

• Destruction of a line or several parallel lines ⇒ 1 person

• Destruction of a transformer ⇒ 2 persons

• Destruction of a bus or substation ⇒ 3 persons

• Destruction of a generator or an underground cable ⇒ Impossible

Page 72: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 72

Maximum vulnerability model

• GAMS and CPLEX 8.1 • Pentium IV, 2.66 GHz, 512 MB of RAM

• Computing time for optimality ≤ 180 seconds

Page 73: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 73

One-Area IEEE RTS

M Load shed (MW)

CPU time (s)

M Load shed

(MW) CPU time

(s)

0 0 0.08 16 2378 2.34 2 309 1.56 18 2533 2.08 4 842 3.91 20 2658 1.23 6 1373 1.77 22 2753 1.02 8 1638 2.30 24 2850 0.31

10 1853 4.78 26 2850 0.30 12 2011 3.86 28 2850 0.36 14 2241 1.39

Page 74: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 74

One-Area IEEE RTS. M = 20

~ ~

~

~

~

~ ~ ~

~

~

~

cable

cable

Bus 18

Bus 17 Bus 21 Bus 22 Bus 23

Bus 20 Bus 19

Bus 16 Bus 14

Bus 15 Bus 13

Bus 12 Bus 11 Bus 24

Bus 3 Bus 9

Bus 4

Bus 5

Bus 10 Bus 6

Bus 8

Bus 1 Bus 2 Bus 7

Page 75: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 75

Two-Area IEEE RTS

M Load shed (MW)

CPU time (s)

M Load shed

(MW) CPU time

(s)

0 0 0.14 28 4497 54.28 4 842 26.56 32 4807 67.84 8 1684 132.78 36 5036 106.58

12 2661 102.46 40 5316 28.59 16 3169 147.05 44 5575 4.09 20 3649 170.69 46 5700 3.22 24 4067 170.08

Page 76: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 76

Two-Area IEEE RTS. M = 12

Page 77: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 77

Future and ongoing work

• More precise power flow model (AC)

• Alternative corrective actions (disconnection of generators and/or lines)

• Analysis of power vs. energy shed

• Use of game theory

Page 78: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 78

References

• A. V. Gheorghe, M. Masera, M. Weijnen, L. de Vries. “Critical Infrastructures at Risk. Securing the European Electric Power System”. Springer. Dordrecht, The Netherlands. 2006.

• IEEE/CIGRÉ Joint Task Force on Stability Terms and

Definitions. “Definitions and classification of power system stability”. IEEE Trans. Power Syst. Vol. 19, no. 3, pp. 1387–1402, Aug. 2004.

Page 79: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 79

References

• J. Salmerón, K. Wood, R. Baldick. “Analysis of Electric Grid Security under Terrorist Threat”. IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 905-912, May 2004.

• J. M. Arroyo, F. D. Galiana. “On the Solution of the

Bilevel Programming Formulation of the Terrorist Threat Problem”. IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 789-797, May 2005.

Page 80: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 80

References

• A. L. Motto, J. M. Arroyo, F. D. Galiana. “A Mixed-Integer LP Procedure for the Analysis of Electric Grid Security under Disruptive Threat”. IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1357-1365, August 2005.

• M. Carrión, J. M. Arroyo, N. Alguacil. “Vulnerability-Constrained Transmission Expansion Planning: A Stochastic Programming Approach”. IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1436-1445, November 2007.

Page 81: Bilevel programming applied to power system vulnerability ... › lasee › pdf › sao_carlos.pdf · Departa mento de Engenharia Elétrica , Universidad de Sâo Paulo , Sâo Carlos

Departamento de Engenharia Elétrica, Universidad de Sâo Paulo, Sâo Carlos, June 30, 2009 81

Thanks for your attention!

GSEE: http://www.uclm.es/area/gsee