bio-dme feedstock & process considerations

14
Bio-DME Feedstock & Process Considerations Serge Randhava Chairman & CEO www.uniteltech.com 7 th Asian DME Conference Niigata, Japan November 16-18, 2011

Upload: others

Post on 09-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Bio-DME Feedstock & Process Considerations

Serge Randhava Chairman & CEO

www.uniteltech.com

7th Asian DME ConferenceNiigata, JapanNovember 16-18, 2011

Unitel & Xytel Group –world’s leader in mini‐ and pilot‐plants

Xytel Europe 

Xytel-Bechtel

XYTEL-BECHTEL

Xytel India 

energy…chemicals…pharmaceuticals

international partnerships

1300+ projects350+ customers31 countries

XytelUSA

XytelEurope

XytelTechnologies

Xytel-Bechtel

Japan Mitsubishi

XytelIndia

ChinaSINOPEC

XytelEnergyCanada

Recent Unitel DME projects

Korea Gas 10 TPD Demo Plant

Korea Gas 900 TPD Commercial Plant

GV Energy, Inc. – Biomass to Methanol to DME

Oberon Fuels – DME from Methanol, Natural Gas or Biogas

For more information about DME, please visit www.aboutdme.org

Bio‐Feedstocks

BIO-FEEDSTOCKSSYNGAS

SYNGAS

METHANOL

DME

DME

Opportunity Feedstocks

• Black liquor, Chemrec, Pitea, Sweden• Biogas, Oberon Fuels, San Diego, USA

Conventional Bio-Feedstocks

• High yield crops grown specifically for energy applications • Food wastes from manufacturing, preparation, and post-consumer usage• Agricultural residues from harvesting or processing • Virgin wood from forestry and arboricultural sourcesIssues: collection, transportation costs, storage

Biomass Feedstocks

Biomass is natures solar energy storage system.

It has an optimal composition of C-O-H.

Harvesting biomass energy is the ultimate challenge in this century.

Biomass can be readily gasified into syngas.

Syngas can be converted into value-added liquid products.

The most promising emerging liquid product is dimethylether (DME).

biomass: the magic ratioC ~40%

O ~20%

H ~40%

Moisture Content ~ 20%

Bio‐DME Gasification Island

Gasifier Design Features

simple fluidized bed design

maximize solids residence time for conversion and minimize tar formation

range of fluidization velocities to accommodate different feed ranges

primary tar breaking mechanism within the fluidized bed

wide range of temperature operation to accommodate differences in reactionkinetics

optimal pressure range up to 150 psig to enhance fluidization properties

longer retention times for fines in the gasifier for maximizing single passconversion

safe introduction of oxygen to avoid sintering

Bio‐DME Indirect Process

OXYGEN 95% PURITY

OXYGEN PLANT

BIOMASS FEED PRESSURIZED GASIFIER

CATALYTIC REFORMER

WASTE HEAT BOILER

WATER GAS SHIFT

METHANOL SYNTHESIS LOOP

H2/CO RATIO ~2.2

DEHYDRATION USING CATALYTIC DISTILLATION

DIMETHYL ETHER

DME from Biomass – Indirect Processsample material balance

Wood Wastes17,703 kg/hr

425 MTPD

Oxygen204.7 kmol/hr

157 MTPD

Steam165.9 kmol/hr

72 MTPD

CRUDE METHANOL

253.8 kmol/hr

193 MTPD

Purge & Vent57.6 kmol/hr

22 MTPD

METHANOL SYNTHESIS

Wood Wastes

Biomass Feed

(10 wt% moisture)

Ash740 kg/hr18 MTPD

H2O96.6 kmol/hr

42 MTPD

CO2 & Absorbed Gases420.8 kmol/hr

379 MTPD

DME CATALYTIC

DISTILLATION

DME PRODUCT

123.1 kmol/hr

136 MTPD

Waste H2O130.8 kmol/hr

57 MTPD

Bio‐DME Direct Process

OXYGEN 95% PURITY

CO2OXYGEN PLANT

BIOMASS FEEDPRESSURIZED

GASIFIERCATALYTIC REFORMER

WASTE HEAT BOILER

CO2 REJECTION

DME SYNTHESIS LOOP

DIMETHYL ETHER

DME from Biomass – Direct Processsample material balance

Oxygen214.9 kmol/h

165 TPD

H2O278.5 kmol/h

120 TPD

CO2365.2 kmol/h372 TPD

DME135.8 kmol/h150 TPD(60,000 gal/day)

Purge & VentH2/CO/CO2/Light Ends

74.2 kmol/h33 TPD

Ash993 kg/h24 TPD

DME SYNTHESIS

Biomass Feed

Biomass22,243 kg/h

534 TPD427 (Dry) TPD

Biomass Logistics using Corn Cobs

Corn cob feed supply radius: 30 miles (10% farmers contributing)DiMethyl Ether product distribution radius: 100 miles

150 TPD DiMethyl

EtherPlant

Representative Biomass & Coal Properties

Poplar Wood

Corn Stover

Corn Cobs Peat

Brown CoalNorth Dakota

Brown CoalAustralia

Sub Bit. Coal Bit. Coal Anthracite* Pet. Coke

Proximate Analysis (wt%, D-3175)

Volatile matter 85.27 81.12 80.10 70.13 43.25 52.36 41.76 40.60 90.58 90.29

Fixed carbon 13.57 14.13 18.54 26.87 47.24 45.70 49.08 45.47 6.45 9.15

Ash 1.16 4.75 1.36 3.00 9.51 1.94 9.16 13.93 2.97 0.56

Ultimate Analysis (wt%)

Carbon 47.05 43.98 46.70 54.81 65.03 65.33 68.39 68.61 90.27 88.47

Hydrogen 5.71 5.39 5.88 5.38 4.29 4.52 4.64 4.61 3.00 3.60

Nitrogen 0.22 0.62 0.47 0.89 1.07 0.54 0.99 1.18 0.72 1.84

Sulfur 0.05 0.10 0.01 0.11 1.07 0.23 0.79 4.76 0.72 5.53

Chlorine <0.01 0.25 ----- ----- ----- ----- 0.02 0.12 ----- -----

Oxygen 41.01 39.10 45.58 35.81 19.02 27.44 16.07 6.79 2.32 0.00

Ash 1.16 4.75 1.36 3.00 9.51 1.94 9.16 13.93 2.97 0.56

H/C atomic ratio 1.45 1.46 1.50 1.17 0.79 0.82 0.81 0.80 0.40 0.48

C/O atomic ratio 1.53 1.50 1.36 2.04 4.55 3.17 5.69 13.46 51.83 ∞HHV, dry, Btu/lb. 8,382 7,782 8,075 9,465 11,085 10,855 11,684 12,400 14,839 14,200

*Anthracite is listed here for comparison purposes.

Acknowledgements 

Dr. Ravi Randhava, Unitel Technologies, Inc. Dr. Wonjun Cho, Korea Gas Corporation Mr. C.H. Lee, Korea Gas Technology Corporation Mr. Eric Switzer, GV Energy, Inc. Mr. Greg Rogers, GV Energy, Inc. Mr. Neil Senturia, Oberon Fuels Mr. Elliot Hicks, Oberon Fuels Dr. Richard Kao, Unitel Technologies, Inc. Mr. Todd Harvey, Unitel Technologies, Inc. Mr. Bradley Novak, Unitel Technologies, Inc. Ms. Jacki Brunner, Unitel Technologies, Inc. Ms. Indira Choudrey, Unitel Technologies, Inc. Mr. Jack Oswald, SynGest Inc. & AliphaJet