bio151 - ch 3

94
Chapter 3 The Chemistry of Organic Molecules 1

Upload: sarsura9727

Post on 19-Jul-2016

214 views

Category:

Documents


0 download

DESCRIPTION

Intro Biology

TRANSCRIPT

Page 1: BIO151 - CH 3

Chapter  3      

The  Chemistry  of  Organic  Molecules  

 

1

Page 2: BIO151 - CH 3

2

3.1  Organic  Molecules  

•  Organic  molecules    §  carbon    §  hydrogen  atoms.    

•  4  Classes          (biomolecules)  exist  in  living  organisms:  

§  Carbohydrates    §  Lipids  §  Proteins  § Nucleic  Acids  

Page 3: BIO151 - CH 3

3

Inorganic  versus  Organic  Molecules  

Page 4: BIO151 - CH 3

Carbon  Chemistry  §  Carbon  is  a  versatile  atom.  •  It  has  four  electrons  in  an  outer  shell  that  holds  eight  

electrons.  •  Carbon  can  share  its  electrons  with  other  atoms  to  form  

up  to  FOUR  covalent  bonds.  

C

?

?

? ?

Page 5: BIO151 - CH 3

Figure 3.1a

Carbon skeletons vary in length

Page 6: BIO151 - CH 3

Figure 3.1b

Double bond

Carbon skeletons may have double bonds, which can vary in location

Page 7: BIO151 - CH 3

Figure 3.1c

Carbon skeletons may be:

unbranched branched

Page 8: BIO151 - CH 3

Figure 3.1d

Carbon skeletons may be arranged in rings

Page 9: BIO151 - CH 3

§  The  simplest  organic  compounds  are  hydrocarbons,  which  contain  only  carbon  and  hydrogen  atoms.  

§  The  simplest  hydrocarbon  is  methane,  a  single  carbon  atom  bonded  to  four  hydrogen  atoms.  

Page 10: BIO151 - CH 3

10

The  Carbon  Skeleton  and  Functional  Groups  

 •  The  carbon  chain  of  an  organic  molecule  is  called  its  skeleton  or  backbone.    

•  Functional  groups  are  clusters  of  specific  atoms  bonded  to  the  carbon  skeleton  with  characteristic  structures  and  functions.    

§ Determine  the  chemical  reactivity  and  polarity  of  organic  molecules  

Page 11: BIO151 - CH 3

Table  3.2  

Page 12: BIO151 - CH 3

12

Isomers  

•  Isomers  are  organic  molecules  that  have  identical  molecular  formulas  but  a  different  arrangement  of  atoms.    

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

glyceraldehyde dihydroxyacetone

OH OH

H H

H C C C H

O

OH OH

H O

H C C C H

H

Page 13: BIO151 - CH 3

13

Biomolecules  

•  Carbohydrates,  lipids,  proteins,  and  nucleic  acids  are  called  biomolecules.  § Usually  consist  of  many  repeating  units  

•  Each  repeating  unit  is  called  a  monomer.  • A  molecule  composed  of  monomers  is  called  a  polymer  (many  parts).  – Example:  amino  acids  (monomer)  are  joined  together  to  form  a  protein  (polymer)    

Page 14: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig.  3.3  

Biomolecules

Polymer Category Subunit(s)

Polysaccharide Carbohydrates* Monosaccharide

Lipids

Proteins*

Nucleic acids*

Glycerol and fatty acids Fat

Polypeptide Amino acids

Nucleotide DNA,RNA

*Polymers © The McGraw Hill Companies, Inc./John Thoeming, photographer

Page 15: BIO151 - CH 3

15

Synthesis  and  Degradation  

•  A  dehydration  reaction  is  a  chemical  reaction  in  which  subunits  are  joined  together  by  the  formation  of  a  covalent  bond  and  water  is  LOST  during  the  reaction.  §  Used  to  connect  monomers  together  to  make  polymers  §  Example:  formation  of  starch  (polymer)  from  glucose  subunits  (monomer)  

 •  A  hydrolysis  reaction  is  a  chemical  reaction  in  which  a  water  molecule  is  ADDED  to  break  a  covalent  bond.  §  Used  to  breakdown  polymers  into  monomers  §  Example:  digestion  of  starch  into  glucose  monomers  

Page 16: BIO151 - CH 3

monomer OH

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Synthesis and Degradation of Biomolecules

Page 17: BIO151 - CH 3

monomer OH +

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 18: BIO151 - CH 3

+ monomer H monomer OH

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Synthesis and Degradation of Biomolecules

Page 19: BIO151 - CH 3

monomer monomer

H2O

OH H +

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 20: BIO151 - CH 3

monomer monomer

monomer monomer

Dehydration reaction

H2O

OH H

a. Synthesis of a biomolecule

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

+

Page 21: BIO151 - CH 3

monomer monomer

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 22: BIO151 - CH 3

H2O

monomer monomer

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 23: BIO151 - CH 3

monomer monomer

Dehydration reaction

H2O

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 24: BIO151 - CH 3

monomer monomer

Hydrolysis reaction

OH H

b. Degradation of a biomolecule

H2O

monomer monomer

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 25: BIO151 - CH 3

monomer monomer

monomer monomer

dehydration reaction

monomer monomer

H 2 O

OH H

OH H

b. Degradation of a biomolecule

a. Synthesis of a biomolecule

H 2 O

monomer monomer

hydration reaction

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 26: BIO151 - CH 3

26

Synthesis  and  Degradation  

•  Enzymes  are  required  for  cells  to  carry  out  dehydration  synthesis  and  hydrolysis  reactions.    

§  An  enzyme  is  a  molecule  that  speeds  up  a  chemical  reaction.    •  Enzymes  are  not  consumed  in  the  reaction.  •  Enzymes  are  not  changed  by  the  reaction.    

Page 27: BIO151 - CH 3

CARBOHYDRATES  &  LIPIDS  Properties  of:  

27

Page 28: BIO151 - CH 3

3.2  Carbohydrates  

•  Functions:  §  Energy  source    §  Provide  building  material  (structural  role)    

•  Contain  carbon,  hydrogen  and  oxygen  in  a  1:2:1  ratio  

•  Varieties:  monosaccharides,  disaccharides,  and  polysaccharides  

Page 29: BIO151 - CH 3

29

•  A  monosaccharide  is  a  single  sugar  molecule.  •  Also  called  simple  sugars  •  Have  a  backbone  of  3  to  7  carbon  atoms  •  Examples:  

§  Glucose  (blood),  fructose  (fruit)  and  galactose  •  Hexoses  -­‐  six  carbon  atoms  

§  Ribose  and  deoxyribose  (in  nucleotides)  •  Pentoses  –  five  carbon  atoms  

Monosaccharides

Page 30: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig.  3.6  

H

C

HO a.

H OH

OH

6

5

4

3

1

c. d.

O O

H O H

H H

OH OH

OH H

HO b.

C6H12O6

CH2OH CH2OH C

C

H O

C 2 C

OH H

H

© Steve Bloom/Taxi/Getty

Glucose

Page 31: BIO151 - CH 3

31

Disaccharides  

•  A  disaccharide  contains  two  monosaccharides  joined  together  by  dehydration  synthesis.  

•  Examples:  §  Lactose  (milk  sugar)  is  composed  of  galactose  and  glucose.  

§  Sucrose  (table  sugar)  is  composed  of  glucose  and  fructose.    

§ Maltose  is  composed  of  two  glucose  molecules.    

Page 32: BIO151 - CH 3

O O

OH glucose C6H12O6

HO

H H +

CH2OH CH2OH

glucose C6H12O6

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Synthesis and Degradation of Maltose

Page 33: BIO151 - CH 3

glucose C6H12O6

CH2OH O O

OH HO

H H

+ dehydration reaction

glucose C6H12O6

CH2OH

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 34: BIO151 - CH 3

O O O O

OH water

HO

H H O + +

dehydration reaction H2O

maltose C12H22O11 glucose C6H12O6

CH2OH CH2OH CH2OH CH2OH

glucose C6H12O6

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 35: BIO151 - CH 3

O O O O

OH water

monosaccharide disaccharide water

HO

H H O

monosaccharide

+

+ +

+ de h yd r ation reaction

H2O

maltose C12H22O11 glucose C6H12O6

CH2OH CH2OH CH2OH CH2OH

glucose C6H12O6

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 36: BIO151 - CH 3

O O

O

maltose C12H22O11

CH2OH CH2OH

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 37: BIO151 - CH 3

O O

water

O + H2O

maltose C12H22O11

CH2OH CH2OH

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 38: BIO151 - CH 3

maltose C12H22O11

CH2OH O O

water

O + hydrolysis reaction

H 2 O

CH2OH

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 39: BIO151 - CH 3

O O O O

OH

water HO

H H O + +

hydrolysis reaction H2O

maltose C12H22O11 glucose C6H12O6

CH2OH CH2OH CH2OH CH2OH

glucose C6H12O6

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 40: BIO151 - CH 3

O O O O

OH water

monosaccharide disaccharide water

HO

H H O

glucose C6H12O6

monosaccharide

+

+ +

+ hydrolysis reaction H2O

maltose C12H22O11

CH2OH

glucose C6H12O6

CH2OH CH2OH CH2OH Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 41: BIO151 - CH 3

glucose C6H12O6 water

monosaccharide disaccharide water monosaccharide + +

dehydration reaction hydrolysis reaction

maltose C12H22O11 glucose C6H12O6

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 42: BIO151 - CH 3

Polysaccharides  

•  A polysaccharide is a polymer of monosaccharides. •  Examples:

§  Starch provides energy storage in plants. § Glycogen provides energy storage in animals. § Cellulose is found in the cell walls of plants. § Chitin is found in the cell walls of fungi and

exoskeleton of some animals. §  Peptidoglycan is found in the cell walls of bacteria.

Page 43: BIO151 - CH 3

a. Starch

b . Glycogen

Amylose: nonbranched starch granule

glycogen granule

Amylopectin: branched

150 nm

250 m

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

a:  ©  Jeremy  Burgess/SPL/Photo  Researchers,  Inc.;  b:  ©  Don  W.  Fawcett/Photo  Researchers,  Inc.  

Page 44: BIO151 - CH 3

3.3  Lipids  

•  Lipids are varied in structure. •  Large nonpolar molecules that are insoluble in water •  Functions:

§  Long-term energy storage §  Structural components § Cell communication and regulation §  Protection

•  Varieties: fats, oils, phospholipids, steroids, waxes

Page 45: BIO151 - CH 3
Page 46: BIO151 - CH 3

Triglycerides:  Long-­‐Term    Energy  Storage    

§  Also  called  fats  and  oils  §  Functions:  long-­‐term  energy  storage  and  insulation    

§  Consist  of  ONE  glycerol  molecule  linked  to  THREE  fatty  acids  by  dehydration  synthesis  

Page 47: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C H H

C H

C H H

OH

OH

OH

glycerol a. Formation of a fat

Page 48: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

+

C H H

C H

C H H

C O

C O

H

H

H H H H H

H C C C C C

H H H H H

H H H H H H H

C C C C C C C

H H H H H H

OH

OH

OH C O H

H H H H

H C

C C C C

H H H

in

HO

HO

HO

3 fatty acids glycerol a. Formation of a fat

Page 49: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 H2O

3 H2O

+

C H H

C H

C H H

C O C O

H

H

H H H H H

H C C C C C

H H H H H

H H H H H H H

C C C C C C C

H H H H H H

OH

OH

OH C O H

H H H H

H C

C C C C

H H H

in

HO

HO

HO

3 water molecules

3 fatty acids glycerol a. Formation of a fat

Page 50: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

in

3 H2O

3 H2O

+

C H H

C H C H H

C O C O C O

H

H

H H

C C C C C

H H H H H

H

H H H H H

H H H H H H H

C C

H H

H

H H

H H H H H

C C C C C

C C C C C

H H H

H

H

H H H H H

H C C C C C

H H H H H

H H H H H H H

C C C C C C C

H H H H H H

H H H H H

H C

C C C C

H H H

in

OH

OH

OH HO

HO

HO

H

H

H

H

C

C

C O

H

O C O O C

H

O C

fat molecule 3 water molecules

3 fatty acids glycerol a. Formation of a fat

Page 51: BIO151 - CH 3

51

•  Fatty  acids  are  either  unsaturated  or  saturated.  §  Unsaturated  -­‐  one  or  more  double  bonds  between  carbons  •  Tend  to  be  liquid  at  room  temperature  

– Example:  plant  oils    

§  Saturated  -­‐  no  double  bonds  between  carbons  •  Tend  to  be  solid  at  room  temperature  

– Examples:  butter,  lard  

Triglycerides: Long-Term Energy Storage

Page 52: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig.  3.10  

in

3 H2O

3 H2O

+

C H H

C H

C H H

C O C O

C H H H H C H

C H C H H C O

C H H C H

H C H H C H

C H C H H C

H C H C H

H C H C H

C H H C H

H H

C H H H C H

H H H C H C H

C H H C O

C H H C H

H C H H C H

H H H C H C H

C H H C H

H C H H C H

H

C O

H

H

H H

C C C C C

H H H H H

H

H H

H H H

H H H H H H H

C C

H H

H

H H

H H H H H

C C C C C

C C C C C

H H H

H

H

H H H H H

H C C C C C

H H H H H

H H H H H H H

C C C C C C C

H H H H H H

H H

H H H

H C

C C C C

H H H

in

OH

OH

OH HO

HO

HO

HO

HO

unsaturated fat

unsaturated fatty acid with double bonds (yellow)

corn corn oil

butter

H

H

H

H

C

C

C O

H

O C

O

O C

H

O C

fat molecule 3 water molecules

3 fatty acids glycerol a. Formation of a fat

Types of fatty acids b. Types of fats c.

saturated fat saturated fatty acid with no double bonds

mil

Page 53: BIO151 - CH 3

•  Most animal fats •  have a high proportion of saturated fatty acids, •  can easily stack, tending to be solid at room

temperature, and •  contribute to atherosclerosis, in which lipid-containing

plaques build up along the inside walls of blood vessels.

Page 54: BIO151 - CH 3

§ Most  plant  and  fish  oils  tend  to  be  •  high  in  unsaturated  fatty  acids  •  liquid  at  room  temperature  •  Good  source  of  dietary  fats    

Page 55: BIO151 - CH 3

55

Phospholipids:  Membrane  Components    •  Structure  is  similar  to  triglycerides  

§  Consist  of  ONE  glycerol  molecule  linked  to  TWO  fatty  acids  and  a  modified  phosphate  group  •  The  fatty  acids  are  nonpolar  and  hydrophobic.  •  The  modified  phosphate  group  is  polar  and  hydrophilic.  

•  Function:  form  plasma  membranes  •  In  water,  phospholipids  aggregate  to  form  a  lipid  bilayer.  §  Polar  phosphate  heads  are  oriented  towards  the  water.  §  Nonpolar  fatty  acid  tails  are  oriented  away  from  water.  

•  Nonpolar  fatty  acid  tails  form  a  hydrophobic  core.  

Page 56: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig.  3.11  

.

O

R O P O 3 O

Polar Head

glycerol

fatty acids

phosphate

Phospholipid structure a.

Nonpolar Tails

b. Plasma membrane of a cell

CH2 CH2 CH2

O O C CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH3

CH2

O

C CH2 CH2 CH2 CH2 CH2 CH2

insi

de c

ell

outs

ide

cel

l

CH

1 2

Phospholipids Form Membranes

Page 57: BIO151 - CH 3

57

•  Composed  of  four  fused  carbon  rings  §  Various  functional  groups  attached  to  the  carbon  skeleton  

•  Functions:  component  of  animal  cell  membrane,  regulation  •  Cholesterol  makes  the  bilayer  stronger,  more  flexible  but  less  fluid,  and  less  permeable  to  water-­‐soluble  substances  such  as  ions  and  monosaccharides.  

•  Examples:  cholesterol,  testosterone,  estrogen  

•  Cholesterol  is  the  precursor  molecule  for  several  other  steroids.  

Steroids: Four Fused Carbon Rings

Page 58: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

b . T e s t o s t e r o n e

HO a. Cholesterol

c. Estrogen

OH CH3

O

CH3

OH CH3

CH3

HC CH3

HC CH3

HO

(CH2)3

© Ernest A. Janes/Bruce Coleman/Photoshot

CH3

CH3

Steroid Diversity

Page 59: BIO151 - CH 3

59

•  Long-­‐chain  fatty  acid  bonded  to  a  long-­‐chain  alcohol  

•  Solid  at  room  temperature  

•  Waterproof  

•  Resistant  to  degradation  •  Function:  protection  •  Examples:  earwax,  plant  cuticle,  beeswax  

Waxes

Page 60: BIO151 - CH 3

60

Waxes  

a.   b.  Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

a:  ©  Das  Fotoarchiv/Peter  Arnold,  Inc.;  b:  ©  Martha  Cooper/Peter  Arnold,  Inc.  

Page 61: BIO151 - CH 3

PROTEINS  &  NUCLEIC  ACIDS  Properties  of:  

61

Page 62: BIO151 - CH 3

62

3.4  Proteins  

•  Proteins  are  polymers  of  amino  acids  linked  together  by  peptide  bonds.  § A  peptide  bond  is  a  covalent  bond  between  amino  acids.  

•  Two  or  more  amino  acids  joined  together  are  called  peptides.  § Long  chains  of  amino  acids  joined  together  are  called  polypeptides.  

•  A  protein  is  a  polypeptide  that  has  folded  into  a  particular  shape  and  has  function.  

 

Page 63: BIO151 - CH 3

63

Functions  of  Proteins      

•  Metabolism    

§  Most  enzymes  are  proteins  that  act  as  catalysts  to  accelerate  chemical  reactions  within  cells.  

•  Support  

§  Keratin  and  collagen    

•  Transport    

§  Hemoglobin  and  membrane  proteins  

•  Defense    

§  Antibodies  

•  Regulation    

§  Hormones  are  regulatory  proteins  that  influence  the  metabolism  of  cells.  

•  Motion    

§  Muscle  proteins  and  microtubules  

Page 64: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C

H

R

acidic group

amino group

COOH H2N

R = rest of molecule

Amino Acids: Protein Monomers •  There are 20 different common amino acids. •  Amino acids differ by their R groups.

Page 65: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

H Sample Amino Acids with Nonpolar (Hydrophobic) R Groups

C C H O

O C H

C O O

C H

C O O

C C H O

O S

C C O O

C C H O

O C

O C C H O

O C C H O

O C

O

C C H O

O C

O O

C C H O

O

C

C C H O

O

C H

C O O

C H

C O O

C H

C O O

C C H O

O C C

O O

CH2

H3N+

H3C CH3

H3N+

(CH2)2

CH3

H3N+

CH2

H3N+

H3N+

CH2

SH OH

CH

H3N+ H3N+ H3N+

CH2 (CH2)2

H3N+

CH2

N+H3

OH

H3N+

CH3

NH2

H3N+

H3N+

CH2

CH2

COO-

H3N+ CH2

CH2

CH2

H3N+

(CH2)3

NH

N+H2

NH2

H3N+

CH2

NH

N+H histidine (His) arginine (Arg) aspartic acid (Asp) lysine (Lys) glutamicacid (Glu)

asparagine (Asn) threonine (Thr)

Sample Amino Acids with Polar (Hydrophilic) R Groups

proline (Pro) leucine (Leu) phenylalanine (Phe) methionine (Met) valine (Val)

CH CH3

CH2 CH

CH2 H2N+

H2C

glutamine (Gln)

cysteine (Cys) serine (Ser)

tyrosine (Tyr) OH

CH

Sample Amino Acids with Ionized R Groups

CH3

NH2

H

CH2

Page 66: BIO151 - CH 3

amino acid

amino group

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Synthesis and Degradation of a Peptide

Page 67: BIO151 - CH 3

+

amino acid amino acid

acidic group amino group Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 68: BIO151 - CH 3

dehydration reaction

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

amino acid amino acid

acidic group amino group

water

peptide bond

dipeptide

Page 69: BIO151 - CH 3

dehydration reaction

amino acid amino acid

acidic group amino group

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

water

peptide bond

dipeptide

Page 70: BIO151 - CH 3

dehydration reaction hydrolysis reaction

water

peptide bond

dipeptide amino acid amino acid

acidic group amino group Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

Page 71: BIO151 - CH 3

71

Levels  of  Protein  Structure    

•  Proteins  cannot  function  properly  unless  they  fold  into  their  proper  shape.  §  When  a  protein  loses  it  proper  shape,  it  said  to  be  denatured.  •  Exposure  of  proteins  to  certain  chemicals,  a  change  in  pH,    or  high  temperature  can  disrupt  protein  structure.  

 •  Proteins  can  have  up  to  four  levels  of  structure:  

§  Primary  §  Secondary  §  Tertiary  §  Quaternary  

Page 72: BIO151 - CH 3

•  Several Roles for proteins:

•  Enzymes**

•  Structural

•  Storage

•  Contractile

•  Transport

•  Defensive

•  Signal

•  Receptor

Page 73: BIO151 - CH 3

73

Four  Levels  of  Protein  Structure    

§  Primary  •  The  sequence  of  amino  acids  

§  Secondary  •  Characterized  by  the  presence  of  alpha  helices  and  beta  (pleated)  sheets  held  in  place  with  hydrogen  bonds  

§  Tertiary  •  Final  overall  three-­‐dimensional  shape  of  a  polypeptide  

•  Stabilized  by  the  presence  of  hydrophobic  interactions,  hydrogen  bonding,  ionic  bonding,  and  covalent  bonding  

§ Quaternary  •  Consists  of  more  than  one  polypeptide  

Page 74: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COO–

hydrogen bond

Primary Structure

This level of structure is determined by the sequence of amino acids coded by a gene that joins to form a polypeptide.

Secondary Structure

Hydrogen bonding between amino acids causes the polypeptide to form an alpha helix or a pleated sheet.

Β (beta) sheet = pleated sheet α alpha) helix

C N R

C R

C N

C R

C

N C

R N

C R

N R

N C

N R

CH

CH

CH

CH

CH

CH

CH

CH

Tertiary Structure

disulfide bond

Quaternary Structure

This level of structure occurs when two or more folded polypeptides interact to perform a biological function.

hydrogen bond

Interactions of amino acid side chains with water, covalent bonding between R groups, and other chemical interactions determine the folded three-dimensional shape of a protein.

peptide bond amino acid

H3N+

C C

C C

C C

C

C C C

C C

C C

C

C C

C C

C C

C

R

R

R R

R

R R

R R

O

O

O O

O O

O

O O

O

O

O N

N N N

N N

N

N N N N C

H H H

H H H

H H

H H

C O O

O O

O O

O H H

H H

H

H

Page 75: BIO151 - CH 3
Page 76: BIO151 - CH 3

§  Proteins  consisting  of  one  polypeptide  have  three  levels  of  structure.  

§  Proteins  consisting  of  more  than  one  polypeptide  chain  have  a  fourth  level,  quaternary  structure.  

•  Primary •  Single chain

•  Secondary •  Pleated sheet •  Alpha Helix

•  Tertiary •  Quaternary

Page 77: BIO151 - CH 3

77

Examples  of  Fibrous  Proteins  

a.   b.   c.  

Copyright  ©  The  McGraw-­‐Hill  Companies,  Inc.  Permission  required  for  reproduction  or  display.  

a: © Gregory Pace/Corbis; b: © Ronald Siemoneit/Corbis Sygma; c: © Kjell Sandved/Visuals Unlimited

Page 78: BIO151 - CH 3

§  A  protein’s  three-­‐dimensional  shape  •  typically  recognizes  and  binds  to  another  molecule  and  •  enables  the  protein  to  carry  out  its  specific  function  in  a  

cell.  

Page 79: BIO151 - CH 3

79

Protein-­‐Folding  Diseases    

•  Chaperone  proteins  help  proteins  fold  into  their  normal  shape.  

§  Defects  in  chaperone  proteins  may  play  a  role  in  several  human  diseases  such  as  Alzheimer  disease  and  cystic  fibrosis.  

•  Prions  are  misfolded  proteins  that  have  been  implicated  in  a  group  of  fatal  brain  diseases  known  as  TSEs.  

§  Mad  cow  disease  is  one  example  of  a  TSE  disease.  

Page 80: BIO151 - CH 3

80

3.5  Nucleic  Acids  

•  Nucleic  acids  are  polymers  of  nucleotides.    

•  Two  varieties  of  nucleic  acids:  § DNA    (deoxyribonucleic  acid)  

•  Genetic  material  that  stores  information  for  its  own  replication  and  for  the  sequence  of  amino  acids  in  proteins.  

§ RNA    (ribonucleic  acid)  •  Perform  a  wide  range  of  functions  within  cells  which  include  protein  synthesis  and  regulation  of  gene  expression  

Page 81: BIO151 - CH 3

81

Structure  of  a  Nucleotide  

•  Each  nucleotide  is  composed  of  three  parts:  

§  A  phosphate  group  §  A  pentose  sugar    §  A  nitrogen-­‐containing  (nitrogenous)  base  

•  There  are  five  types  of  nucleotides  found  in  nucleic  acids.  §  DNA  contains  adenine,  guanine,  cytosine,  and  thymine.  §  RNA  contains  adenine,  guanine,  cytosine,  and  uracil.    

•  Nucleotides  are  joined  together  by  a  series  of  dehydration  synthesis  reactions  to  form  a  linear  molecule  called  a  strand.  

Page 82: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S

C

O P nitrogen-

containing base

pentose sugar

5'

4' 1' 2' 3'

phosphate

Nucleotides

Page 83: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S

C O

–O P O O

O– P nitrogen-

containing base

phosphate

pentose sugar Nucleotide structure a.

5'

4' 1' 2' 3'

Page 84: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S

C

O –O P O

O

O–

H

O C C

C C H

H H

H

P nitrogen- containing base

phosphate

pentose sugar deoxyribose (in DNA)

Nucleotide structure a.

OH

OH CH2OH

5'

4' 1'

2' 3'

b. Deoxyribose versus ribose

Page 85: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S

C O

–O P O O

O–

H

O C C

C C H

H H

H

O C C

C C H

H H

H

P nitrogen- containing base

phosphate

pentose sugar ribose (in RNA) deoxyribose (in DNA)

Nucleotide structure a.

OH OH OH

OH OH

CH2OH CH2OH

5'

4' 1'

2' 3'

b. Deoxyribose versus ribose

Page 86: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

H O

N

N H O N

C C C

C

C C

C C

H O N H N

N N

N

H N N

N C C C

C T U G A

Purines Pyrimidines

HN CH

CH CH

CH

CH HC CH

HN CH

guanine adenine uracil in RNA

Pyrimidines versus purines c.

cytosine thymine in DNA

NH2

HN CH3

NH2

H2N

O O O

Page 87: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S

C O

–O P O O

O–

H

O C C

C C H

H H

H

O C C

C C H

H H

H O

N

N H O N

C C C

C

C C

C C

H O N H N

N N

N

H N N

N C C C

H

C T U G A

P nitrogen- containing base

phosphate

pentose sugar ribose (in RNA) deoxyribose (in DNA)

Nucleotide structure a.

Purines Pyrimidines

OH OH OH

OH OH

HN CH

CH CH

CH

CH HC CH

HN CH

guanine adenine uracil in RNA

Pyrimidines versus purines c.

cytosine thymine in DNA

CH2OH CH2OH

NH2

HN CH3

NH2

H2N

O O O

5'

4' 1'

2' 3'

b. Deoxyribose versus ribose

Page 88: BIO151 - CH 3

88

Structure  of  DNA  and  RNA  

§  The  backbone  of  the  nucleic  acid  strand  is  composed  of  alternating  sugar-­‐phosphate  molecules.  

§  RNA  is  predominately  a  single-­‐stranded  molecule.  §  DNA  is  a  double-­‐stranded  molecule.  

•  DNA  is  composed  of  two  strands  held  together  by  hydrogen  bonds  between  the  nitrogen-­‐containing  bases.  The  two  strands  twist  around  each  other  to  form  a  double  helix.  

– Adenine  hydrogen  bonds  with  thymine  

– Cytosine  hydrogen  bonds  with  guanine  

•  The  bonding  between  the  nucleotides  in  DNA  is  referred  to  as  complementary  base  pairing.  

Page 89: BIO151 - CH 3

Chargaff’s  Rule  

89

Page 90: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig.  3.19  O

H S

S

S

S

P

P

P

P

N N N N

N N

N N

N N

N N

CH3

NH2

NH2

Backbone

NH2

Cytosine

Phosphate

Ribose Adenine Uracil

Guanine C G P

S A U

U

G

A

C O

Nitrogen-containing bases

O O

RNA Structure

Page 91: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A T

N N N H

O N H

H

N N N

H

H

O

N H O N N N

N C

N s u g a r

s u g a r O N H

N

A A

T G G

C

G C

C

c. Complementary base pairing

Sugar

Thymine Adenine

Phosphate Guanine Cytosine

cytosine (C) guanine (G)

sugar

sugar

thymine (T) adenine (A)

CH3

Double helix b. a. Space-filling model

C G P

S A T

― ― ―

H

T

© Photodisk Red/Getty RF

DNA Structure

Complementary Base Pairing in

DNA

Page 92: BIO151 - CH 3
Page 93: BIO151 - CH 3

93

A  Special  Nucleotide:  ATP  

•  ATP  (adenosine  triphosphate)  is  composed  of  adenine,  ribose,  and  three  phosphates.  

•  ATP  is  a  high-­‐energy  molecule  due  to  the  presence  of  the  last  two  unstable  phosphate  bonds.  

•  Hydrolysis  of  the  terminal  phosphate  bond  yields:  

§  The  molecule  ADP  (adenosine  diphosphate)  

§  An  inorganic  phosphate    §  Energy  to  do  cellular  work  

•  ATP  is  called  the  energy  currency  of  the  cell.  

Page 94: BIO151 - CH 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ATP  

N N N

N + + P P P P P P N N N

N ENERGY

phosphate diphosphate

ADP

triphosphate

ATP b.

NH2 NH2

H2O

adenosine triphosphate c. a.

adenosine adenosine

c: © Jennifer Loomis / Animals Animals / Earth Scenes