bio253_3.ppt

Upload: sah108pk796

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 bio253_3.ppt

    1/53

    1

    3. Nuclear Magnetic Resonance

    - NMR results from resonant absorption of

    electromagnetic energy by a nucleus (mostly protons)changing its spin orientation

    - The resonance frequency depends on the chemical

    environment of the nucleus giving a specific fingerprint of particular groups (NMR spectroscopy)

    - NMR is nondestructive and contact free

    - Modern variants of NMR provide 3 structuralresolution of (not too large) proteins in solution 

    - NMR tomography (Magnetic resonance imaging!

    MR") is the most advanced and po#erful imaging tool 

  • 8/9/2019 bio253_3.ppt

    2/53

    2

    $ome history of NMR

    %&' rinciple of solid state NMR

    (*loch! urcell)

    %&+, Resonance frequency depends

    on chemical environment (roctor! u)

    %&+3 verhauser effect

    1956 /irst NMR spectra of protein

    (Ribonuclease)

    %&+ /ourier Transform

    spectroscopy (0rnst)

  • 8/9/2019 bio253_3.ppt

    3/53

  • 8/9/2019 bio253_3.ppt

    4/53

    4

    *y no#5 More than %+, protein structures

    (M 6 , ,,,)

    *T"

    *ound #ater 

    rotein

    dynamics 

  • 8/9/2019 bio253_3.ppt

    5/53

    5

    /unctional MR"

  • 8/9/2019 bio253_3.ppt

    6/53

    6

    3.% rinciple of Nuclear Magnetic ResonanceMany (but not all) nuclei have a spin

    (I). 7uantum mechanically I can

    have 2I+1 orientations in ane8ternal magnetic field B.

    This spin is associated #ith a

    magnetic moment 

    g I 5 nucle

    ar g-factor 

  • 8/9/2019 bio253_3.ppt

    7/53

    7

    $ince biomatter is made of 9!:!N and ! these are

    the most relevant nuclei for biological NMR

  • 8/9/2019 bio253_3.ppt

    8/53

    8

    Mechanical (classical) model 

    *, ;; dditional precession of µ= around B% at frequency

  • 8/9/2019 bio253_3.ppt

    9/53

    9

    The magnetic moment orients in a magnetic field *,. ifferent orientations

    correspond to different energies 

    B0" ? %@A

    mI = 1/2

    mI = - 1/2

     E 

    B0

    %

    9!%3

    :!3%

    B0" ? %

    mI = 1

    - 1

     E 

    B0

    A9! %'N!

    0

    B0

    " ? 3@A mI = 3/2

    - 3/2

     E 

    B0

    A3Na!

    -1/2

    1/2

    g" ? +.+1

    2hen photons

    #ith frequency 

    ω= are absorbeda transition from

    the lo#er to the

    upper level

    occurs. $electionrule ∆m" ? % 

    γ  ? 'A.+4 M9

  • 8/9/2019 bio253_3.ppt

    10/53

    10

    *ulB magneti sample contains many nuclei (typically N C %,%4 or higher). "n

  • 8/9/2019 bio253_3.ppt

    11/53

    11

    The number of spins in state %!A is

    The average magneti

  • 8/9/2019 bio253_3.ppt

    12/53

    12

    ( )1

    t  B

    ϑ ϑ γ  

    =

    Thus a pulse of duration τ ?Aπ@' ω% gives a change in angle ofπ@A E pulse ".e. the magneti

  • 8/9/2019 bio253_3.ppt

    13/53

    13

    0 0

    0 0

    ( ) ( )

    ( ) ( )

    dn

    W n n W n ndt 

    dnW n n W n n

    dt 

    α β β α α  

    β 

    α α β β  

    = − − −

    = − − −

    This rela8ation is described by a set of rate equations for the

    transitions bet#een the states

    2hich yields a simple e8ponential rela8ation of the

    magneti

  • 8/9/2019 bio253_3.ppt

    14/53

    14

    The amplitudes of M8 and My decay #ith another rela8ation

    time TA called spin-spin rela8ation time. This rela8ation

    originates from inhomogeneity of *, . "t is described by

    another phenomenological equation

    y

    8

    y

    8

    "mmediately

    after π@A pulselater 

  • 8/9/2019 bio253_3.ppt

    15/53

    15

    ne can detect the transverse

    magneti

  • 8/9/2019 bio253_3.ppt

    16/53

    16

    3.A :lassical NMR e8periments

     >bsorption

    signal

  • 8/9/2019 bio253_3.ppt

    17/53

    17

    9igh frequency NMR

    spectrometers require verystrong magnetic fields! #hich are

    produced using super-cooled

    coils (T ? '.AH! liquid 9e). The

    superconducting coils are

    surrounded by a giant vessel

    containing liquid NA.

    600 MHz Proton NMR Spectrometer 

    B0

    *%

    B 9e

    NA

  • 8/9/2019 bio253_3.ppt

    18/53

    18

    3.3 :hemical shiftThe e8ternal field *, is changed (reduced in amplitude) due to local field -σ*,generated by the diamagnetic currents induced by *, in the electron system near the

    nucleus. s is the shielding constant (diamagnetic susceptibility)

    The shielding depends on the orientation

    of *, #ith respect to the molecules (e.g.

    ben

  • 8/9/2019 bio253_3.ppt

    19/53

    19

    rigin of chemical shift5 ?

    shielding of *,

    Jsual measure5 /requency

    shift of sample (%) relative tosome reference sample (A)K

    unit5 ppm 

  • 8/9/2019 bio253_3.ppt

    20/53

    20

    *enll carbons are identical

    same chemical shift! one line

    + different types of

    :-atoms! + lines 

    08amples5  %3: NMR

  • 8/9/2019 bio253_3.ppt

    21/53

    %9-NMR of ethyl alcohol! :93:9A9

    :93

    :9A

    9

    Three types of protons

  • 8/9/2019 bio253_3.ppt

    22/53

    22

  • 8/9/2019 bio253_3.ppt

    23/53

    23

    Typical chemical shifts  Reference Tetramethylsilane $i (:93) '9as very narro# line

    :hemical shifts are frequently used in chemistry and biology to

    determine amount of specific groups in sample (quantitative

    spectroscopy)

  • 8/9/2019 bio253_3.ppt

    24/53

    24

  • 8/9/2019 bio253_3.ppt

    25/53

    25

    3.' ulsed NMR More efficient than classical (frequency or *) scans

    $tudy the free induction decay (/")

    icB up coil

    F"dealG /" ? one precession frequency

  • 8/9/2019 bio253_3.ppt

    26/53

    26

    FRealG /" ? several precession frequencies

    because of several nuclei #ith different chemical

    shifts 3% NMR

    /T

    $ i h

  • 8/9/2019 bio253_3.ppt

    27/53

    27

    $pin echo&, degree flip

    0volution ? spreading

    (dephasing) in 8!y plane

    %1, degree flip ? mirror image relative to 8 Refocusing ? spin echo

    t

    π/2 π

    t% t%

     My - echo after A t%

    /" TA

      T%

  • 8/9/2019 bio253_3.ppt

    28/53

    28

    $pin-$pin "nteractions

    $calar  or J E coupling (through bond)

    give rise to rela8ation of the magneti E : E * ). "t is short ranged (ma8. A or 3 bond

    lengths)

    eg 9A

  • 8/9/2019 bio253_3.ppt

    29/53

    29

    L- coupling results in additional splitting of (chemically

    shifted) linesThe magnetic dipoles of

    the :93 group protons

    interact #ith the

    aldehyde proton spin and

    vice versa. arallel

    orientations have higher

    energies.

    N*5 the spin-spin coupling constant L also depends on the bond angle

    - info on conformation 

    % NMR f l l

  • 8/9/2019 bio253_3.ppt

    30/53

    30

    % NMR of macromolecules >lanine in A,

    Tryptophan in A,

    L-coupling

    L-coupling

    structure

    =ysossignment of lines oB

     >ssignment too complicated

    N*5 0R high field

    NMR! in principle could

    solve resolution problem

  • 8/9/2019 bio253_3.ppt

    31/53

    31

    "nteractions bet#een different spin-states

    1m∆ = ±

    ( ) ( )   ( ) ( ) ( )1 11

    2 1 3 1 2 4 1 s I 

    dnW n n W n n W n n

    dt = ∆ − ∆ + ∆ − ∆ + ∆ − ∆

    $election rule

    demands

    Oives rate equations of the type5

  • 8/9/2019 bio253_3.ppt

    32/53

    32

    ( ) ( )( )   ( )   ( ) ( )( )1 2 1 22 0 2 0   2 z   I I z z I I z z d I 

    W W W W I W W S W W I S  dt 

    ∆= − + + + ∆ − − ∆ − − ∆

    1 3 2 4

    1 2 3 4

    1 3 2 42

     z 

     z 

     z z 

     I n n n n

    S n n n n

     I S n n n n

    ∆ = ∆ − ∆ + ∆ − ∆

    ∆ = ∆ − ∆ + ∆ − ∆

    ∆ = ∆ − ∆ − ∆ + ∆

    Oenerali

  • 8/9/2019 bio253_3.ppt

    33/53

    33

    The same game can be played for the other

    magneti

  • 8/9/2019 bio253_3.ppt

    34/53

    34

    rotocol5 TaBe /"Ds at variable values of t%

    % (auto) peaBs

    :ross peaBs indicating spin-spin coupling

  • 8/9/2019 bio253_3.ppt

    35/53

    35

    A :$ spectrum of isoleucine

    :ross peaBs give information on

    distance along the bond

    Through bond interaction

    be#teen :α9 and :β9CαH

    CβH

    CδH3

    Cγ H2

  • 8/9/2019 bio253_3.ppt

    36/53

    36

    A :$ spectrum of a heptapeptide Tyr-Olu->rg-Oly-

     >sp-$er-ro (ORO$)

    i t di l di l i t ti (th h ) t B

  • 8/9/2019 bio253_3.ppt

    37/53

    37

    irect dipole-dipole interaction (through space) can taBe up a

    change of ∆m ? P@- %! ".e. rela8 the selection rules.

    *-field generated by dipole µ

    Related to the energy changes of > and * due to the

    induced fields at > and *5 - µ >B* and - µ*B > 

    $trong dependence on distance bet#een the differentspin sites (r - due to dipole interaction) gives very

    sensitive spatial information about distances bet#een

    spins do#n to ,.+ nm

    2 4

    0,23 6, IS 

     IS IS 

    V W r r 

    γ γ  : :

    Transition rates go #ith the

    square of the interaction

    N t B l th t f th ti ti i

  • 8/9/2019 bio253_3.ppt

    38/53

    38

     z   I    z 

    S z  z 

     R   I  I  R   S 

    σ σ 

     − − ∆∆     ÷ =  ÷  ÷ ÷   − −   ∆ ÷      ∆  

    No# taBe along the cross terms of the magneti

  • 8/9/2019 bio253_3.ppt

    39/53

    39

    $implify by assuming R" ?R$5

    ( )

    ( ) ( )( )   ( ) ( )( )

    ( ) ( )( )   ( ) ( )( )

    1 2 1 2

    1 2 1 2

    1exp exp exp exp

    2exp 1

    exp exp exp exp2

    t t t t   R

     Lt t t t t  

     R

    σ λ λ λ λ  

    σ λ λ λ λ  

     − + − − − − ÷

    = ÷ ÷− − − − + − ÷  

    This implies ma8imum mi8ing after a time scale τm

    /lip the spins $ at that time to enhance

    contrast

  • 8/9/2019 bio253_3.ppt

    40/53

    40

    :ombine this (Nuclear verhauser) enhancement #ith the

    technique of A spectroscopy gives N0$5

    /or macromolecules! there are many interacting spins! thus a

    much more complicated set of equations #ould have to be

    solved

    1 1 1

    1

    1

     j n

    i in

    n nj n

     R

     R I I 

    σ 

    σ σ 

    σ 

    σ 

    σ 

    •     ÷= ÷

    ÷  

    ∆ ∆Ouur uur

    The appearance of correlation peaBs as a function of τmi8 gives

    information about the spatial properties (σ) of the atoms

    art of A N0$ spectrum of a ORO$

  • 8/9/2019 bio253_3.ppt

    41/53

    41

    art of A N0$ spectrum of a ORO$

    N0$ correlates all

    protons near in real space

    even if the are chemicallydistant 

    H

    H

    Typical N0$ signatures

    etermination of protein structure from

  • 8/9/2019 bio253_3.ppt

    42/53

    42

    etermination of protein structure from

    multi-dimensional NMR - data

    $tarting structure (from

    chemical sequence)

    Random folding at start of

    simulation

    9eating to overcome localenergy barriers

    :ooling under distance

    constraints from NMR

    Repeating for many starting

    structures 

    /amily of structures

  • 8/9/2019 bio253_3.ppt

    43/53

    43

    NMR l ti

  • 8/9/2019 bio253_3.ppt

    44/53

    44:ytochrome 3

    Tyrosine hosphatase 

    NMR solution

    structures of proteins

    3 + MR"

  • 8/9/2019 bio253_3.ppt

    45/53

    45

    3.+ MR" 

     >t much reduced spatial resolution! NMR can

    also be used as an imaging tool! #here thespatial resolution is obtained by encoding

    space by a frequency (i.e. a field gradient)

    M tl d i b T l ti l

  • 8/9/2019 bio253_3.ppt

    46/53

    46

    Mostly driven by TA rela8ations! apply a

    gradient field across the sample! #hich gives

    different =armor frequencies for differentpositions (all done at 9 frequencies)

    Resonance

    condition only

    fulfilled at one

    specific position

    N h t l d iti i th

  • 8/9/2019 bio253_3.ppt

    47/53

    47

    No# #e have to also encode position in the

    8-y direction

  • 8/9/2019 bio253_3.ppt

    48/53

    /inally apply a field gradient along the 8

  • 8/9/2019 bio253_3.ppt

    49/53

    49

    /inally apply a field gradient along the 8-

    direction during readout! #hich gives a

    frequency shift of the /" precession

    Then you taBe a signal #ith a picBup coil as

  • 8/9/2019 bio253_3.ppt

    50/53

    50

    Then you taBe a signal #ith a picBup coil as

    a function of /" time and time duration of

    the phase coding pulse! #hich you /ourier

    transform to obtain a proper image

    $ince you have turned a spatial

  • 8/9/2019 bio253_3.ppt

    51/53

    51

    $ince you have turned a spatial

    measurement into a spectroscopic one! the

    resolution is spectroscopically limited (or

    limited by the gradients you apply)

    Therefore fast scans (needed for functional

    studies have less resolution)

    Recap $ec 3

  • 8/9/2019 bio253_3.ppt

    52/53

    52

    NMR is a spectroscopic method given by

    the absorption of em radiation by nuclei

    The signals depend on the nuclei! the

    applied field and the chemical environment

    Jsing /ourier-transform methods! a fast

    characteri

  • 8/9/2019 bio253_3.ppt

    53/53

    53

    More recap

    ipole-ipole interactions can be used to

    characteri