biochemical screening and lipid profiling from cyanobacterial...

50
79 Biochemical screening and lipid profiling from cyanobacterial diversity of rice fields of Manipur 4.1. Introduction Cyanobacteria are photosynthetic prokaryotes possessing the ability to synthesize chlorophyll-a besides their ability to form the phycobilins. Phycobilins are high concentration of pigment occurring under some conditions which leads to the bluish colour of the organisms and hence known, cyanobacteria or blue-green algae. They are grouped under the gram-negative bacteria and their morphology varies from unicellular to multicellular. Some species have unique cells called heterocysts, which are capable of fixing atmospheric nitrogen. Cyanobacteria are known to be one of the promising supplements to nitrogenous fertilizer, but the process biological nitrogen fixation, mediated through the enzyme nitrogenase may be inhibited in presence of readily available nitrogen sources. Chlorophyll provides a chelating agent activity which can be used in ointment, treatment for pharmaceutical benefits especially liver recovery and ulcer treatment. It also repair cells, increases haemoglobin in blood and faster the cell growth (Puotinen, 2009). Carotenoids are widely used as natural colourant for food, drug and cosmetic products. They served as a second line density protein. Cyanobacteria, in general possess all the known phycobiliproteins (phycocyanin, phycoerythrin, phycoerythrocyanin and allophycocyanin). Among them, phycocyanin and phycoerthrin are commercially valuable. Phycocyanin is used in water- insoluble, dairy products and soft drinks (Cohen, 1986). Cyanobacteria are considered as a system of photo-production of ammonia by their diazoptrophic potential. Mutant strains of Anabaena

Upload: truongmien

Post on 15-Feb-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

79

Biochemical screening and lipid profiling from

cyanobacterial diversity of rice fields of Manipur

4.1. Introduction

Cyanobacteria are photosynthetic prokaryotes possessing the ability to synthesize

chlorophyll-a besides their ability to form the phycobilins. Phycobilins are high concentration of

pigment occurring under some conditions which leads to the bluish colour of the organisms and

hence known, cyanobacteria or blue-green algae. They are grouped under the gram-negative

bacteria and their morphology varies from unicellular to multicellular. Some species have unique

cells called heterocysts, which are capable of fixing atmospheric nitrogen. Cyanobacteria are

known to be one of the promising supplements to nitrogenous fertilizer, but the process biological

nitrogen fixation, mediated through the enzyme nitrogenase may be inhibited in presence of

readily available nitrogen sources.

Chlorophyll provides a chelating agent activity which can be used in ointment, treatment

for pharmaceutical benefits especially liver recovery and ulcer treatment. It also repair cells,

increases haemoglobin in blood and faster the cell growth (Puotinen, 2009). Carotenoids are

widely used as natural colourant for food, drug and cosmetic products. They served as a second

line density protein. Cyanobacteria, in general possess all the known phycobiliproteins

(phycocyanin, phycoerythrin, phycoerythrocyanin and allophycocyanin). Among them,

phycocyanin and phycoerthrin are commercially valuable. Phycocyanin is used in water-

insoluble, dairy products and soft drinks (Cohen, 1986). Cyanobacteria are considered as a system

of photo-production of ammonia by their diazoptrophic potential. Mutant strains of Anabaena

Page 2: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

80

variabilis fixed N2 and liberated NH4+ into the media (Kerby et al., 1986). The high content

protein indicates relatively good amino acid profile and low metal content enabled the use of algal

biomass as feed supplement. The use of microalgae in industry encourage the development of

better cultivation system in order to optimize the production of algae rich in active substances

such as vitamins, protein, amino acids, fatty acids and trace elements.

Fatty acids, in general are of commercial value and many are pharmaceutical agents

(Tanticharoen et al., 1994). The cyanobacterium Spirulina has commercially exploited in several

countries (Benemann, 1988; Venkataraman and Becker, 1985). It has been used as food for many

centuries in central America. For the past two decades, Spirulina platensis has been a focus of

interesting among researchers in various fields because of its commercial importance as a source

of proteins, vitamins, essential amino acids and fatty acids (Ciferri and Tiboni, 1985; Vonshak

and Richmond, 1988; Vonshak, 1990; Tanticharoen et al., 1994) and more recently, for its

potential in therapeutic effects (Amha Belay et al., 1993).

The merits of an organism for commercial exploitation are maximum yield and utility of

cellular constituents (Borowitzka and Borowitzka, 1988). Higher growth rate and nutrient profile

of cyanobacteria make them a potentially valuable source of nutrients (Cannell, 1989). Growth of

a living organism is defined as an increase in mass or size accompanied by synthesis of

macromolecules, leading to the production of newly organized structure. Microbiologists use a

variety of techniques to quantify microbial growth other than determining direct cell count. These

include the measurement of macromolecules in the cell (Healy and Henzdel, 1976), the cell quota

of specific elements (Rhee and Gotham, 1980) or the kinetic parameters for nutrient uptake

(Zevenboom et al., 1982). Although relative incorporation, into protein was constant, the absolute

Page 3: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

81

rate of protein incorporation increased at higher growth rate because the photosynthetic rate

increased. Chlorophyll-a is another component of biomass, which can be estimated as a measure

of growth (Kobayasi, 1961).

Venkataraman and Mahadevaswamy (1992) pointed out that good culture management

with suitable strain is one of the basic needs to get promising yields with quality material on

commercial scale. Therefore, cultivation techniques are to be improved with the main objective of

obtaining higher algal biomass that exhibits specific qualities (Lobban and Herrison, 1994). Mass

cultivation of cyanobacteria is essentially a complex process involving a large number of

variables for successful growth of essential requirements of the organism as possible. The

limitations imposed in the cultivation process be due to physical factors like light, nutrients,

temperature, pH and physiological (organism-environmental-interrelationship) and economic

constraints.

The environmental factors may be either physiological such as acidity and pH or

chemical which provide all the raw materials used for structural cells and protoplasmic synthesis

of cyanobacterial cells (Becker, 1994). Physical and chemical factors such as temperature, acidity

and light (Lobban and Herrison, 1994), aeration (Chen and Johns, 1991) or nutrient concentration

(Bjornsater and Wheeler, 1990) influence the biochemical composition, physiological status and

ultrastructure of the cyanobacteria. Culture medium has been found to play a significant role in

the growth kinetic of algae, since it has to stimulate the natural conditions as closely as possible.

Cyanobacteria are known to exhibit a wide adaptability to pH, but for mass cultivation of

cyanobacteria, it is essential to determine their optimal conditions.

Page 4: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

82

4.2. Materials and methods

Biochemical composition: Screening for chlorophyll-a, total soluble proteins, total

carbohydrates, phycobiliproteins, carotenoids, ammonia excretion and ARA activity were

investigated in 15th

days and 30th

days old cultures of all heterocystous cyanobacteria. Non

heterocystous cyanobacteria were executed for lipids profiling and fatty acid composition

accordingly.

4.2.1. Preparation of inoculums: A loopful cyanobacterial biomass were inoculated in 250 ml

conical flasks and incubated in culture room at 28±2⁰C of 4KLux light intensity provided by

white fluorescent tubes 14/10 light dark phase. 15 days old biomass homogenized uniformly.

5 ml well homogenized cyanobacterial inoculum of each strain was inoculated into 250 ml

conical flasks with 100 ml culture medium in duplicate for 15th

day and 30th

day investigation.

Every day agitation was done to avoid clumping of the cells and for faster growth.

4.2.2. Biochemical estimation of chlorophyll-a: Estimation of chlorophyll-a was determined by

adapting the method described by Mckinney (1941). Cyanobacteria possess chlorophyll-a and it

is important for evaluation of growth and photosynthetic rate and participate directly in the light

requiring reactions of photosynthesis. 10 ml of homogenized algal suspension was taken in

centrifuge tube and done centrifugation at 7000 rpm for 10 mins and then discarded the

supernatant and transferred the algal pellet to a test tube and added 10 ml 90% methanol. Shaked

the contents and placed the tubes covered with aluminium foil in a water bath at 60˚C for 30 mins.

The absorbance from supernatant was measured at 665 nm against methanol blank. Calculation

Page 5: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

83

was done by using the following equation, chl-a (µg/ml) = (O.D.665 x 13.42) where, 13.42 is the

extinction co-efficient at 665 nm.

4.2.3. Biochemical estimation of total soluble proteins: Estimation of total soluble proteins was

determined by the method described by Herbert et al. (1971). Proteins make up large fraction of

actively growing cyanobacteria and have vast applicability for using as value added products and

other pharmaceutical applications. 0.5 ml homogenized algal suspension was taken and added 0.5

ml of solution NaOH (40 gm/1000 ml=1N) then incubated in water bath for 15 mins at 100°C.

Cooled in running tap water and added 2.5 ml of 5% Na2CO3=5 gm/100 ml and 0.5%

CuSO4.5H2O in 1% sodium potassium tartarate. Finally added 0.5 ml of 1:1 Folin Ciocalteu’s

reagent and shaked the content well in a vortex shaker and incubated at room temperature for 15

mins.

Standard curve preparation: Dissolved 10 mg

BSA in a standard flask and make up upto 100

ml (conc.100 µg/ml). 5 different protein

concentrations were taken along with a blank

solution. The blue absorbance was measured at

650 nm against blank. A standard curve having

X-axis as concentration of protein in µg/ml and

Y-axis as absorbance (O.D.) was drawn and found out the concentration of unknown sample from

the optical density obtained.

Fig.-4: Standard graph for total soluble proteins

Page 6: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

84

4.2.4. Biochemical estimation of total carbohydrates: Total sugar was estimated following the

method described by Spiro (1966). 0.2 ml of the homogenized algal cell suspension was taken and

added 0.8 ml of distil water and 4 ml anthrone reagent (dissolved 0.1 g of anthrone and 1.0 g of

thiourea in freshly prepared 100 ml of 75% sulphuric acid) and shaken gently. Tubes were kept in

a boiling water bath for 15 min by covering the mouth of tube with aluminium foil to prevent

evaporation. After cooling the tubes the absorbance was measured at 620 nm against blank and

total sugar content was calculated from the reference of standard graph.

Standard graph of total carbohydrates: Standard

graph was prepared with different concentration of

glucose i.e. 10-100 µg/ml following the method of

Spiro (1966). The optical density and concentration of

glucose were plotted on Y-axis and X-axis respectively

to get the standard graph and the corresponding

concentration of carbohydrates content of unknown

algal culture was calculated from the graph.

4.2.5. Biochemical estimation of phycobiliproteins: Phycobiliproteins are a family of highly

soluble and reasonably stable fluorescent proteins. These proteins contain covalently linked

tetrapyrrole groups that play a biological role in collecting light and through fluorescence

resonance energy transfer, conveying it to a special pair of chlorophyll molecules located in the

photosynthetic reaction center and also serve for nitrogen storage of cyanobacteria. Estimation of

phycobiliproteins was determined by the method described by Bennett and Bogorad (1973). 10 ml

algal suspension was centrifuged at 7000 rpm for 10 mins. The pellets were suspended in 5 ml

Fig.- 5: Standard graph for total carbohydrates

Page 7: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

85

phosphate buffer. The contents were repeatedly freezed in 4ºC and thawed at room temperature.

The supernatants were pooled and the absorbance was measured at 562 nm, 615 nm and 652 nm

respectively.

Calculation was done using the following equation:

C-Phycocyanin= (A615-0.474 x A652)/ 5.34; C-Allophycocyanin= (A652-0.208 x A615)/ 5.09

C-Phycoerythrin= (A562-(2.41(PC))-(0.849(APC)/ 9.62

Where 5.34, 5.09 and 9.62 are the extinction co-efficient

4.2.6. Biochemical estimation of total carotenoids: Carotenoids belong to the category of

tetraterpenoids. Structurally they are in the form of a polyene chain. Carotenoids have important

functions in photosynthesis, nutrition and protection against photooxidative damage and hence

used as food colourants and vitamin-A precursor possessing anti-cancer properties. In present

study, estimation of carotenoid was determined by the method described by Jensen (1978). 10 ml

homogenized algal suspension was taken and centrifuged at 6500 rpm for 10 min. Discarded the

supernatant and added 3 ml 85% acetone and subjected to repeat freezing and thawing until the

pellet becomes colourless. Measured the volume of the extract and make up the final volume upto

10 ml with 85% acetone and read the O.D. at 450 nm using 85% acetone as blank and calculated

the total amount of carotenoid in µg/ml.

Calculation: C= (D x V x f) x 10 /2500; Where, D= O. D. at 450nm; V= volume of the extract;

f = dilution factor; average extinction co-efficient of pigment is 2500

4.2.7. Biochemical estimation of ammonia excretion: Ammonia excretion by cyanobacteria is

important to study the nitrogen contribution to the soil i.e. the amount of nitrogen trapped from

the atmosphere. The more ammonia excreted, the more free nitrogen fixed. In present

Page 8: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

86

investigation, ammonia excretion was determined by the method described by Solorzano, 1969.

05 ml culture filtrate obtained by filtration of homogenized algal suspension filtered through

Whatmann’s filter paper was taken. Added 0.2 ml mixed phenol (2 g of reagent grade phenol

dissolved 100 ml of 95% ethyl alcohol) thereafter added 0.2 ml reagent-A (0.15 g of sodium

nitroprusside dissolved in 30 ml of distilled water and stored in amber colour bottle). Finally 0.5

ml reagent-B (10 g of trisodium citrate and 0.5 g of NaOH in 50 ml of distilled water with 20 ml

of 1.5 N sodium hypochlorite soln), mixed thoroughly with the aid of vortex shaker and kept for

1 hour for development of blue colour in dark place. The absorbance was measured at 640

against blank. Calculation was done in µg/ml = O.D.640 x 300 where 300 is the extinction co-

efficient.

4.2.8. Lipid profiling: In present investigation for lipid profiling from non heterocystous

filamentous cyanobacteria, the method followed as per described by Bligh and Dyer 1959. 15 ml

of 2% H2SO4 in methanol solution was added to total biomass (300 mg) in round bottom (RB)

flask. Refluxed the RB flask containing the biomass in heating mantle at 10°C for 4 hours.

Transferred the FAME solution to a separating funnel then added ethyl acetate and distil water to

the FAME solution contained inside the separating funnel. Two aqueous phase layer is formed.

Then separated out the lower phase and the upper phase was retained and washed with distil water

till it gives a pH 7.0 (checking through pH strip). Separated the extract into a conical flask and put

excess amount of sodium sulphate (Na2SO4) into it and kept for 20 min. Extract was transferred to

50 ml RB flask and rotaevaporated at 65°C. Rinsed the RB flask containing the FAME by putting

few drops of dichloro-methane and transferred the solution to a vial. Took 1µl sample from vial

Page 9: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

87

using micro syringe and injected in GC. From the standard (SUPELCOTM

37 components) and its

retention time, the fatty acid content was identified.

4.2.9. Determination of acetylene reduction activity: Cyanobacteria have the ability to fix

atmospheric nitrogen by the help of nitrogenase enzyme mandatory present in heterocysts and

sometimes and in specific conditions active in vegetative cells too. Acetylene reduction activity

was determined by the method described by Hardy et al., 1973. A known volume of algal biomass

was taken into 13 ml capacity test tubes. Stopper the tubes and remove the gas phase equivalent to

10% of the remaining volume of the tubes and injected equivalent volume of acetylene (C2H2).

Vials were incubated for 120 min under light conditions (4 Klux) at 28±2°C interval shake was

done. A gas sample of known volume (0.1 to 1.0 ml) was withdrawn with gas tight syringe and

injected into injection port of the gas chromatograph.

Calculations:

(i) amount of ethylene (C2H4) produced=Cmole

(ii) calculation volume of vial=dml

(iii) substract volume of algal sample ‘e’ ml from ‘d’ to get volume of gas phase in vial

volume of gas phase in vial (d-e)=fml

(iv) nmole C2H4/ vial =fxc for 1½ h incubate.

acetylene reduction activity=fxcx60/90xX nmole C2H4/µg chl-a/hr

Statistical analysis: Result were analyzed for standard deviation by using Microsoft office excel

sheet

Reference and equipments used for biochemical characterization and lipid profiling:

SN Materials methods and reference Equipments with brand name

1 Chlorophyll a: Mckinney, (1941) Ø Homogenizer Remi RQ127A

Ø Vortex shaker –Vortexer GeNei

Ø Water bath NSW-125

Ø Spectrophotometer Shimadzu UV-

2 Total soluble protein: Herbert et al.,

(1971) 3 Total sugar content: Spiro, (1966)

Page 10: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

88

4 Phycobiliproteins: Bennett and

Bogorad, (1973)

1800

Ø Refrigerated centrifuge Eppendorf

5430R

Ø Weighing balance-Mettler Toledo

New Classic MS

Ø GC-FID Thermo scientific Chemito

Ceres 800 plus

Ø Reflux Heating menthel LABCD

India

Ø Rotary evaporator-Hahnvapor HS-

2005V

5 Carotenoids: Jensen, (1978)

6 Ammonia excretion: Solorzano,

(1969) 7 Nitrogenase activity: Hardy et al.,

(1973) 8 Lipid profiling: Bligh and Dyer,

(1959)

4.3. Results

One hundred twelve (112) cyanobacterial strains belong to 16 genera including non

heterocystous (07 genera 40 strains) and heterocystous (09 genera 72 strains) namely;

Myxosarcina (01), Limnothrix (03), Phormidium (16), Oscillatoria (01), Spirulina (01), Lyngbya

(08) Plectonema (10) Cylindrospermum (04), Anabaena (32), Nostoc (13), Aulosira (02),

Scytonema (03), Calothrix (09), Microchaete (06), Dichothrix (02) and Westiellopsis (01) were

isolated from rice fields of Manipur and incorporated in present study. These unialgal

cyanobacterial strains were investigated for chl-a, ammonia excretion, total carotenoids, total

soluble proteins, total carbohydrates and phycobiliproteins of 15th

and 30th

days old growth

(table 7-9). Seventy two (72) heterocystous cyanobacteria were investigated for acetylene

reduction activity of 15th

and 30th

days old growth (table 10); however forty (40) non-

heterocystous strains were deeply characterized for fatty acid composition and lipid profiling

(table-11).

Page 11: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

89

Table-7: Screening for chl-a and total soluble proteins from cyanobacterial

strains of rice fields of Manipur

Strains name with code no. chlorophyll-a (µg/ml) total soluble protein (µg/ml)

15th

day 30th

day 15th

day 30th

day

Microchaete uberrima BTA001 7.84±1.12 12.3±1.10 27.6±1.50 126.6±10.4

Phormidium mucosum BTA002 5.64±0.24 8.12±0.92 22.6±4.50 130.0±0.01

Anabaena variabilis BTA003 2.32±0.15 4.23±0.31 23.6±1.02 59.6±2.51

Anabaena doliolum BTA004 4.19±0.19 4.80±0.02 89.3±1.92 93.0±1.90

Limnothrix vacuolifera BTA005 3.95±0.75 5.92±0.32 35.6±1.15 98.0±2.30

Anabaena variabilis BTA006 6.19±2.12 8.34±0.12 27.0±1.88 78.0±1.73

Microchaete grisea BTA007 7.02±0.23 10.8±2.04 64.0±1.08 116.6±5.77

Anabaena circinalis BTA008 2.54±0.38 4.35±0.00 3.00±0.00 8.00±0.00

Plectonema radiosum BTA009 3.51±0.28 5.62±0.32 61.0±6.02 119.0±9.64

Plectonema boryanum BTA010 4.96±0.32 5.90±0.43 51.6±1.04 15.6±1.62

Page 12: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

90

Nostoc hatei BTA012 5.82±0.31 6.00±2.12 42.3±0.57 76.0±3.40

Phormidium tenue BTA013 5.93±1.54 5.91±2.04 93.3±2.30 120.3±1.52

Anabaena oryzae BTA014 2.45±0.27 4.00±1.90 10.1±3.29 42.3±1.52

Calothrix wembaerensis BTA015 2.49±0.22 2.67±1.09 54.6±1.25 63.0±1.09

Plectonema boryanum BTA016 3.81±0.62 4.29±1.23 4.30±0.57 123.3±5.77

Anabaena oryzae BTA017 2.09±0.36 3.09±0.09 17.6±3.78 24.3±1.27

Anabaena oryzae BTA018 5.15±0.90 6.09±0.00 33.6±1.15 124.6±1.15

Anabaena spiroides BTA019 4.33±0.43 7.90±0.08 33.2±2.20 72.3±1.41

Phormidium faveolarum BTA020 0.36±0.06 2.09±0.90 15.0±0.07 22.2±2.61

Anabaena ambigua BTA021 3.23±0.08 6.09±0.03 45.0±1.54 65.3±1.65

Anabaena anomala BTA023 8.58±0.75 9.00±0.01 47.8±3.44 95.0±2.64

Calothrix javanica BTA024 5.89±1.07 14.4±1.17 67.9±2.56 103.0±2.33

Calothrix geitonos BTA025 12.1±1.19 15.0±1.12 48.3±3.42 83.6±2.08

Calothrix marchica BTA026 13.2±1.33 16.0±1.09 82.3±2.50 117.0±1.00

Nostoc muscorum BTA027 8.97±1.05 9.00±1.09 75.2±1.32 120.0±0.00

Dichothrix orsiniana BTA028 4.84±0.58 6.09±0.00 17.5±2.56 33.3±1.52

Nostoc parmelioides BTA029 10.6±2.16 12.0±1.10 52.6±2.30 74.6±1.10

Anabaena fertilissima BTA030 1.70±0.86 2.10±0.06 4.32±2.35 6.00±4.35

Anabaena oryzae BTA031 9.21±1.04 14.9±1.04 64.3±1.33 89.6±4.61

Plectonema radiosum BTA032 1.39±0.55 2.04±0.07 5.66±4.04 14.6±5.50

Plectonema litorale BTA033 1.94±0.20 3.80±1.09 12.0±0.75 17.2±1.32

Anabaena ambigua BTA034 3.09±0.03 17.3±1.20 106.0±1.64 90.3±8.08

Anabaena fertilissima BTA035 11.6±3.59 4.48±0.48 85.3±4.16 92.3±1.32

Page 13: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

91

Anabaena variabilis BTA036 18.2±1.96 8.21±1.52 76.6±1.27 56.0±2.86

Nostoc hatei BTA037 13.3±2.21 5.51±0.60 51.3±4.04 115.0±5.00

Nostoc carneum BTA038 19.1±0.29 19.1±0.29 83.6±1.52 77.0±3.60

Myxosarcina burmensis BTA040 6.71±1.95 5.64±0.62 58.3±4.50 53.3±7.63

Anabaena iyengarii BTA041 19.7±0.42 0.51±0.08 34.6±1.62 74.0±10.4

Phormidium arthurensis BTA042 0.74±0.13 12.5±0.69 61.6±1.15 59.3±1.36

Anabaena variabilis BTA043 3.24±0.14 5.24±0.00 19.3±1.50 27.5±2.52

Microchaete loktakensis BTA044 9.29±1.54 10.5±0.54 58.3±5.68 94.0±6.55

Microchaete uberrima BTA045 13.0±0.75 14.2±0.01 42.6±4.22 51.6±13.6

Calothrix marchica BTA046 7.02±0.32 9.05±0.10 78.3±2.22 103.6±7.76

Plectonema nostocorum BTA047 3.44±1.11 4.39±1.15 129.0±3.46 90.2±2.36

Phormidium fragile BTA048 5.26±0.17 11.1±0.55 129.0±2.64 95.6±3.22

Microchaete tenera BTA049 18.4±1.76 14.2±1.36 103.3±2.54 89.6±10.0

Anabaena oryzae BTA050 11.5±1.60 12.4±1.30 110.3±13.4 103.6±15.7

Phormidium purpurascens BTA081 3.08±0.10 5.71±0.13 4.20±1.20 1.00±1.00

Limnothrix redekei BTA082 4.08±0.04 10.1±0.26 128.0±1.73 112.0±3.62

Phormidium kuetzingianum BTA083 1.01±0.00 3.84±0.02 40.3±5.50 55.7±6.60

Anabaena spiroides BTA084 10.4±3.55 31.1±3.55 108.2±1.85 83.0±2.06

Lyngbya laxespiralis BTA085 4.57±0.22 8.23±0.12 92.6±14.4 98.3±2.88

Phormidium tenue BTA086 6.40±0.10 10.3±0.00 59.6±4.50 78.0±2.94

Nostoc muscorum BTA087 20.8±1.66 17.2±0.00 67.0±0.00 90.3±4.50

Plectonema notatum BTA088 2.78±0.28 4.10±0.27 96.0±0.92 87.6±1.32

Scytonema bohneri BTA106 1.06±0.07 3.27±1.02 99.0±1.73 93.3±2.46

Page 14: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

92

Plectonema notatum BTA108 1.79±0.33 0.86±0.15 65.6±6.02 56.7±3.21

Phormidium incrustatum BTA118 2.15±0.19 4.21±0.22 80.0±14.7 81.3±1.54

Limnothrix redekei BTA123 4.06±1.26 5.32±0.12 22.0±1.00 25.0±1.20

Phormidium valderianum BTA162 3.53±0.43 4.32±1.22 33.2±1.20 49.6±3.21

Scytonema guyanense BTA167 0.67±0.68 2.32±0.02 27.6±3.21 37.6±2.22

Nostoc commune BTA168 3.15±0.03 6.23±1.02 42.7±2.50 39.7±4.60

Oscillatoria agardhii BTA170 4.15±0.36 7.12±0.12 21.7±1.20 28.6±3.21

Spirulina platensis BTA174 10.8±0.02 10.0±0.12 115.6±2.45 130.3±1.89

Calothrix castellii BTA177 3.45±1.37 4.01±0.03 61.3±4.21 56.3±5.20

Lyngbya connectens BTA178 8.45±1.36 11.2±1.13 26.7±3.15 37.6±4.50

Lyngbya nordgardhii BTA184 2.55±0.07 3.69±0.47 104.0±1.78 66.3±1.20

Scytonema schmidtii BTA186 3.03±0.14 4.01±0.16 20.7±1.36 23.6±1.35

Aulosira aenigmatica BTA188 0.88±1.33 14.1±0.00 31.6±1.15 90.0±1.73

Phormidium tenue BTA189 2.47±0.14 4.54±0.01 129.0±7.93 93.3±2.06

Aulosira bombayensis BTA190 0.38±0.00 11.8±0.01 2.66±0.57 122.0±7.21

Plectonema notatum BTA194 5.13±0.25 20.7±0.07 72.0±2.20 116.3±1.15

Calothrix marchica BTA195 4.45±0.97 6.25±0.82 113.0±7.76 80.6±2.36

Limnothrix mirabilis BTA199 2.68±1.06 4.22±1.00 39.6±2.36 49.6±1.32

Nostoc calcicola BTA204 0.89±0.04 13.8±0.03 50.0±1.80 87.6±1.15

Anabaena circinalis BTA205 1.11±0.36 6.24±0.03 24.6±2.51 117.3±4.50

Calothrix marchica BTA206 2.57±1.08 6.23±0.10 112.0±7.00 98.4±3.50

Calothrix clavata BTA218 3.92±0.31 9.66±0.03 97.3±1.53 112.6±6.65

Phormidium tenue BTA222 0.37±0.11 10.5±0.01 82.7±2.10 92.6±1.01

Page 15: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

93

Anabaena circinalis BTA246 1.75±0.16 3.31±0.22 39.0±4.58 54.0±0.00

Lyngbya martensiana BTA436 3.29±0.02 2.49±0.40 114.0±1.38 83.3±5.77

Lyngbya digueti BTA475 2.46±1.82 5.65±0.91 120.6±2.30 78.3±1.96

Phormidium fragile BTA521 2.97±0.07 12.1±0.01 90.6±2.65 87.6±7.02

Anabaena circinalis BTA561 1.64±0.74 3.04±0.02 82.6±5.20 73.2±2.36

Anabaena sp. BTA564 1.22±0.12 10.5±2.64 20.4±6.92 36.1±4.26

Plectonema notatum BTA565 6.04±0.86 9.36±1.15 126.6±2.88 85.6±5.50

Phormidium autumnale BTA587 1.33±0.19 3.04±0.30 40.6±6.02 58.0±3.46

Lyngbya aestuarii BTA597 0.87±0.13 4.26±0.87 48.3±1.89 75.0±0.00

Anabaena variabilis BTA600 0.20±0.20 0.67±0.20 58.6±2.26 66.3±1.32

Lyngbya allorgei BTA606 10.7±0.14 11.6±2.64 15.6±1.32 18.3±1.42

Lyngbya martensiana BTA640 2.17±1.37 4.21±0.24 17.8±2.30 21.6±2.45

Westiellopsis prolifica BTA645 1.15±0.01 2.51±0.26 26.7±1.20 35.3±1.22

Anabaena orientalis BTA653 1.10±0.19 2.10±0.10 32.6±1.87 42.6±3.24

Phormidium stagnina BTA855 0.85±0.00 2.98±0.32 19.6±1.32 24.7±3.63

Anabaena variabilis BTA880 2.45±1.16 6.23±1.01 21.6±2.34 31.6±4.50

Anabaena oryzae BTA881 1.24±0.30 3.63±0.19 96.6±11.5 84.0±8.18

Anabaena fertilissima BTA883 1.08±0.06 0.91±0.17 29.3±3.44 81.0±1.54

Nostoc ellipsosporum BTA902 0.28±0.07 0.80±0.05 46.3±1.42 44.6±6.11

Anabaena constricta BTA903 2.11±0.41 0.75±0.42 66.7±3.03 98.3±2.02

Cylindrospermum muscicola

BTA904

0.65±0.02 0.89±0.05 10.5±2.30 11.3±7.50

Cylindrospermum doryphorum

BTA905

1.07±0.50 3.50±0.11 39.6±2.74 54.0±173

Cylindrospermum indentatum

BTA906

3.23±0.19 4.94±0.05 55.3±1.40 66.6±2.90

Page 16: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

94

Anabaena oryzae BTA919 2.90±0.78 1.72±0.40 42.3±3.41 65.6±6.65

Nostoc ellipsosporum BTA923 2.48±0.45 1.72±0.53 55.7±7.21 87.6±12.7

Microchaete grisea BTA926 9.96±0.76 7.38±0.90 29.4±9.50 54.0±13.5

Anabaena anomala BTA927 3.85±0.56 0.69±0.50 57.3±0.10 87.0±0.00

Nostoc verrucosum BTA939 4.83±0.60 4.28±0.68 34.3±2.08 28.7±3.20

Nostoc calcicola BTA942 1.79±0.27 3.53±0.44 24.7±4.81 19.6±5.21

Nostoc piscinale BTA947 4.22±0.95 25.2±0.05 69.6±1.12 57.0±5.19

Cylindrospermum indicum BTA960 0.58±0.04 4.21±0.01 18.7±1.23 67.3±5.00

Anabaena variabilis BTA990 2.64±0.04 2.64±0.40 27.6±2.00 37.6±2.10

Dichothrix baueriana BTA1059 2.71±0.05 6.68±1.05 39.0±4.58 90.6±9.01

Table-8: Screening for ammonia excretion and total carbohydrates from

cyanobacterial strains of rice fields of Manipur

Strains name with code no. Ammonia excretion

(µg/ml)

Total carbohydrates

content (µg/ml)

15th

day 30th

day 15th

day 30th

day

Microchaete uberrima BTA001 1.00±0.34 4.10±0.62 91.6±2.46 46.3±3.19

Phormidium mucosum BTA002 5.20±0.62 4.11±0.01 96.6±1.76 52.4±3.00

Anabaena variabilis BTA003 20.1±2.12 9.30±1.82 13.0±1.73 36.3±11.6

Anabaena doliolum BTA004 21.1±180 17.7±1.37 41.0±3.46 50.2±4.36

Limnothrix vacuolifera BTA005 1.90±1.53 0.39±1.00 38.0±7.21 42.6±2.46

Anabaena variabilis BTA006 7.20±2.07 18.3±2.34 73.6±6.50 48.0±10.8

Microchaete grisea BTA007 14.8±1.21 14.7±1.08 16.0±3.46 43.6±1.49

Anabaena circinalis BTA008 13.8±2.61 27.9±1.42 48.6±14.2 31.0±9.64

Page 17: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

95

Plectonema radiosum BTA009 1.20±0.79 2.00±1.00 59.2±4.52 66.2±4.36

Plectonema boryanum BTA010 2.03±1.01 1.10±0.80 71.2±5.36 82.3±3.00

Nostoc hatei BTA012 12.4±1.21 56.5±6.57 11.0±1.73 41.6±1.65

Phormidium tenue BTA013 45.1±4.90 75.5±1.28 53.6±2.01 43.0±3.46

Anabaena oryzae BTA014 17.4±3.60 24.5±1.46 38.3±1.70 49.6±4.04

Calothrix wembaerensis BTA015 11.7±2.60 14.8±1.82 23.0±3.60 37.6±3.21

Plectonema boryanum BTA016 0.90±0.00 3.10±1.22 61.2±4.33 72.0±4.00

Anabaena oryzae BTA017 16.6±0.46 10.7±0.34 40.0±5.19 39.0±1.35

Anabaena oryzae BTA018 0.60±0.00 23.4±5.47 30.2±1.36 35.3±2.30

Anabaena spiroides BTA019 8.80±1.40 13.5±0.79 15.3±0.57 54.3±0.57

Phormidium faveolarum BTA020 0.40±0.17 5.50±0.11 47.3±1.04 49.0±1.22

Anabaena ambigua BTA021 4.10±2.70 3.13±1.80 43.3±6.35 45.2±3.65

Anabaena anomala BTA023 11.7±0.30 5.40±0.00 27.3±8.08 22.6±3.05

Calothrix javanica BTA024 10.8±0.30 26.8±2.44 25.7±1.52 29.6±8.96

Calothrix geitonos BTA025 10.1±3.45 6.00±0.30 27.0±0.00 41.0±5.29

Calothrix marchica BTA026 7.80±1.03 18.5±1.65 21.0±1.73 26.0±7.54

Nostoc muscorum BTA027 130.8±1.58 18.9±3.13 36.6±0.57 49.3±10.6

Dichothrix orsiniana BTA028 4.95±0.45 41.7±2.59 9.60±4.72 22.6±2.88

Nostoc parmelioides BTA029 17.1±4.58 11.1±2.07 24.3±2.51 49.0±1.90

Anabaena fertilissima BTA030 12.1±4.84 8.09±1.20 25.0±2.60 49.0±12.0

Anabaena oryzae BTA031 41.8±1.21 35.7±12.7 14.6±1.52 35.6±1.52

Plectonema radiosum BTA032 0.60±0.79 9.00±1.96 38.2±3.52 43.5±2.50

Plectonema litorale BTA033 0.80±0.18 5.00±0.01 25.3±1.30 30.3±1.67

Page 18: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

96

Anabaena ambigua BTA034 33.6±0.90 38.1±4.35 13.0±2.64 24.0±1.00

Anabaena fertilissima BTA035 57.3±1.08 29.1±5.50 20.0±0.01 45.0±6.55

Anabaena variabilis BTA036 112.0±1.25 18.2±3.23 19.6±3.21 35.6±1.09

Nostoc hatei BTA037 169.3±1.03 19.2±3.11 15.0±1.00 46.0±8.00

Nostoc carneum BTA038 92.7±1.09 17.9±1.27 24.6±6.42 30.6±1.32

Myxosarcina burmensis BTA040 36.1±3.00 33.5±9.45 22.0±1.00 28.3±5.13

Anabaena iyengarii BTA041 44.4±1.73 14.6±4.25 10.6±2.08 2.00±1.73

Phormidium arthurensis BTA042 52.4±1.14 44.5±2.66 20.6±8.14 15.0±0.00

Anabaena variabilis BTA043 47.4±1.00 39.0±1.20 27.6±1.22 25.6±1.00

Microchaete loktakensis BTA044 126.9±1.34 24.9±6.41 18.6±2.51 40.0±4.35

Microchaete uberrima BTA045 56.5±1.40 41.5±5.75 47.0±8.80 36.2±4.20

Calothrix marchica BTA046 30.3±1.12 33.0±1.58 24.6±1.20 16.2±2.20

Plectonema nostocorum BTA047 43.9±0.20 39.7±0.45 54.3±4.93 33.6±12.3

Phormidium fragile BTA048 34.0±1.63 27.6±1.56 95.0±5.00 28.6±6.65

Microchaete tenera BTA049 12.6±2.40 8.20±6.47 31.0±7.21 29.0±4.36

Anabaena oryzae BTA050 4.20±1.20 0.70±0.69 22.6±3.20 27.3±4.30

Phormidium puspurascens BTA081 33.4±0.17 11.4±3.36 16.0±7.21 21.3±1.36

Limnothrix redekei BTA082 42.3±1.08 39.1±1.09 13.3±2.88 33.0±1.40

Phormidium kuetzinggianum

BTA083

38.5±1.19 27.9±7.86 31.3±4.04 21.3±11.8

Anabaena spiroides BTA084 34.0±1.01 48.7±1.05 34.6±5.85 37.3±4.22

Lyngbya laxespiralis BTA085 28.1±5.41 22.6±1.21 49.0±6.92 45.2±2.63

Phormidium tenue BTA086 59.3±2.19 33.4±2.29 29.6±1.15 31.6±2.16

Page 19: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

97

Nostoc muscorum BTA087 92.3±1.86 13.3±0.86 38.3±2.63 44.6±11.5

Plectonema notatum BTA088 63.5±4.54 40.2±2.50 42.6±4.12 46.3±6.02

Scytonema bohneri BTA106 58.2±1.01 49.5±1.20 18.3±3.78 30.6±1.61

Plectonema notatum BTA108 47.5±1.14 31.8±1.19 66.0±3.46 20.6±2.51

Phormidium incrustatum BTA118 25.1±5.53 27.1±0.17 36.2±3.36 39.4±2.26

Limnothrix redekei BTA123 16.2±1.15 12.5±1.00 28.6±1.02 19.2±1.10

Phormidium valderianum BTA162 55.6±1.25 30.0±1.30 22.3±1.11 25.2±3.56

Scytonema guyanense BTA167 41.2±6.17 23.5±1.67 19.3±2.75 15.7±3.70

Nostoc commune BTA168 35.3±1.60 32.5±1.20 14.6±3.76 17.2±4.62

Oscillatoria agardhii BTA170 93.8±2.52 72.0±1.39 18.2±3.05 21.5±4.00

Spirulina platensis BTA174 84.4±0.09 58.8±0.01 80.0±0.01 90.5±0.03

Calothrix castellii BTA177 41.0±7.88 36.0±1.80 32.6±2.10 44.6±1.36

Lyngbya connectens BTA178 111.3±1.34 90.3±1.20 14.6±1.40 21.7±1.00

Lyngbya nordgardhii BTA184 62.0±0.00 46.7±1.23 32.3±0.57 31.0±7.93

Scytonema schmidtii BTA186 15.1±3.55 12.2±1.35 23.6±1.35 27.6±0.25

Aulosira aenigmatica BTA188 37.5±3.24 15.0±1.80 13.3±3.05 16.0±1.30

Phormidium tenue BTA189 134.0±2.97 116.0±2.59 34.3±9.71 18.3±5.00

Aulosira bombayensis BTA190 24.7±4.70 18.8±3.45 12.6±3.21 9.00±1.73

Plectonema notatum BTA194 39.7±2.25 79.1±4.65 9.33±0.57 34.3±8.96

Calothrix marchica BTA195 32.7±5.60 35.2±1.30 27.6±6.42 29.9±3.26

Limnothrix mirabilis BTA199 108.4±8.30 60.4±2.30 31.5±3.00 26.5±4.25

Nostoc calcicola BTA204 13.6±5.28 11.1±2.10 15.6±4.50 2.33±1.52

Anabaena circinalis BTA205 28.0±8.16 22.5±1.03 8.00±6.35 11.6±2.08

Page 20: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

98

Calothrix marchica BTA206 22.3±9.00 19.0±2.01 56.6±3.21 98.7±4.01

Calothrix clavata BTA218 31.3±1.32 18.8±4.67 19.0±1.73 20.0±9.53

Phormidium tenue BTA222 43.0±3.01 68.9±1.08 39.0±5.19 38.6±7.09

Anabaena circinalis BTA246 27.4±1.08 11.0±4.02 8.33±3.05 10.6±5.68

Lyngbya martensiana BTA436 24.7±7.18 71.9±1.38 36.0±6.24 32.3±1.52

Lyngbya digueti BTA475 13.4±3.04 19.0±1.41 24.3±5.77 10.3±4.50

Phormidium fragile BTA521 43.3±8.70 63.7±1.22 27.0±3.60 30.0±9.53

Anabaena circinalis BTA561 44.1±9.80 35.2±5.20 42.6±3.63 36.3±1.36

Anabaena sp. BTA564 4.50±1.87 13.6±6.92 47.6±3.02 51.6±2.02

Plectonema notatum BTA565 63.2±9.86 84.5±2.29 29.3±5.03 58.6±0.35

Phormidium autumnale BTA587 15.7±0.79 24.6±2.10 21.3±4.50 19.6±3.51

Lyngbya aestuarii BTA597 28.1±1.49 36.0±2.40 39.5±2.56 32.3±1.52

Anabaena variabilis BTA600 13.6±2.85 12.4±3.20 19.2±4.60 22.3±1.36

Lyngbya allorgei BTA606 12.0±2.07 21.5±2.55 35.6±1.22 37.7±3.62

Lyngbya martensiana BTA640 38.0±5.76 47.0±9.15 37.4±3.44 39.5±1.22

Westiellopsis prolifica BTA645 4.10±0.17 6.90±1.82 42.6±3.20 45.7±3.10

Anabaena orientalis BTA653 10.5±5.49 7.23±1.37 12.3±1.22 6 .22±1.30

Phormidium stagnina BTA855 39.3±6.28 24.6±3.22 29.3±2.10 32.6±0.12

Anabaena variabilis BTA880 51.4±6.86 41.7±1.36 29.3±2.10 32.6±0.12

Anabaena oryzae BTA881 32.2±1.35 28.5±8.25 21.3±2.51 13.6±4.16

Anabaena fertilissima BTA883 24.9±4.95 17.7±7.28 12.6±1.63 15.5±2.00

Nostoc ellipsosporum BTA902 10.6±1.99 36.5±3.62 9.33±0.57 13.5±0.66

Anabaena constricta BTA903 10.1±4.37 12.8±5.85 16.3±2.51 18.4±3.41

Page 21: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

99

Cylindrospermum muscicola

BTA904

25.5±5.90 23.2±9.27 5.66±2.88 9.03±4.22

Cylindrospermum doryphorum BTA905 6.79±0.45 3.25±0.11 27.6±5.50 18.3±1.20

Cylindrospermum indentatum BTA906 11.6±6.06 23.4±4.25 14.5±5.02 09.2±1.36

Anabaena oryzae BTA919 16.3±5.11 26.1±3.38 19.3±2.51 34.2±1.36

Nostoc ellipsosporum BTA923 15.2±4.59 24.3±3.45 18.6±2.08 27.6±1.36

Microchaete grisea BTA926 10.8±1.37 12.8±6.32 32.3±4.72 41.1±5.22

Anabaena anomala BTA927 5.60±5.30 46.2±1.20 42.0±7.00 52.0±3.44

Nostoc verrucosum BTA939 15.0±2.10 19.2±2.86 14.6±0.57 44.0±2.45

Nostoc calcicola BTA942 65.4±1.22 66.8±3.91 24.0±6.92 34.0±2.00

Nostoc piscinale BTA947 53.0±5.30 5.90±1.75 19.0±2.64 48.6±2.88

Cylindrospermum indicum BTA960 44.1±1.06 49.2±1.00 45.6±4.20 56.0±3.22

Anabaena variabilis BTA990 8.80±2.17 12.3±4.93 47.5±3.11 61.2±1.30

Dichothrix baueriana BTA1059 17.7±2.74 46.2±7.20 31.5±0.10 26.0±0.00

Page 22: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

100

Str

ain

s n

am

e a

nd

co

de

no.

P

hyco

bil

ipro

tein

s (µ

g/m

l)

Caro

ten

oid

s (µ

g/m

l)

15

th d

ay

30

th d

ay

15

th

3

0th

PE

P

C

AP

C

PE

P

C

AP

C

Mic

roch

aet

e u

ber

rim

a B

TA

00

1

12

.1±

0.8

2

7.3

0.5

8

3.2

0.4

4

15

.9±

4.1

9

15

.2±

3.8

1

6.7

0.7

4

18

.6±

5.6

5

28

.6±

5.0

0

Ph

orm

idiu

m m

uco

sum

BT

A0

02

1

.09

±1.0

5

11

.2±

1.4

1

3.6

1.5

8

9.3

0.1

0

33

.1±

2.7

5

14

.6±

0.7

3

27

.8±

2.1

6

24

.2±

2.0

0

An

ab

aen

a v

ari

abil

is B

TA

00

3

5.2

1.9

5

29

.5±

1.9

2

34

.2±

1.7

5

11

.2±

1.5

7

32

.6±

1.8

6

38

.9±

1.2

3

5.3

1.4

0

19

.8±

2.4

1

An

ab

aen

a d

oli

olu

m B

TA

00

4

4.1

2.7

8

38

.9±

1.7

4

12

.5±

1.5

9

13

.3±

0.6

2

31

.3±

1.9

2

36

.1±

1.6

1

6.1

0.6

8

26

.5±

1.9

1

Lim

no

thri

x va

cuo

life

ra B

TA

00

5

3.2

0.5

2

14

.9±

6.2

6

5.5

0.5

8

7.0

1.0

4

22

.2±

1.3

2

14

.1±

3.2

5

7.8

1.1

9

26

.5±

1.9

1

An

ab

aen

a v

ari

abil

is B

TA

00

6

15

.5±

3.5

8

30

.3±

1.7

0

42

.5±

2.6

1

12

.3±

1.3

2

22

.4±

1.3

2

24

.7±

1.6

9

9.8

0.8

9

39

.3±

1.7

6

Mic

roch

aet

e g

rise

a B

TA

00

7

34

.5±

3.1

4

35

.7±

2.5

2

19

.5±

1.6

0

60

.7±

1.7

8

70

.1±

1.7

6

47

.3±

1.8

9

34

.5±

3.1

9

42

.1±

1.7

5

An

ab

aen

a c

irci

na

lis

BT

A00

8

17

.3±

1.5

8

44

.3±

1.2

0

24

.3±

1.4

0

23

.4±

2.0

0

55

.3±

1.0

0

18

.2±

0.0

1

43

.5±

5.2

0

53

.7±

1.3

0

Ple

cto

nem

a r

adio

sum

BT

A0

09

0

.87

±0.4

1

3.7

1.2

9

1.3

0.6

5

4.2

0.7

8

6.4

1.0

8

5.5

1.2

0

16

.3±

0.5

2

16

.3±

0.5

2

Ple

cto

nem

a b

ory

an

um

BT

A0

10

2

.55

±0.3

3

11

.2±

1.8

1

6.8

3.1

5

4.5

0.3

1

1

4.2

±1

.20

7.3

1.0

0

17

.4±

2.8

7

17

.2±

2.0

0

Nost

oc

ha

tei

BT

A0

12

2.5

0.7

7

77

.5±

1.7

4

25

.7±

2.6

0

11

.3±

1.0

8

64

.2±

3.8

3

20

.7±

1.8

5

19

.9±

4.8

2

28

.5±

5.2

2

Ph

orm

idiu

m t

enu

e B

TA

01

3

14

.5±

1.4

5

1

02

.2±

1.9

2

5.3

±2.2

5

18

.2±

3.4

5

11

2.6

±1

.22

32

.7±

2.0

0

25

.0±

3.4

0

32

.7±

2.6

2

An

ab

aen

a o

ryza

e B

TA

014

6

.69

±1.4

6

61

.9±

1.8

1

14

.3±

3.3

3

7.7

1.0

9

48

.2±

1.7

3

15

.3±

1.7

6

7.3

4.5

6

6.2

2.8

4

Ca

loth

rix

wem

ba

eren

sis

BT

A0

15

1.6

1.3

6

36

.1±

0.7

4

8.4

1.0

2

6.5

0.9

1

32

.9±

1.4

8

13

.9±

1.0

6

12

.8±

0.3

4

20

.0±

0.7

2

Ple

cto

nem

a b

ory

an

um

BT

A0

16

0

.85

±0.3

6

5.0

2.5

5

1.9

0.5

1

3.7

0.3

0

28

.6±

0.2

5

11

.9±

0.9

8

14

.3±

0.5

3

14

.3±

0.5

3

T

ab

le-9

: S

cree

nin

g f

or

ph

yco

bil

ipro

tein

s an

d c

aro

ten

oid

s fr

om

cya

nob

act

eria

l st

rain

s of

rice

fie

lds

of

Ma

nip

ur

Page 23: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

101

An

ab

aen

a o

ryza

e B

TA

01

7

12

.6±

1.6

4

43

.1±

1.9

6

10

.1±

0.8

5

3.0

0.6

7

7.8

2.1

9

6.5

0.9

6

7.7

0.1

3

8.8

1.2

1

An

ab

aen

a o

ryza

e B

TA

01

8

6.9

1.3

3

10

.4±

2.0

3

1.0

0.3

6

17

.6±

0.9

1

29

.8±

1.7

3

9.5

0.7

7

18

.4±

3.6

7

18

.6±

3.4

6

An

ab

aen

a s

pir

oid

es B

TA

01

9

6.7

0.9

8

28

.4±

1.5

5

12

.3±

1.0

5

3.4

0.7

8

19

.3±

3.5

3

8.4

2.6

5

4.5

0.9

6

2.8

0.3

3

Ph

orm

idiu

m f

ave

ola

rum

BT

A0

20

1.0

0.2

1

2.3

0.2

2

1.7

0.3

5

2.7

0.1

6

3.1

0.1

6

4.0

1.8

9

1.5

0.1

0

2.8

0.2

8

An

ab

aen

a a

mb

igua

BT

A0

21

5

.79

±0.9

0

16

.7±

1.3

9

17

.7±

2.3

0

9.3

0.2

0

21

.0±

1.0

3

19

.2±

1.4

2

13

.1±

1.6

0

2.8

0.2

8

An

ab

aen

a a

no

ma

la B

TA

02

3

6.5

0.7

4

16

.3±

1.3

9

15

.2±

1.0

0

4.1

0.3

6

55

.8±

4.0

9

24

.1±

2.9

7

59

.7±

6.4

1

24

.2±

0.7

6

Ca

loth

rix

ja

van

ica B

TA

02

4

10

.7±

1.7

8

19

.9±

1.7

5

9.8

1.2

7

80

.9±

0.3

7

27

.9±

3.3

8

20

.0±

2.0

5

50

.5±

4.6

5

26

.3±

1.8

2

Ca

loth

rix

gei

ton

os

BT

A0

25

1

1.4

±1.4

0

22

.5±

1.4

5

9.4

1.3

0

12

.3±

2.5

1

19

.9±

3.2

6

13

.9±

2.1

3

33

.5±

6.3

6

23

.9±

0.7

8

Ca

loth

rix

ma

rchic

a B

TA

02

6

25

.3±

1.5

5

49

.1±

1.9

3

28

.2±

1.9

7

25

.3±

1.5

4

49

.1±

1.9

8

28

.2±

1.9

7

27

.1±

6.1

3

13

.1±

0.6

8

Nost

oc

musc

oru

m B

TA

027

2

.52

±0.2

0

79

.2±

1.9

3

20

.1±

1.5

4

4.8

0.9

3

14

8.3

±1

.24

32

.7±

1.5

4

38

.2±

1.5

7

19

.4±

2.2

5

Dic

hoth

rix

ors

inia

na

BT

A0

28

1

.27

±0.4

3

21

.2±

0.7

6

9.5

0.5

4

2.4

0.4

6

17

.3±

1.1

7

8.1

0.9

7

24

.2±

3.3

5

8.4

0.0

6

Nost

oc

pa

rmel

ioid

es B

TA

02

9

15

.5±

0.3

0

14

.7±

0.4

8

4.6

0.4

4

15

.3±

1.7

3

14

.5±

1.2

9

7.7

2.8

9

26

.5±

0.4

5

14

.3±

1.5

2

An

ab

aen

a f

erti

liss

ima

BT

A0

30

1

8.2

±3.0

2

25

.7±

1.0

2

16

.2±

1.0

0

22

.0±

1.4

0

30

.3±

1.0

7

18

.7±

1.8

0

14

.6±

3.2

1

19

.5±

1.3

0

An

ab

aen

a o

ryza

e B

TA

03

1

14

.2±

0.3

4

33

.5±

1.9

8

4.4

1.0

5

24

.2±

7.7

8

76

.8±

2.4

1

10

.2±

4.2

1

9.3

2.6

0

29

.2±

2.0

0

Ple

cto

nem

a r

adio

sum

BT

A0

32

0

.32

±0.0

0

0.6

0.3

1

0.8

0.5

1

4.8

2.1

3

12

.0±

4.7

1

10

.1±

5.3

9

0.8

0.4

4

7.2

0.6

5

Ple

cto

nem

a l

itora

le B

TA

03

3

0.9

0.3

6

1.8

0.8

9

2.5

1.5

8

4.9

1.0

5

6.2

1.0

9

8.0

2.5

1

0.3

0.0

8

8.0

1.5

5

An

ab

aen

a a

mb

igua

BT

A0

34

1

5.7

±1.9

5

50

.8±

0.9

7

40

.2±

4.0

8

10

.6±

6.2

0

11

2.7

±1

.46

20

.6±

7.8

4

13

.8±

1.5

5

38

.4±

2.3

0

An

ab

aen

a f

erti

liss

ima B

TA

03

5

7.9

3.8

6

62

.5±

4.5

3

54

.4±

7.6

2

21

.1±

5.4

0

15

0.4

±1

.12

13

0.7

±1

.46

29

.6±

1.9

9

31

.7±

1.0

0

Page 24: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

102

An

ab

aen

a v

ari

abil

is B

TA

03

6

1.4

0.3

4

33

.5±

1.9

9

4.4

1.0

5

4.2

0.7

6

63

.7±

7.7

5

3.8

1.9

4

18

.2±

1.5

6

31

.3±

2.6

0

Nost

oc

ha

tei

BT

A0

37

6.9

5.8

1

30

.7±

7.9

6

19

.4±

1.6

4

4.3

2.1

0

16

.7±

5.3

8

10

.3±

5.4

7

10

.4±

2.5

5

21

.5±

2.5

0

Nost

oc

carn

eum

BT

A038

20.0

±4.0

9

82.7

±8.3

5

58.7

±9.3

9

11.2

±1.8

5

98.8

±8.4

4

39.9

±6.3

2

30.9

±3.9

5

58.9

±1.8

0

Myx

osa

rcin

a b

urm

ensi

s B

TA

04

0

8.8

0.8

5

19

.0±

1.3

9

23

.8±

1.5

3

5.9

1.9

0

12

.3±

3.3

0

16

.4±

3.7

7

7.3

1.4

0

19

.2±

0.9

2

An

ab

aen

a i

yeng

ari

i B

TA

04

1

8.0

2.9

8

51

.2±

1.0

2

50

.5±

1.5

1

10

.2±

1.3

8

66

.3±

1.0

3

45

.0±

1.0

0

25

.6±

2.3

3

27

.4±

1.2

2

Ph

orm

idiu

m a

rth

ure

nsi

s B

TA

04

2

3.2

0.7

5

4.7

0.3

0

6.2

0.4

6

69

.2±

7.4

0

28

6.1

±1

.00

46

.8±

4.3

7

5.1

0.3

5

30

.4±

6.5

0

An

ab

aen

a v

ari

abil

is B

TA

04

3

7.3

1.3

6

47

.3±

0.1

1

23

.0±

1.3

6

13

.2±

1.0

9

57

.2±

1.0

3

36

.8±

0.0

9

16

.3±

1.3

2

21

.3±

1.4

2

Mic

roch

aet

e lo

kta

kensi

s B

TA

04

4

5.3

0.7

0

10

.5±

1.0

8

18

.2±

1.1

0

9.3

1.0

0

18

.8±

5.5

9

18

.5±

8.2

0

20

.6±

1.4

4

50

.2±

1.2

0

Mic

roch

aet

e u

ber

rim

a B

TA

04

5

5.5

0.5

0

10

.8±

0.3

4

7.5

0.4

1

11

.0±

0.1

0

15

.2±

0.4

1

9.0

0.7

1

38

.4±

1.6

5

36

.3±

4.2

0

Ca

loth

rix

ma

rchic

a B

TA

04

6

40

.9±

4.8

0

70

.1±

5.1

7

50

.5±

2.1

1

51

.2±

1.2

0

63

.2±

1.0

9

46

.2±

0.0

1

44

.9±

2.2

0

51

.3±

1.3

0

Ple

cto

nem

a n

ost

oco

rum

BT

A0

47

7.6

0.9

5

11

.95

±1

.8

16

.6±

2.8

9

3.2

2.0

0

7.9

4.3

0

6.0

5.4

9

27

.0±

5.7

8

47

.2±

7.1

3

Ph

orm

idiu

m f

ragil

e B

TA

04

8

19

.5±

1.4

0

46

.4±

3.4

0

38

.8±

2.8

1

6.5

0.9

8

17

.2±

1.9

2

14

.5±

4.2

7

27

.0±

3.5

3

55

.2±

2.0

7

Mic

roch

aet

e te

ner

a B

TA

04

9

4.9

2.2

0

7.7

2.5

7

4.5

1.5

8

25

.1±

3.1

0

47

.7±

5.7

6

43

.8±

1.8

2

45

.2±

5.4

3

37

.6±

5.2

0

An

ab

aen

a o

ryza

e B

TA

05

0

42.7

±1.4

0

36

.8±

1.9

3

9.3

3.0

1

53

.4±

1.5

0

72

.7±

1.2

5

39

.6±

3.6

4

47

.7±

2.5

0

32

.3±

1.3

0

Ph

orm

idiu

m p

urp

ura

scen

s B

TA

08

1

7.2

1.8

1

15

.6±

1.0

2

19

.2±

1.0

3

11

.2±

1.0

8

16

.2±

1.1

1

25

.6±

0.0

1

56

.3±

1.3

0

66

.5±

1.5

6

Lim

no

thri

x re

dek

ei B

TA

082

15.5

±2.3

0

15.9

±2.7

4

13.2

±2.5

0

23.8

±2.5

0

40.5

±1.0

8

22.8

±8.0

1

19.6

±3.4

9

30.7

±1.7

3

Ph

orm

idiu

m k

uet

zingia

num

BT

A0

83

4.3

0.5

5

5.5

0.5

5

9.8

2.4

3

1.6

0.3

4

0.3

1.6

7

4.4

0.8

9

5.0

0.6

6

18.1

±0.8

3

Page 25: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

103

An

ab

aen

a s

pir

oid

es B

TA

08

4

23

.4±

0.2

0

35

.0±

3.4

2

0.1

0.5

9

73

.9±

2.7

0

61

.3±

2.1

1

1.3

2.1

4

12

.2±

1.2

0

40

.3±

2.3

0

Lyn

gbya

laxe

spir

ali

s B

TA

08

5

6.9

0.9

0

43

.4±

4.6

5

24

.2±

3.1

5

26

.2±

1.5

0

97

.2±

3.4

2

75

.1±

2.9

2

17

.7±

1.6

6

22

.4±

1.3

6

Ph

orm

idiu

m t

enu

e B

TA

086

0

.54

±0.4

0

26

.7±

5.1

7

2.2

1.3

2

3.5

0.4

3

32

.6±

1.1

3

6.3

1.0

2

12

.1±

1.2

0

17

.3±

2.3

0

Nost

oc m

usc

oru

m B

TA

087

1

4.7

±5.5

0

12

3.6

±1

.8

65

.4±

1.5

2

43

.9±

1.3

0

27

3.1

±5

.68

15

9.7

±3

.29

60

.8±

4.2

0

80

.3±

1.4

0

Ple

cto

nem

a n

ota

tum

BT

A0

88

7

.66

±1.2

5

9.8

1.5

5

12

.2±

1.8

7

2.4

0.2

4

18

.9±

1.9

0

0.6

1.9

7

7.4

0.8

6

22

.2±

1.5

0

Scy

ton

ema b

oh

ner

i B

TA

10

6

1.8

0.2

3

1.9

0.9

6

2.4

0.8

5

2.8

1.0

3

6.2

1.0

9

4.2

1.3

0

6.1

0.9

3

11

.2±

0.7

2

Ple

cto

nem

a n

ota

tum

BT

A1

08

7

.09

±3.0

9

9.9

5.0

7

12

.9±

1.0

5

3.7

1.9

2

11

.9±

2.8

5

5.7

2.9

3

12

.6±

4.7

1

13

.4±

2.1

3

Ph

orm

idiu

m i

ncr

ust

atu

m B

TA

11

8

0.2

0.1

0

1.3

0.3

9

0.0

0.2

7

1.9

0.7

0

21

.0±

2.4

9

7.5

0.9

0

28

.4±

1.9

7

24

.6±

0.8

2

Lim

no

thri

x re

dek

ei B

TA

123

1

3.2

±0.7

0

8.9

0.5

7

2.9

0.9

1

16

.2±

0.8

0

6.2

0.3

2

3.0

1.0

9

30

.2±

1.3

3

28

.4±

0.8

1

Ph

orm

idiu

m v

ald

eria

nu

m B

TA

16

2

2.2

0.9

0

39

.9±

0.3

2

8.9

0.1

4

5.3

0.1

0

35

.0±

0.1

7

10

.6±

1.0

2

22

.9±

1.2

0

34

.6±

1.4

0

Scy

ton

ema g

uya

nen

se B

TA

16

7

1.8

1.0

0

3.1

1.0

3

4.3

1.4

6

2.5

1.0

1

6.1

1.0

9

3.4

1.5

0

10

.4±

3.9

6

15

.6±

4.9

4

Nost

oc

com

mu

ne

BT

A1

68

0.9

1.0

2

3.1

1.0

0

1.0

1.0

2

1.2

0.0

1

6.0

1.0

0

3.4

1.5

0

32

.4±

2.4

6

25

.6±

3.4

2

Osc

illa

tori

a a

ga

rdhii

BT

A1

70

2

3.6

±2.1

0

25

0.1

±1

.2

68

.4±

3.6

6

28

.7±

3.1

0

48

.7±

1.2

7

72

.4±

1.6

3

10

.8±

1.9

1

46

.5±

4.6

7

Sp

iruli

na

pla

tensi

s B

TA

174

2

7.5

±0.0

5

47

.1±

0.0

0

45

.5±

0.0

2

8.7

0.0

0

19

6.1

±0

.01

56

.8±

0.0

2

20

.0±

0.0

0

55

.1±

0.0

0

Ca

loth

rix

cast

elli

i B

TA

177

0

.44

±0.4

0

1.5

0.6

1

1.7

0.5

8

1.4

0.5

1

2.4

0.0

0

3.7

1.0

2

16

.1±

1.5

0

26

.2±

0.1

2

Lyn

gbya

co

nnec

tens

BT

A17

8

2.1

0.8

0

4.1

2.0

8

3.5

0.7

2

6.1

0.1

2

12

.0±

2.1

1

0.0

0.1

3

22

.7±

1.3

9

18

.6±

1.1

1

Lyn

gbya

ag

ard

hii

BT

A1

84

3.1

0.7

8

3.8

0.8

2

5.0

1.3

0

6.0

1.0

6

8.0

1.9

0

8.9

1.6

9

10

.9±

0.8

7

30

.3±

1.9

8

Scy

ton

ema

sch

mid

tii

BT

A1

86

1

.37

±0.0

8

2.0

0.0

1

2.5

1.0

1

2.7

0.0

2

3.7

0.0

5

4.3

1.1

1

19

.6±

2.8

3

21

.4±

2.5

0

Page 26: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

104

Au

losi

ra a

enig

ma

tica

BT

A1

88

0

.46

±0.2

4

2.6

2.6

3

3.1

2.7

9

3.3

4.1

8

0.9

0.2

4

1.4

0.3

9

10

.8±

2.4

2

15

.7±

3.4

3

Ph

orm

idiu

m t

enu

e B

TA

189

1

4.8

±1.2

5

25

.1±

6.6

9

20

.6±

3.7

3

2.3

0.4

9

20

.9±

3.0

7

3.8

0.7

4

35

.8±

1.2

8

40

.3±

2.4

4

Au

losi

ra b

om

ba

yensi

s B

TA

19

0

0.6

0.1

6

0.9

0.2

9

1.3

0.3

0

6.2

0.8

9

8.0

1.5

9

1.8

0.2

2

12

.7±

3.2

3

13

.8±

2.6

6

Ple

cto

nem

a n

ota

tum

BT

A1

94

3

.43

±0.3

2

29

.3±

3.9

8

6.0

0.4

6

2.0

0.8

3

2.5

1.0

4

2.6

0.4

8

30

.9±

2.6

6

45

.9±

2.3

1

Ca

loth

rix

ma

rchic

a B

TA

19

5

22

.9±

5.4

5

23

.6±

1.4

0

16

.1±

0.8

0

25

.6±

1.3

6

22

.3±

1.2

0

21

.0±

0.9

0

27

.6±

1.6

0

66

.4±

1.3

6

Lim

no

thri

x m

ira

bil

is B

TA

19

9

1.2

0.1

0

77

.7±

1.0

5

1.2

0.4

9

2.2

0.1

2

82

.3±

1.0

7

2.3

1.2

2

18

.9±

3.2

2

31

.0±

1.3

0

Nost

oc

calc

ico

la B

TA

20

4

3.9

3.4

1

16

.8±

5.7

2

5.3

0.4

8

0.5

0.1

7

11

.5±

1.5

8

4.4

0.0

6

20

.1±

2.2

4

44

.6±

3.1

2

An

ab

aen

a c

irci

na

lis

BT

A20

5

5.2

0.4

2

8.2

0.8

0

2.3

0.4

0

4.2

0.4

5

11

.6±

1.0

8

4.4

0.0

6

16

.0±

0.6

1

17

.5±

1.4

2

Ca

loth

rix

ma

rchic

a B

TA

20

6

27

.2±

3.1

3

27

.1±

3.3

6

18

.3±

2.5

3

25

.2±

1.1

3

29

.2±

1.6

9

21

.0±

0.4

3

26

.3±

3.1

0

38

.1±

4.1

3

Ca

loth

rix

cla

vata

BT

A2

18

20

.5±

1.0

1

41

.4±

1.0

6

21

.7±

1.3

5

5.0

0.3

8

7.0

1.2

3

2.5

0.4

3

22

.1±

3.3

0

24

.6±

4.5

0

Ph

orm

idiu

m t

enu

e B

TA

22

2

6.3

5.3

7

40

..6

±6

.71

9.3

1.5

2

1.1

1.4

6

1.9

1.0

1

1.8

0.7

6

60

.9±

2.0

9

66

.1±

1.9

9

An

ab

aen

a ci

rcin

ali

s B

TA

24

6

7.3

1.0

0

39

.3±

1.2

0

18

.0±

1.0

4

11

.6±

4.4

8

42

.3±

1.5

0

24

.2±

1.0

6

6.6

0.8

6

10

.5±

0.8

4

Lyn

gbya

mart

ensi

an

a B

TA

43

6

5.1

1.0

2

49

.3±

2.0

8

8.0

1.0

4

8.1

1.2

7

55

.9±

4.0

7

14

.1±

0.5

9

17

.2±

1.7

9

31

.8±

0.4

1

Lyn

gbya

d

igu

eti

BT

A4

75

8.3

5.0

0

27

.3±

1.0

4

26

.6±

1.3

4

10

.1±

3.0

1

55

.9±

4.0

7

14

.1±

0.5

9

4.2

1.1

6

7.7

0.6

4

Ph

orm

idiu

m fr

agil

e B

TA

52

1

10

.8±

4.1

1

90

.2±

1.1

0

30

.2±

1.2

0

13

.2±

0.8

8

11

1.2

±1

.17

38

.8±

4.5

1

20

.3±

1.1

1

45

.2±

4.1

1

An

ab

aen

a ci

rcin

ali

s B

TA

56

1

6.1

1.6

0

16

.4±

3.4

3

4.8

1.3

6

5.1

1.2

2

18

.3±

1.4

2

6.2

1.3

0

22

.7±

2.3

0

29

.6±

1.4

0

An

ab

aen

a s

p.

BT

A5

64

16

.6±

7.8

0

48

.5±

1.3

8

44

.5±

3.2

2

12

.4±

2.3

0

24

.4±

3.9

1

8.3

1.9

3

19

.0±

0.5

8

12

.9±

0.9

9

Ple

cto

nem

a n

ota

tum

BT

A5

65

5

.32

±3.4

3

12

.7±

3.8

9

10

.5±

1.3

6

7.9

1.4

3

17

.7±

2.7

2

15

.3±

2.6

3

16

.7±

3.8

4

22

.0±

0.3

3

Page 27: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

105

Ph

orm

idiu

m

autu

mn

ale

BT

A5

87

8.0

3.5

2

15

.2±

1.0

9

11

.0±

3.6

6

10

.2±

1.5

4

24

.5±

6.3

1

18

.1±

3.0

5

4.2

0.5

3

6.6

0.4

0

Lyn

gbya

aes

tua

rii

BT

A597

4

.22

±1.3

6

7.3

3.4

4

5.3

1.1

1

5.9

0.6

9

9.1

1.7

4

8.6

1.0

2

1.9

0.4

8

5.7

0.1

3

An

ab

aen

a va

ria

bil

is B

TA

60

0

3.9

1.6

0

5.4

0.8

6

5.9

0.7

8

7.3

3.5

4

7.2

1.3

6

8.3

3.4

0

2.5

0.1

0

5.6

1.4

0

Lyn

gbya

a

llo

rgei

BT

A6

06

7.8

4.0

0

82

.8±

1.2

0

38

.9±

1.4

0

3.7

3.6

0

71

.1±

3.6

5

30

.2±

1.2

8

16

.2±

3.5

4

30

.7±

12

.7

L

yng

bya

ma

rten

sia

na

B

TA

64

0

3.6

2.9

0

0.8

0.1

1

4.5

0.8

6

5.8

4.3

0

12

.8±

5.0

0

15

.2±

1.6

9

5.0

1.1

3

16

.4±

2.5

0

Wes

tiel

lop

sis

pro

lifi

ca

BT

A6

45

0

.48

±0.0

0

4.2

0.0

8

0.6

0.3

2

2.4

1.3

2

3.3

1.0

0

2.5

0.0

1

2.3

0.9

0

12

.1±

0.5

5

An

ab

aen

a o

rien

tali

s B

TA

65

3

18

.7±

9.0

0

15

.0±

5.3

5

3.4

2.3

9

32

.7±

4.5

0

22

.6±

5.9

0

10

.2±

6.2

0

11

.7±

2.6

5

16

.8±

4.6

6

Ph

orm

idiu

m s

tag

nin

a B

TA

85

5

3.9

1.9

0

24

.5±

8.7

3

32

.4±

1.4

3

6.9

0.1

0

25

.3±

2.1

1

15

.3±

0.1

0

30

.5±

6.0

9

21

.1±

1.3

0

An

ab

aen

a v

ari

abil

is B

TA

88

0

8.4

5.3

0

24

.6±

8.7

5

32

.4±

1.8

5

4.6

8.1

0

21

.2±

1.2

9

26

.6±

2.4

6

12

.8±

3.6

0

18

.7±

9.9

0

An

ab

aen

a o

ryza

e B

TA

88

1

6.2

5.2

1

12

.6±

4.2

2

9.6

3.6

2

7.0

6.3

1

18

.8±

1.6

2

16

.8±

1.4

7

6.8

11

.5

13

.1±

0.8

6

A

na

ba

ena f

erti

liss

ima

BT

A8

83

2

.53

±0.3

0

33

.5±

5.6

8

9.0

1.3

5

4.3

1.8

0

19

.5±

6.9

6

14

.5±

4.6

7

6.0

0.1

8

1.0

0.0

4

N

ost

oc

elli

pso

spo

rum

BT

A9

02

3

.23

±1.3

0

19

.3±

4.2

0

11

.5±

3.2

0

6.0

1.3

2

28

.5±

5.3

6

19

.6±

4.1

1

1.3

0.7

0

0.4

0.0

6

A

na

ba

ena co

nst

rict

a B

TA

90

3

4.2

2.0

0

17

.8±

5.3

2

9.5

1.1

8

7.5

0.2

0

16

.5±

3.3

4

21

.2±

6.3

0

4.5

0.4

3

0.5

0.1

6

Cyl

ind

rosp

erm

um

m

usc

ico

la

B

TA

90

4

5.2

0.9

0

10

.3±

0.7

9

18

.0±

2.2

2

7.5

0.2

0

16

.5±

3.3

4

21

.2±

6.3

0

1.0

0.0

0

2.6

0.1

9

Cyl

ind

rosp

erm

um

dory

phoru

m

BT

A9

05

3.0

1.2

0

9.6

2.2

0

6.9

2.4

4

6.5

1.4

0

24

.6±

3.2

2

11

.9±

3.2

0

1.5

0.3

0

1.0

0.2

2

Cyl

ind

rosp

erm

um

in

den

tum

BT

A9

06

2.1

0.9

0

7.6

1.1

7

4.9

1.0

1

16

.4±

5.6

0

43

.4±

6.3

4

53

.7±

1.1

6

20

.1±

2.6

8

4.2

0.4

6

Page 28: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

106

An

ab

aen

a o

ryza

e B

TA

91

9

9.2

1.8

0

27

.3±

0.6

1

7.8

0.2

3

12

.2±

1.6

0

20

.7±

1.2

7

7.7

3.4

6

24

.9±

3.6

3

2.6

0.1

9

Nost

oc

ell

iposp

oru

m B

TA

92

3

6.5

2.1

0

18

.2±

1.9

0

4.0

0.9

9

5.1

0.3

0

9.7

0.5

9

12

.9±

1.1

1

8.3

5.8

2

2.0

0.4

3

Mic

roch

aet

e g

rise

a B

TA

92

6

19

.8±

5.8

0

20

.3±

3.6

8

14

.5±

2.1

7

30

.4±

6.1

0

46

.1±

6.1

6

36

.6±

4.6

5

43

.7±

2.3

2

11

.4±

1.5

7

An

ab

aen

a a

no

mala

BT

A92

7

20

.9±

3.6

0

31

.8±

4.5

7

15

.6±

1.6

8

28

.3±

5.7

0

52

.9±

5.9

0

22

.1±

3.2

0

43

.7±

2.3

2

11

.4±

1.5

7

Nost

oc

ver

ruco

sum

BT

A93

9

7.4

0.8

8

21

.4±

2.4

4

4.8

0.7

3

6.9

1.0

7

13

.6±

1.4

9

16

.0±

1.4

4

14

.8±

2.1

9

16

.6±

1.8

3

Nost

oc

calc

ico

la B

TA

94

2

10

.1±

1.4

6

18

.1±

1.8

5

18

.0±

8.2

2

7.9

0.8

2

16

.3±

0.4

4

12

.8±

1.3

3

4.2

2.1

5

7.3

1.8

3

Nost

oc

pis

cin

ale

BT

A94

7

1.7

0.5

0

49

.1±

4.0

1

19

.0±

1.4

3

15

.6±

2.4

0

1

28

.7±

1.8

9

72

.9±

2.4

9

25

.5±

2.5

0

32

.6±

1.3

0

Cyl

ind

rosp

erm

um

in

dic

um

BT

A9

60

2.2

0.7

0

37

.4±

6.0

8

21

.2±

4.7

0

10

.3±

0.5

0

67

.3±

0.0

4

79

.2±

1.4

9

4.6

0.9

6

5.6

1.0

0

An

ab

aen

a va

ria

bil

is B

TA

99

0

7.5

0.8

0

23

.3±

1.7

4

19

.2±

1.2

6

10

.0±

7.6

0

36

.8±

1.9

3

41

.9±

1.8

3

4.4

0.9

0

7.7

1.6

0

Dic

hoth

rix

ba

uer

ian

a B

TA

10

59

5

.63

±4.2

0

7.3

5.2

0

6.2

3.2

0

9.5

1.7

1

10

.3±

0.9

8

8.0

3.7

1

9.3

1.8

1

21

.3±

0.7

4

Page 29: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

107

Strains name and code no. Biomass production and ARA activity

15th

day observation 30th

day observation

Chl-a

(µg/ml)

nmole

C2H4/µg of Chl-

a/hr H4/µg

Chl-a

(µg/ml)

nmole C2 of

Chl-a/hr

H4/µg

Microchaete uberrima BTA001 4.21 2.34±0.01 7.84 0.06±0.01

Anabaena variabilis BTA003 5.15 1.09±0.02 8.72 0.80±0.01

Anabaena doliolum BTA004 2.99 2.20±0.00 4.15 0.24±0.03

Anabaena variabilis BTA006 2.64 3.48±0.03 2.99 0.40±0.09

Microchaete grisea BTA007 5.78 1.22±0.01 10.5 0.15±0.04

Anabaena circinalis BTA008 4.94 1.18±0.04 5.42 0.15±0.06

Nostoc hatei BTA012 1.52 1.46±0.01 3.51 0.37±0.00

Anabaena oryzae BTA014 8.27 2.05±0.05 12.1 0.08±0.01

Calothrix wembaerensis BTA015 1.65 1.97±0.02 4.15 0.60±0.02

Anabaena oryzae BTA017 0.60 1.16±0.03 1.72 0.75±0.05

Anabaena oryzae BTA018 3.41 1.14±0.08 5.15 0.31±0.02

Anabaena spiroides BTA019 0.15 4.00±0.02 0.32 4.48±0.01

Anabaena ambigua BTA021 0.45 1.33±0.01 1.87 0.13±0.09

Anabaena anomala BTA023 0.58 0.06±0.03 1.90 0.22±0.01

Calothrix javanica BTA024 1.77 1.90±0.04 2.12 0.94±0.10

Calothrix geitonos BTA025 1.59 1.75±0.02 3.11 0.26±0.01

Calothrix marchica BTA026 1.59 1.50±0.03 2.65 0.72±0.04

Nostoc muscorum BTA027 4.43 0.07±0.02 7.23 0.21±0.04

Dichothrix orsiniana BTA028 0.92 1.74±0.02 0.78 3.33±0.06

Nostoc parmeliodes BTA029 1.21 1.57±0.01 1.54 1.95±0.12

Anabaena fertilissima BTA030 0.15 10.0±0.05 0.68 3.08±0.01

Anabaena oryzae BTA031 1.56 0.13±0.01 1.93 0.57±0.02

Table-10: Biomass production and nitrogenase activity of heterocystous

cyanobacteria of rice fields of Manipur

Page 30: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

108

Anabaena ambigua BTA034 1.50 1.33±0.12 1.64 2.07±0.01

Anabaena fertilissima BTA035 1.76 1.53±0.06 1.88 1.43±0.03

Anabaena variabilis BTA036 1.23 7.48±0.07 1.47 7.01±0.02

Nostoc hatei BTA037 0.56 19.9±0.02 0.68 22.9±0.09

Nostoc carneum BTA038 0.08 11.3±0.07 1.14 8.68±0.10

Anabaena iyengarii BTA041 0.46 6.10±0.08 0.94 10.0±0.02

Anabaena varibilis BTA043 1.49 2.21±0.08 1.80 6.77±0.08

Microchaete loktakensis BTA044 0.44 2.50±0.09 1.14 4.70±0.05

Microchaete uberrima BTA045 0.18 5.55±0.06 0.36 12.8±0.04

Calothrix marchica BTA046 0.55 1.80±0.04 2.72 0.88±0.03

Microchaete tenera BTA049 3.96 2.17±0.02 2.90 0.38±0.05

Anabaena oryzae BTA050 0.15 3.8±0.09 0.12 5.31±0.06

Anabaena spiroides BTA084 0.13 3.48±0.05 3.60 0.25±0.05

Nostoc muscorum BTA087 3.52 0.11±0.01 2.21 9.00±0.06

Scytonema bohneri BTA106 3.45 2.61±0.00 2.29 5.85±0.10

Scytonema guyanense BTA167 1.23 9.59±0.02 0.64 3.20±0.12

Nostoc commune BTA168 0.28 8.80±0.08 0.50 7.20±0.11

Calothrix castellii BTA177 1.57 8.78±0.03 1.79 7.90±0.03

Scytonema schmidtii BTA186 0.19 5.30±0.05 0.36 3.30±0.03

Aulosira aenigmatica BTA188 1.64 5.49±0.02 3.00 3.70±0.04

Aulosira bombayensis BTA190 1.05 8.09±0.09 1.55 7.03±0.07

Calothrix marchica BTA195 3.76 7.45±0.03 4.89 7.01±0.00

Nostoc calcicola BTA204 2.22 5.18±0.01 2.37 6.16±0.02

Anabaena circinalis BTA205 1.71 5.38±0.00 2.14 5.00±0.07

Calothrix marchica BTA206 3.51 5.87±0.04 4.62 8.03±0.09

Page 31: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

109

T

Calothrix clavata BTA218 6.79 3.14±0.01 8.74 4.30±0.05

Anabaena circinalis BTA246 1.37 0.58±0.02 1.54 1.62±0.12

Anabaena circinalis BTA561 2.49 0.44±0.08 1.02 2.65±0.03

Anabaena sp. BTA564 8.38 0.20±0.06 0.40 8.68±0.01

Anabaena variabilis BTA600 1.10 1.09±0.02 1.12 3.66±0.06

Westiellopsis prolifica BTA645 0.89 2.58±0.08 2.06 7.57±0.02

Anabaena orientalis BTA653 0.65 5.07±0.06 0.57 1.30±0.07

Anabaena variabilis BTA880 2.27 2.33±0.07 2.56 2.72±0.02

Anabaena oryzae BTA881 1.90 6.68±0.04 2.38 8.52±0.05

Anabaena fertilissima BTA883 6.31 1.46±0.03 1.60 6.86±0.08

Nostoc ellipsosporum BTA902 1.63 6.62±0.07 1.88 11.7±0.01

Anabaena constricta BTA903 1.69 7.81±0.04 3.07 11.2±0.02

Cylindrospermum muscicola

BTA904

2.38 4.96±0.01 1.60 12.1±0.05

Cylindrospermum doryphorum

BTA905

5.28 2.29±1.20 6.32 5.08±0.05

Cylindrospermum indentum

BTA906

1.22 10.2±0.02 3.26 10.7±0.08

Anabaena oryzae BTA919 1.55 13.7±1.23 3.44 13.4±0.02

Nostoc ellipsosporum BTA923 0.89 10.0±1.90 3.26 4.38±0.09

Microchaete grisea BTA926 2.43 0.29±0.02 0.18 4.79±0.01

Anabaena anomala BTA927 0.53 12.1±0.10 0.83 13.7±0.06

Nostoc verrucosum BTA939 4.69 2.92±0.11 5.21 4.61±0.00

Nostoc calcicola BTA942 2.06 0.73±0.09 0.92 2.27±0.12

Nostoc piscinale BTA947 3.77 0.26±0.05 0.41 4.61±0.13

Cylindrospermum indicum

BTA960

0.88 2.50±0.03 0.50 3.97±0.02

Anabaena variabilis BTA990 0.63 3.17±0.12 0.40 6.50±0.18

Dichothrix baueriana BTA1059 1.45 13.2±0.01 0.64 19.5±0.16

Page 32: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

110

Table-11: Screening for total lipid from non heterocystous cyanobacterial

strains of rice fields of Manipur

Strains name and code no. Total lipid (%)

Phormidium mucosum BTA002 1.00

Limmothrix vacuolifera BTA005 3.00

Plectonema radiosum BTA009 1.70

Plectonema boryanum BTA010 2.00

Phormidium tenue BTA013 1.00

Plectonema boryanum BTA016 3.00

Phormidium faveolarum BTA020 1.00

Plectonema radiosum BTA032 1.00

Plectonema litorale BTA033 2.00

Myxosarcina burmensis BTA040 2.00

Phormidium arthurensis BTA042 2.00

Plectonema nostocorum BTA047 3.00

Phormidium fragile BTA048

1.00

Phormidium purpurascens BTA081 1.00

Limnothrix redekei BTA082 2.00

Phormidium kuetzingianum BTA083 1.00

Lyngbya laxespiralis BTA085 3.00

Phormidium tenue BTA086 1.00

Plectonema notatum BTA088 2.00

Plectonema notatum BTA108 2.00

Phormidium incrustatum BTA118 1.00

Page 33: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

111

Limnothrix redekei BTA123 2.00

Phormidium valderianum BTA162 1.00

Oscillatoria agardhii BTA170 1.00

Spirulina platensis BTA174 2.00

Lyngbya connectens BTA178 2.50

Lyngbya nordgardhii BTA184 3.00

Phormidium tenue BTA189 2.00

Plectonema notatum BTA194 1.00

Limnothrix mirabilis BTA199 2.00

Phormidium tenue BTA222 2.00

Lyngbya martensiana BTA436 2.00

Phormidium fragile BTA521 1.00

Plectonema notatum BTA565 2.00

Phormidium autumnale BTA587 1.00

Lyngbya aestuarii BTA597 1.00

Lyngbya allorgei BTA606 1.00

Lyngbya martensiana BTA640 2.00

Phormidium stagnina BTA855 1.00

Page 34: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

112

Table-12: Major lipid content from non heterocystous cyanobacterial

strains of rice fields of Manipur Strains name code no. Major fatty acids content in %

Phormidium mucosum

BTA002

Capric acid methyl ester (13.9), Lauric acid methyl ester

(7.23), Pentadecanoic acid methyl ester (39.9), Myristoleic

acid methyl ester (4.09), Tricosanoic Acid Methyl Ester (3.56)

Limnothrix vacuolifera

BTA005

Lauric acid methyl ester (8.59), Myristoleic acid methyl ester

(5.04), Pentadecanoic acid methyl ester (48.2), Heptadecanoic

acid methyl ester (5.45)

Plectonema radiosum

BTA009 Capric acid methyl ester (18.0), Lauric acid methyl ester

(11.0), Myristoleic acid methyl ester (3.12), Pentadecanoic

acid methyl ester (56.4), Cis-13, 16-Docosadienoic Acid

Methyl Ester (4.29)

Plectonema boryanum

BTA010

Butyric acid methyl ester (6.99), Capric acid methyl ester

(13.2) Myristoleic acid methyl ester (8.52), Pentadecanoic acid

methyl ester (13.8), Elaidic acid methyl ester (22.3)

Phormidium tenue BTA013 Caprylic acid methyl ester (5.47), Tridecanoic acid methyl

ester (4.76), Pentadecanoic acid methyl ester (65.2), Cis-10-

Heptadecanoic acid methyl ester (6.19), Oleic acid methyl

ester (11.6)

Plectonema boryanum

BTA016

Capric acid methyl ester (6.08), Lauric acid methyl ester

(7.49),Pentadecanoic acid methyl ester (54.5), Gamma-

Linolenic Acid Methyl Ester (8.82), Cis-13, 16-Docosadienoic

Acid Methyl Ester (2.99)

Phormidium faveolarum

BTA020

Caprylic acid methyl ester (4.48), Tridecanoic acid methyl

ester (4.89), Pentadecanoic acid methyl ester (56.0), Oleic acid

methyl ester (11.8), Linoleic Acid Methyl Ester (11.8)

Plectonema radiosum

BTA032

Capric acid methyl ester (16.6), Lauric acid methyl ester

(12.0), Pentadecanoic acid methyl ester (52.0), Gamma-

Linolenic Acid Methyl Ester (7.89), Cis-13, 16-Docosadienoic

Acid Methyl Ester (4.29)

Plectonema litorale

BTA033

Capric acid methyl ester (10.1), Pentadecanoic acid methyl

ester (72.7), Cis-10- Pentadecanoic acid methyl ester (6.32),

Cis-10- Heptadecanoic acid methyl ester (3.79), Oleic acid

methyl ester (0.11)

Myxosarcina burmensis

BTA040

Capric acid methyl ester (5.92), Pentadecanoic acid methyl

ester (49.3), Cis-10- Pentadecanoic acid methyl ester (13.9),

Cis-10- Heptadecanoic acid methyl ester (11.6), Oleic acid

methyl ester (11.6)

Page 35: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

113

Phormidium arthurensis

BTA042

Pentadecanoic acid methyl ester (55.3), Cis-11-Eicosenoic acid

methyl ester (12.2), Caprylic acid methyl ester (4.93), Cis-10-

Heptadecanoic acid methyl ester (5.66), Oleic acid methyl

ester (4.93)

Plectonema nostocorum

BTA047

Capric acid methyl ester (13.0), Myristoleic acid methyl ester

(9.11), Pentadecanoic ester (25.8), Heptadecanoic acid methyl

ester (16.1), Caproic acid methyl ester (6.72)

Phormidium fragile

BTA048

Pentadecanoic acid methyl ester (65.7), Oleic acid methyl ester

(11.2), Cis-10- Heptadecanoic acid methyl ester (6.18),

Tridecanoic acid methyl ester (4.80), Caprylic acid methyl

ester (4.78)

Phormidium fragile

BTA081

Pentadecanoic acid methyl ester (21.8), Capric acid methyl

ester (13.3) ,Cis-10- Pentadecanoic acid methyl ester (7.36),

Tricosanoic Acid Methyl Ester (40.9), Elaidic acid methyl

ester (5.17)

Limnothrix redekei

BTA082

Pentadecanoic acid methyl ester (49.3), Capric acid methyl

ester (13.5), Lauric acid methyl ester (9.32), Tridecanoic acid

methyl ester (5.75), Myristoleic acid methyl ester (5.10)

Phormidium kuetzingianum

BTA083

Pentadecanoic acid methyl ester (40.9), Capric acid methyl

ester (13.8), Lauric acid methyl ester (7.30), Tridecanoic acid

methyl ester (4.56), Myristoleic acid methyl ester (4.16)

Lyngbya laxespiralis

BTA085

Pentadecanoic acid methyl ester (68.4), Oleic acid methyl ester

(8.91), Cis-10- Pentadecanoic acid methyl ester (6.88), Cis-10-

Heptadecanoic acid methyl ester (6.07), Capric acid methyl

ester (4.85)

Phormidium tenue BTA086 Capric acid methyl ester (14.9), Pentadecanoic acid methyl

ester (25.9), Cis-10- Pentadecanoic acid methyl ester (8.32),

Stearic acid methyl ester (6.67), Tricosanoic Acid Methyl

Ester (42.5)

Plectonema notatum

BTA088

Palmitic acid methyl ester (27.9), Tridecanoic acid methyl

ester (6.68), Capric acid methyl ester (12.0), Cis-10-

Pentadecanoic acid methyl ester (9.56), Butyric acid methyl

ester (2.78)

Plectonema notatum

BTA108

Pentadecanoic acid methyl ester (21.5), Palmitic acid methyl

ester (7.19), Cis-10- Heptadecanoic acid methyl ester (8.34),

Linoleic Acid Methyl Ester (9.49), Linolenic Acid Methyl

Ester (8.47)

Phormidium incrustatum

BTA118

Lauric acid methyl ester (8.77), Pentadecanoic acid methyl

ester (47.3), Gamma- Linolenic Acid Methyl Ester (7.41),

Heptadecanoic acid methyl ester (4.36), Tricosanoic Acid

Methyl Ester (4.14)

Page 36: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

114

Limnothrix redekei

BTA123

Capric acid methyl ester (21.9), Lauric acid methyl ester

(12.0), Pentadecanoic acid methyl ester (15.9), Caprylic acid

methyl ester (2.56), Tridecanoic acid methyl ester (4.91)

Phormidium valderianum

BTA162

Capric acid methyl ester (17.7), Lauric acid methyl ester

(13.4), Pentadecanoic acid methyl ester (5.98), Tricosanoic

Acid Methyl Ester (5.16), Myristoleic acid methyl ester (4.67)

Oscillatoria agardhii

BTA170

Capric acid methyl ester (19.5), Lauric acid methyl ester

(10.5), Pentadecanoic acid methyl ester (6.10), cis-11, 14,17-

Eicosatrienoic Acid Methyl Ester (9.10), Erucic acid methyl

ester (4.78)

Spirulina platensis

BTA174

Caprylic acid methyl ester (6.50), Pentadecanoic acid methyl

ester (60.0), Palmitic acid methyl ester (6.89), Stearic acid

methyl ester (6.10), Behenic Acid Methyl Ester (11.6)

Lyngbya connectens

BTA178

Capric acid methyl ester (7.56), Lauric acid methyl ester

(8.02),Pentadecanoic acid methyl ester (69.4), Heptadecanoic

acid methyl ester (2.49), Tricosanoic Acid Methyl Ester (1.19)

Lyngbya nordgardhii

BTA184

Pentadecanoic acid methyl ester (66.7), Cis-10- Pentadecanoic

acid methyl ester (7.96), Oleic acid methyl ester (9.91),

Linoleic Acid Methyl Ester (8.09), cis-11, 14-Eicosadienoic

Acid Methyl Ester (1.23)

Phormidium tenue

BTA189

Lauric acid methyl ester (9.89), Pentadecanoic acid methyl

ester (47.8), Capric acid methyl ester (12.4), Heptadecanoic

acid methyl ester (5.47), Elaidic acid methyl ester (1.34)

Plectonema notatum

BTA194

Pentadecanoic acid methyl ester (18.3), Cis-10- Heptadecanoic

acid methyl ester (9.00), Linoleic Acid Methyl Ester (9.67),

Linolenic Acid Methyl Ester (9.87), Cis-11-Eicosenoic acid

methyl ester (9.16)

Limnothrix mirabilis

BTA199

Capric acid methyl ester (11.9), Lauric acid methyl ester

(9.18), Pentadecanoic acid methyl ester (46.9), Palmitoleic

acid methyl ester (2.46), Heptadecanoic acid methyl ester

(4.56)

Phormidium tenue

BTA222

Capric acid methyl ester (24.4), Lauric acid methyl ester

(17.0), Pentadecanoic acid methyl ester (16.2), Cis-10-

Pentadecanoic acid methyl ester (6.76), Stearic acid methyl

ester (10.9)

Lyngbya martensiana

BTA436

Capric acid methyl ester (7.64), Lauric acid methyl ester

(5.29), Pentadecanoic acid methyl ester (47.4), Tricosanoic

Acid Methyl Ester ( 25.7), Elaidic acid methyl ester (2.94)

Lyngbya digueti

BTA475

Caprylic acid methyl ester (4.39), Capric acid methyl ester

(4.02), Lauric acid methyl ester (3.66), Tridecanoic acid

methyl ester (3.29), Pentadecanoic acid methyl ester (84.6)

Page 37: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

115

Phormidium fragile

BTA521

Capric acid methyl ester (17.5), Lauric acid methyl ester

(11.6), Myristoleic acid methyl ester (5.68), Pentadecanoic

acid methyl ester (6.97), Tricosanoic Acid Methyl Ester (44.9)

Plectonema notatum

BTA565

Capric acid methyl ester (9.43), Pentadecanoic acid methyl

ester (22.8), Heptadecanoic acid methyl ester (12.8), Gamma-

Linolenic Acid Methyl Ester (8.41), Linolenic Acid Methyl

Ester (10.7)

Phormidium autumnale

BTA587

Capric acid methyl ester (13.8), Lauric acid methyl ester

(9.67), Pentadecanoic acid methyl ester (46.9), Palmitoleic

acid methyl ester (3.45), Tricosanoic Acid Methyl Ester (4.17)

Lyngbya aestuarii

BTA597

Caprylic acid methyl ester (8.48), Pentadecanoic acid methyl

ester (47.7), Cis-10- Heptadecanoic acid methyl ester (4.91),

Oleic acid methyl ester (34.3), Linoleic Acid Methyl Ester

(2.68)

Lyngbya allorgei

BTA606

Pentadecanoic acid methyl ester (61.8), Capric acid methyl

ester (12.3), Lauric acid methyl ester (7.89), Tridecanoic acid

methyl ester (8.99), Palmitoleic acid methyl ester (1.31)

Lyngbya martensiana

BTA640

Capric acid methyl ester (51.2), Pentadecanoic acid methyl

ester (45.1), Heptadecanoic acid methyl ester (14.2), Stearic

acid methyl ester (8.90), Oleic acid methyl ester (56.2)

Phormidium stagnina

BTA855

Capric acid methyl ester (11.3), Pentadecanoic acid methyl

ester (21.6), Cis-10- Pentadecanoic acid methyl ester (7.32),

Stearic acid methyl ester (5.49), Tricosanoic Acid Methyl

Ester (39.9)

Page 38: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

116

Table-13: Selected and potent strains with geographical information

SN Name & code of selected strains GPS information

1 Phormidium mucosum BTA002 N24°49'26.4" E093°57'52.0" Altitude: 775 m

2 Plectonema boryanum BTA010 N24°49'26.4" E093°57'52.0" Altitude: 775 m

3 Calothrix javanica BTA024 N24°49'36.0" E093°53'25.5" Altitude: 780 m

4 Anabaena fertilissima BTA035 N24°49'26.4" E093°57'52.0" Altitude: 775 m

5 Nostoc hatei BTA037 N24°42'26.1" E093°49’09.6" Altitude: 762 m

6 Phormidium arthurensis BTA042 N24°30'12.3" E093°46'46.4" Altitude: 761m

7 Microchaete loktakensis BTA044 N24°32'21.4" E093°45'27.6" Altitude: 764 m

8 Anabaena spiroides BTA084 N24°29'25.1" E094°00'43.7" Altitude: 769 m

9 Nostoc muscorum BTA087 N24°48'14.3" E093°54'18.3" Altitude: 782 m

10 Phormidium incrustatum BTA118 N24°30'12.3" E093°46'46.6" Altitude: 761 m

11 Spirulina platensis BTA174 N24°32'21.9" E093°45'27.6" Altitude: 764 m

12 Calothrix marchica BTA206 N24°20'36.7" E093°41'50.3" Altitude: 835 m

13 Phormidium tenue BTA222 N24°30'12.3" E093°46'46.6" Altitude: 761 m

14 Nostoc piscinale BTA947 N24°29'28.7" E094°00'24.1" Altitude: 805 m

15 Dichothrix baueriana BTA1059 N24°42'09.6" E093°48'22.3" Altitude: 773 m

Page 39: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

117

Morpho-taxo and biochemical characterization of

selected cyanobacterial strains

1. Phormidium mucosum BTA002

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: oscillatoriaceae

Thallus mucilaginous, lamellated, blue green

colour, sheath diffluent, bottom dweller,

entangled, distinctly constricted and

attenuated at the ends

Chlorophyll-a: 0.50 and 5.64 µg/ml

Total soluble proteins: 22.6 and 130.0 µg/ml

Ammonia excretion: 5.20 and 4.11 µg/ml

Total carbohydrates: 96.6 and 52.4 µg/ml

Carotenoids: 27.8 and 24.2 µg/ml

Phycoerythrin: 1.09 and 9.36 µg/ml

Phycocyanin: 11.1 and 33.1 µg/ml

Allo-phycocyanin: 3.60 and 14.6 µg/ml

Nitrogenase activity: 0.01 and 0.04 nmole C2H4/µg chl-a/hr

2. Plectonema boryanum BTA010

Division: cyanophyta; class: cyanophyceae; order: nostocales; family:

scytonemataceae

Thallus blue green color, colonial forms,

initially, floating later attached to the

bottom, constriction at septa present single

and branches present

Chlorophyll-a: 1.22 and 4.96 µg/ml

Total soluble proteins: 51.6 and 15.6 µg/ml

Ammonia excretion: 2.03 and 1.10 µg/ml

Total carbohydrates: 71.2 and 82.3 µg/ml

Carotenoids: 17.4 and 17.2 µg/ml

Phycoerythrin: 2.55 and 4.56 µg/ml

Phycocyanin: 11.0 and 14.2 µg/ml

Allo-phycocyanin: 6.86 and 7.32 µg/ml

Nitrogenase activity: 0.06 and 0.02 nmole C2H4/µg chl-a/hr

Total lipid composition: 28

Page 40: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

118

3. Calothrix javanica BTA024

Division: cyanophyta, class: cyanophyceae; order: nostocales; family: rivulariaceae

Light green colour, filaments single,

unlamellated sheath, pointed apex, basal

heterocyst

Chlorophyll-a: 10.93 and 14.3 µg/ml

Total soluble proteins: 67.9 and 103.0 µg/ml

Ammonia excretion: 10.8 and 26.8 µg/ml

Total carbohydrates: 25.7 and 29.6 µg/ml

Carotenoids: 50.5 and 26.3 µg/ml

Phycoerythrin: 10.6 and 80.9 µg/ml

Phycocyanin: 19.9 and 27.9 µg/ml

Allo-phycocyanin: 9.80 and 20.0 µg/ml

Nitrogenase activity: 1.03 and 0.09 nmole C2H4/µg chl-a/hr

4. Anabaena fertilissima BTA035

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: nostocaceae

Trichomes single, bent with almost rounded

ends cells, heterocyst spherical and adjoining,

spores in long chain,

Chlorophyll-a: 11.6 and 4.48 µg/ml

Total soluble proteins: 85.3 and 92.3 µg/ml

Ammonia excretion: 57.3 and 29.1 µg/ml

Total carbohydrates: 20.0 and 45.0 µg/ml

Carotenoids: 29.6 and 31.7 µg/ml

Phycoerythrin: 7.97 and 21.1 µg/ml

Phycocyanin: 62.5 and 150.4 µg/ml

Allo-phycocyanin: 54.4 and 130.7 µg/ml

Nitrogenase activity: 5.23 and 2.43 nmole C2H4/µg chl-a/hr

Page 41: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

119

5. Nostoc hatei BTA037

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: nostocaceae

Thallus spherical, trichome broad,

irregularly curved and densely entangled

cells spherical and heterocyst single

Chlorophyll-a: 13.3 and 5.51 µg/ml

Total soluble proteins: 51.3 and 115.0 µg/ml

Ammonia excretion: 169.3 and 19.2 µg/ml

Total carbohydrates: 15.0 and 46.0 µg/ml

Carotenoids: 10.4 and 21.5 µg/ml

Phycoerythrin: 6.93 and 4.34 µg/ml

Phycocyanin: 30.7 and 10.7 µg/ml

Allo-phycocyanin: 19.4 and 10.3 µg/ml

Nitrogenase activity: 19.9 and 22.9 nmole C2H4/µg chl-a/hr

6. Phormidium arthurensis BTA042

Division: cyanophyta; class: cyanophyceae; order: nostocales; family:

oscillatoriaceae

Thallus leathery, very thin, blue green,

trichomes bent, entangled, constricted at the

cross walls, sheath colourless

Chlorophyll-a: 0.74 and 12.5 µg/ml

Total soluble proteins: 61.6 and 59.3 µg/ml

Ammonia excretion: 52.4 and 44.5 µg/ml

Total carbohydrates: 20.6 and 15.0 µg/ml

Carotenoids: 5.12 and 30.4µg/ml

Phycoerythrin: 3.27 and 69.2 µg/ml

Phycocyanin: 4.75 and 286.1µg/ml

Allo-phycocyanin: 6.28 and 46.8µg/ml

Nitrogenase activity: 0.87 and 2.88 nmole C2H4/µg chl-a/hr

Page 42: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

120

7. Microchaete loktakensis BTA044

Division: cyanophyta; class: cyanophyceae; order: nostocales; family:

microchaetaceae

Filaments aggregated, long uniformly

cylindrical, broad at base, sheath lamellated,

heterocyst basal, cell granulated

Chlorophyll-a: 9.29 and 10.5 µg/ml

Total soluble proteins: 58.3 and 94.0µg/ml

Ammonia excretion: 126.9 and 24.9µg/ml

Total carbohydrates: 18.6 and 40.0 µg/ml

Carotenoids: 20.6 and 50.2µg/ml

Phycoerythrin: 5.36 and 9.31µg/ml

Phycocyanin: 10.5 and 18.8µg/ml

Allo-phycocyanin: 18.2 and 18.5µg/ml

Nitrogenase activity: 3.22 and 1.23 nmole C2H4/µg chl-a/hr

8. Anabaena spiroides BTA084

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: nostocaceae

Trichome single, regularly spirally coiled

with thick mucilaginous sheath, cells

spherical, heterocyst subpherical

Chlorophyll-a: 10.4 and 31.1µg/ml

Total soluble proteins:108.2 and 83.0 µg/ml

Ammonia excretion: 34.0 and 48.7µg/ml

Total carbohydrates: 34.6 and 37.3 µg/ml

Carotenoids: 12.2 and 40.2µg/ml

Phycoerythrin: 23.4 and 73.9µg/ml

Phycocyanin: 35.0 and 61.3µg/ml

Allo-phycocyanin: 0.14 and 1.38 µg/ml

Nitrogenase activity: 3.48 and 1.44 nmole C2H4/µg chl-a/hr

Page 43: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

121

9. Nostoc muscorum BTA087

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: nostocaceae

Thallus membranous, irregularly expanded,

filaments densely. Entangled, sheath

distinct, heterocyst spherical, spores oblong

Chlorophyll-a: 20.2 and 17.2 µg/ml

Total soluble proteins: 59.6 and 78.0µg/ml

Ammonia excretion: 92.3 and 13.3µg/ml

Total carbohydrates: 38.3 and 44.6µg/ml

Carotenoids: 55.8 and 80.3µg/ml

Phycoerythrin: 14.7 and 43.9µg/ml

Phycocyanin: 123.6 and 273.1µg/ml

Allo-phycocyanin: 65.4 and 159.7µg/ml

Nitrogenase activity: 3.26 and 1.12 nmole C2H4/µg chl-a/hr

10. Phormidium incrustatum BTA118

Division: cyanophyta; class: cyanophyceae; order: nostocales; family:

oscillatoriaceae

Thallus mucilaginous lamellated, blue green

colour, sheath diffluent, end cell-acute-

conical, calyptra

Chlorophyll-a: 2.15 and 4.21µg/ml

Total soluble proteins: 80.0 and 81.3µg/ml

Ammonia excretion: 25.1 and 27.1µg/ml

Total carbohydrates: 36.2 and 39.4µg/ml

Carotenoids: 28.4 and 24.6µg/ml

Phycoerythrin: 1.98µg/ml

Phycocyanin: 21.0µg/ml

Allo-phycocyanin: 7.51µg/ml

Total lipid compositions: 23

Nitrogenase activity: 0.05 and 0.00 nmole C2H4/µg chl-a/hr

Page 44: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

122

11. Spirulina platensis BTA174

Division: cyanophyta; class: cyanophyceae; order: nostocales; family:

oscillatoriaceae

Blue green, trichomes slightly constricted

at the cross, walls regularly spirally coil,

end cells broadly rounded

Chlorophyll-a: 10.8 and 10.0µg/ml

Total soluble proteins: 65.6 and 130.3µg/ml

Ammonia excretion: 84.4 and 58.8µg/ml

Total carbohydrates: 80.0 and 90.0 µg/ml

Carotenoids: 20.0 and 74.1µg/ml

Phycoerythrin: 27.5 and 8.72µg/ml

Phycocyanin: 47.1 and 196.1µg/ml

Allo-phycocyanin: 45.5 and 56.8 µg/ml

Nitrogenase activity: 0.04 and 0.01 nmole C2H4/µg chl-a/hr

12. Calothrix marchica BTA206

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: rivulariaceae

Filaments single, with close coloured sheath,

trichome blue green distinctly constricted,

basal heterocyst

Chlorophyll-a: 2.57 and 6.23µg/ml

Total soluble proteins: 112.0 and 98.4µg/ml

Ammonia excretion: 22.3 and 19.0µg/ml

Total carbohydrates: 56.6 and 98.7µg/ml

Carotenoids: 26.3 and 38.1µg/ml

Phycoerythrin: 27.2 and 29.2µg/ml

Phycocyanin: 27.1 and 21.0µg/ml

Allo-phycocyanin: 18.3 and 21.0µg/ml

Nitrogenase activity: 0.06 and 0.02 nmole C2H4/µg chl-a/hr

Page 45: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

123

13. Phormidium tenue BTA222

Division: cyanophyta; class: cyanophyceae; order: nostocales; family:

oscillatoriaceae

Thallus pale blue green, thin membranous,

expanded, trichome straight highly

entangled, slightly constricted at the cross

walls, attenuated at the ends, sheath thin, end

cell acute conical

Chlorophyll-a: 0.37 and 10.5µg/ml

Total soluble proteins: 82.7 and 92.6µg/ml

Ammonia excretion: 43.0 and 68.9µg/ml

Total carbohydrates: 39.0 and 38.6µg/ml

Carotenoids: 60.9 and 66.1µg/ml

Phycoerythrin: 6.37 and 1.10µg/ml

Phycocyanin: 40.6 and 1.96µg/ml

Allo-phycocyanin: 9.30 and 1.87µg/ml

Nitrogenase activity: 0.06 and 0.00 nmole C2H4/µg chl-a/hr

14. Nostoc piscinale BTA947

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: nostocaceae

Thallus membranous, blue green colour,

coiled, sheath distinct, heterocyst spherical

and intercalary, spores oblong

Chlorophyll-a: 4.22 and 25.2µg/ml

Total soluble proteins: 69.6 and 57.0 µg/ml

Ammonia excretion: 53.0and 5.90µg/ml

Total carbohydrates: 19.0 and 48.6µg/ml

Carotenoids: 25.5 and 32.6µg/ml

Phycoerythrin: 1.72 and 15.6 µg/ml

Phycocyanin: 49.1 and 128.7µg/ml

Allo-phycocyanin: 19.0 and72.9 µg/ml

Nitrogenase activity: 0.66 and 0.13 nmole C2H4/µg chl-a/hr

Page 46: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

124

15. Dichothrix baueriana BTA1059

Division: cyanophyta; class: cyanophyceae; order: nostocales; family: rivulariaceae

Thallus caespitose, penicillate, green in colour,

ultimate branches, sheath close to trichome,

constricted at the cross walls, heterocyst basal

Chlorophyll-a: 2.71 and 6.68µg/ml

Total soluble proteins: 39.0 and 90.6µg/ml

Ammonia excretion: 17.7 and 46.2µg/ml

Total carbohydrates: 31.5 and 26.0 µg/ml

Carotenoids: 9.31 and 21.3µg/ml

Phycoerythrin: 5.63 and 9.52µg/ml

Phycocyanin: 7.36 and 10.3µg/ml

Allo-phycocyanin: 6.20 and 8.01µg/ml

Nitrogenase activity: 13.2 and 19.5 nmole C2H4/µg chl-a/hr

Page 47: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

125

4.4. Discussion

Out of one hundred twelve (112) unialgal cyanobacterial strains screened and

characterized in present study, 15 strains namely; Phormidium mucosum BTA002,

Plectonema boryanum BTA 010, Calothrix javanica BTA024, Anabaena fertilissima

BTA035, Nostoc hatei BTA037, Phormidium arthurensis BTA042, Microchaete

loktakensis BTA044, Anabaena spiroides BTA084, Nostoc muscorum BTA087,

Phormidium incrustatum BTA118, Spirulina platensis BTA174, Calothrix marchica

BTA206, Phormidium tenue BTA222, Nostoc piscinale BTA947 and Dichothrix

baueriana BTA1059 were found to be potent candidates for commercialization.

Anabaena spiroides and Nostoc piscinale were produced highest chl-a in 30th

days old biomass ie., 31.1 µg/ml and 25.2 µg/ml respectively. Nostoc hatei and

Microchaete loktakensis were identified for potential candidates for excretion of

ammonia in culture medium during exponential growth phase as excreted 169.3 µg/ml

and 126.9 µg/ml respectively. Highest carbohydrate was produced by Calothrix

marchica ( 98.7 µg/ml) followed by Plectonema boryanum (82.3 µg/ml) in 30th days

old biomass. Spirulina platensis and Phormidium mucosum were produced almost

similar quantity of total soluble proteins ie., 130.3 µg/ml and 130.0 µg/ml respectively

after the end of growth phase. Nostoc muscorum and Phormidium tenue produced

highest arotenoids ie., 80.3 µg/ml and 66.1 µg/ml respectively in 30th

days old

biomass. Calothrix javanica and Anabaena spiroides were released highest

phycobiliprotein ie., 80.9 µg/ml and 73.9 µg/ml respectively in 30th

days old biomass.

Phormidium arthurensis and Nostoc muscorum were released highest

phycocyanin in 30th

days old biomass ie., 286.1 µg/ml and 273.1 µg/ml respectively.

Anabaena fertilissima and Nostoc muscorum were produced highest amount of allo-

Page 48: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

126

phycocyanin in 30th

days old biomass ie., 130.7 µg/ml and 159.7 µg/ml respectively.

Nostoc hatei BTA037 and Dichothrix baueriana BTA1059 were showed highest

acetylene reduction activity on 15th

day growth ie., 22.9 nmole C2H4/µg of Chl-a/hr

and 19.5 nmole C2H4/µg of Chl-a/hr respectively.

Forty (40) non heterocystous unialgal cyanobacterial strains were subjected

for lipid profiling and fatty acid composition. Plectonema boryanum BTA010 and

Phormidium incrustatum BTA118 were identified most potent strain as produced total

28 and 23 known fatty acid compositions respectively and few of them are very useful

for pharmaceutical and nutraceutical industry. The following five fatty acid

compositions were recorded in present investigation are to be comparable with

already commercialized strains. These are; lauric acid methyl ester (8.77%),

pentadecanoic acid methyl ester (47.3%), gamma-linolenic acid methyl ester (7.41%),

heptadecanoic acid methyl ester (4.36%), tricosanoic acid methyl ester (4.14%).

The cyanobacterium Spirulina has already been commercially exploited

because of its merits on yield and utility of cellular constituents (Borowitzka and

Borowitzka, 1988). Therefore, it would be appropriate if the growth characteristics

and biochemical composition of the presently investigated species could be compared

with those of Spirulina strain already commercialized worldwide. Spirulina

established at CFTRI, Mysore, India was discovered as potent candidate and

commercialized long back due to presence of protein within the range of 40-67 %

along with total lipid between 2-7 % (Tasneem Fatma et al., 1999). In the present

investigation, Plectonema boryanum BTA010 and Phormidium incrustatum BTA118

showed high lipid content including linoliec acid, gamma linolenic acid which are

very important for nutraceutical and pharmaceutical industry. The gamma linolenic

acid (GLA) were reported as a promising therapeutic agent for numerous health

Page 49: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

127

disorders acting precursor for prostaglandin E1 an important compound necessary for

reducing inflammation and in treatment of heart disease (Biagi et al., 1991; Ghazala

et al., 2005; Tran et al., 2009; Wainwright et al., 1996).

In present investigation, Spirulina platensis BTA174 and Phormidium tenue

BTA222 were identified as potent strains as a source of single cell protein which were

contained total soluble proteins ie., 130.3 µg/ml, 130.0 µg/ml respectively and are

comparable with commercialized Spirulina strains world wide. Phycocyanin is the

major and important phycobiliproteins which exhibited anti-cancer activity,

stimulation of immune system and ability to treat ulcers and haemmorrhoidal

bleeding. Studies revealed that Phormidium arthurensis BTA042 and Nostoc

muscorum BTA087 were identified as a highest amount of phycocyanin produced

cyanobacteria ie., 286.1 µg/ml and 273.1 µg/ml respectively and comparable with

already commercialized strains for said purpose (Cohen 1986; Dainippon Patent 1980;

Dainippon Patent 1981; Borowitzka 1994).Vargas et al., 1998 reported that when

nitrogen fixing cyanobacteria were grown under diazotrophic conditions, protein,

carbohydrate and lipid content varied organism to organism.

In the present investigation, Anabaena spiroides BTA084 (25.2 µg/ml) and

Nostoc piscinale BTA947 (31.1 µg/ml) were identified as highest amount of chl-a

producing cyanobacteria which is the clear cut indication that the both cultures were

capable to produce good amount of biomass in culture conditions. Since the culture

conditions are known to be changed the biochemical composition of the algae

(Ciferri, 1983), the constituents can be improved upon further by manipulating culture

conditions. Deitary intake of carotenoids is positively correlated with

chemoprevention of cancer and other degenerative diseases. In the present study, it

was observed that Nostoc muscorum BTA087 and Phormidium tenue BTA222 were

Page 50: Biochemical screening and lipid profiling from cyanobacterial …shodhganga.inflibnet.ac.in/bitstream/10603/40053/9/09_chapter 4.pdf · 79 Biochemical screening and lipid profiling

128

produced highest carotenoids as 66.1 µg/ml and 80.3 µg/ml respectively under culture

conditions which was comparable to previous workers reported the carotenoid

between 39-113 µg/ml in Phormidium laminosum (Fresnedo et al., 1991)

Synechococcus sp. (Gombos and Vigh 1986; Linden et al., 1990) and Nostoc

commune (Olie and Potts 1986; McPherson. 1986; Clement et al., 1967; Becker,

1986). The rate of acetylene reduction activity by cyanobacteria generally ranges

from 1-10 nmol C2H4/µg chl-a/hr (Fogg et al., 1973). In the present study, Nostoc

hatei BTA037 and Dichothrix baueriana BTA1059 were identified as a potent

diazotrophic cyanobacteria as these were expressed ARA as 82.9 nmole C2 of Chl-

a/hr H4/µg and 90.5 nmole C2 of Chl-a/hr H4/µg respectively in culture conditions.

Selected strains may be good candidates for their utilization as cyanobacterial

biofertilizer program.

The present investigation may be concludes that the Phormidium mucosum

BTA002, Plectonema boryanum BTA010, Calothrix javanica BTA024, Anabaena

fertilissima BTA035, Nostoc hatei BTA037, Phormidium arthurensis BTA042,

Microchaete loktakensis BTA044, Anabaena spiroides BTA084, Nostoc muscorum

BTA087, Phormidium incrustatum BTA118, Spirulina platensis BTA174, Calothrix

marchica BTA206, Phormidium tenue BTA222, Nostoc piscinale BTA947 and

Dichothrix baueriana BTA1059 are to be potent candidates for commercial

exploitation for one or other reason (table 13 followed by detailed characterization

including morpho-taxonomy). While considering as a potent cyanobacterial strains for

pharmaceutical and nutraceutical exploitation, other parameters to be worked out

thoroughly before proceeding commercialization. Therefore, detailed

characterizations are to be required for further understanding the biology and

biochemistry of individual strains accordingly.