biocorrosion(in(the(diesel(fuel( infrastructure:impactof

47
Biocorrosion in the Diesel Fuel Infrastructure: Impact of Ultra Low Sulfur Diesel, Fa;y Acid Methyl Esters and Select AlternaAve Fuels Joseph M. Suflita University of Oklahoma BIOCORROSION WORKSHOP 2013 Boulder, CO

Upload: others

Post on 08-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Biocorrosion  in  the  Diesel  Fuel  Infrastructure:  Impact  of  Ultra  Low  

Sulfur  Diesel,  Fa;y  Acid  Methyl  Esters  and  Select  AlternaAve  Fuels    

Joseph  M.  Suflita  University  of  Oklahoma  

BIOCORROSION  WORKSHOP  2013  Boulder,  CO      

Page 2: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

 Microbial  biodegrada-on  of  fuels  is  associated  with  decreased  product  quality,  compromised  equipment  performance,  and  the  biocorrosion  of  metal  surfaces  

 Changing  fuel  formula-ons  are  rou-nely  used  in  the  exis-ng  carbon  steel  infrastructure.      

 Many  reports  of  increased  corrosion  problems.  

Background    

Page 3: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

We  hypothesize  that  fuel-­‐induced  metal  corrosion  is  at  least  a  func-on  of:    

i)  the  chemical  composi-on  of  the  fuel  

ii)  its  inherent  suscep-bility  to  biodegrada-on  

iii)  the  contact  of  the  fuel  with  microorganisms  that  catalyze  biodegrada-on/biocorrosion  processes.  

Hypothesis  

Page 4: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

PerspecAve  

Page 5: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

 Important  consequence  onboard  

Navy  ships  

PerspecAve  

Page 6: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

The use of different different diesel fuel blends can lead to a host of biologically-catalyzed problems: • Biocorrosion Cross contamination • Biofouling of sensors Clogging of fuel lines • Deterioration fuel quality Coalescer performance

Page 7: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

1

2

3

4 Adapted from: Heyer et al., 2013. Ship ballast tanks a review from microbial corrosion and electrochemical point of view Ocean Engineering 70:188–200.

Different Biocorrosion Zones in a Ballast Tank 80% of the world's trade volume is transported by ships

Ballast Tank Model O

xygen concentration [%]

≥ 65% of ships have sediment in their ballast

Page 8: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

0   5   10   15   20  

Depth  (mm)  

O2  C

oncentra-o

n  (ppm

)  

X  8   X  1  

 Interface  JP5  -­‐  Fuel  

Steep  Gradients  in  Oxygen  in  Fuel/Filter  Sterilized  Seawater  IncubaAons  Inoculated  with  Marinobacter    

Ballast  Tank  

107  cells/ml   Fuel   Seawater  

mid  sec-on  

fully  submerged  zone  

-­‐  measurement  by  Wolfenden  and  Avci  

Page 9: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

0   5   10   15   20  

Depth  (mm)  

O2  C

oncentra-o

n  (ppm

)  

X  8   X  1  

 Interface  JP5  -­‐  Fuel  

Steep  Gradients  in  Oxygen  in  Fuel/Filter  Sterilized  Seawater  IncubaAons  Inoculated  with  Marinobacter    

Ballast  Tank  

107  cells/ml   Fuel   Seawater  

mid  sec-on  

fully  submerged  zone  

-­‐  measurement  by  Wolfenden  and  Avci  

Page 10: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Fuels of Interest Traditional petroleum-based fuels:

HSD, LSD, ULSD, F76, JP5

First generation biofuel: FAME-Biodiesel

Second generation biofuels: Algal-based F76,

Camelina-based JP5

Page 11: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

1) Composition of the fuels? Gas chromatography-mass spectrometry 2) Can fuel support microbial growth? Anaerobic incubations; but oxygen exposure has important implications 3) What can a targeted assay of the metabolome tell us? GC-MS 4) What microbes and activities should be monitored? Host of procedures

5) Impact of fuel formulations on microbiologically induced metal corrosion?

Questions and Approaches

Page 12: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

First-Generation Biodiesel

World-wide annual biodiesel production, 1991-2009

0

1,000

2,000

3,000

4,000

5,000

6,000

1985 1990 1995 2000 2005 2010 2015

Mill

ion

Gallo

ns

Source: F.O. Licht; Worldwatch

Ear

th P

olic

y In

stitu

te -

ww

w.e

arth

-pol

icy.

org

Note: 2012 is a projection.

World-wide annual biodiesel production, 1991-2012

Page 13: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof
Page 14: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

(The rates are corrected for biodiesel-unamended controls)

0  

200  

400  

600  

800  

1000  

1200  

0  

50  

100  

150  

200  

250  

300  

Fresh  Sediments   Methanogenic  consorAum  

USS  Arizona   USS  Ge;ysburg  

 Sulfate  Con

sumpA

on    (µM

/day)  

 Metha

ne  Produ

cAon

 (µM/day)  

Contaminated aquifer

Oil-degrading methanogenic

consortium

Enrichment USS Arizona

Ballast Water USS Gettysburg

Biodiesel  (BD)  -­‐Supported  Anaerobic  Microbial  Metabolism  with  Various  Inocula  

Page 15: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Fate of Biodiesel vs. Other Fuels

Page 16: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Biodiesel and Carbon Steel Corrosion

Page 17: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Odd # C-atom Methyl Esters

Even # C-atom Methyl Esters DetecAon  of  the  same  suite  of  fa;y  acids  in  mulAple  incubaAons  (freshwater/marine;  exposed  to  HC/BD  or  not)  

Page 18: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

First Generation Biodiesels are Very

Labile

Page 19: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

What About Other Fuels?

• Focus on ULSD • Many reports of problems

with ULSD • Several hypotheses can be

advanced

Page 20: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

• To make ULSD, refineries must treat it severely • Molecules are broken apart to release the organosulfur moieties • This changes several fuel properties:

density, viscosity, lubricity, etc • Additives used to maintain performance characteristics (e.g. often up to 2% biodiesel)

ULSD: Is It Really Different?

Page 21: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Oil Desulfurization

Deagglomeration

Depolymerization

(from Mochida and Choi, 2004)

Page 22: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Need to Compare the Biological Stability of HSD,

LSD & ULSD Obtained Fuel Samples Directly From the Refinery - Before Any

Additives Incubated with Several Inocula –

Marine and Freshwater

Page 23: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Passaic River assA OTU 4 Passaic River assA OTU 5

Arthur Kill assA OTU 4 Arthur Kill assA OTU 5

Arthur Kill assA OTU 2 Arthur Kill assA OTU 3

Fort Lupton OTU 1 SDB Consortium assA OTU 2

SDB Consortium assA OTU 3 Gowanus Canal assA OTU 2

Passaic River assA OTU 6 Gowanus Canal assA OTU 4 Passaic River assA OTU 7 Passaic River assA OTU 8 Passaic River assA OTU 3

Newtown Creek assA OTU 1 Gowanus Canal assA OTU 5 Passaic River assA OTU 9

Passaic River assA OTU 1 Passaic River assA OTU 2

Desulfoglaeba alkenexedens ALDC assA (GU453656) SDB Consortium assA OTU 5

Strain HxN1 masD (AM748709) Ballast Water assA OTU 2

Desulfatibacillum alkenivorans AK-01 assA1 Desulfatibacillum alkenivorans AK-01 assA2 Ballast Water assA OTU 1 Arthur Kill assA OTU 1 Newtown Creek assA OTU 2

Propane-degrading consortium assA OTU 1 Ballast Water assA OTU 3

Gowanus Canal assA OTU 1 Gowanus Canal assA OTU 3 SDB Consortium assA OTU 1 SDB Consortium assA OTU 4

Fort Lupton assA OTU 2 Fort Lupton assA OTU 3

Fort Lupton putative glycyl radical enzyme OTU 1 Fort Lupton putative glycyl radical enzyme OTU 2

Delta proteobacterium NaphS6 nmsA (CU466269) Delta proteobacterium NaphS2 nmsA (CU466266)

Desulfotomaculum sp. Ox39 bssA (EF123665) Desulfobacterium cetonicum bssA (EF123662)

Thauera aromatica DNT-1 bssA (AB066263) Thauera aromatica T1 tutD (AF113168) Azoarcus sp. T bssA (AY032676) Azoarcus sp. DN11 bssA (AB285034)

Magnetospirillum sp. TS-6 bssA (AB167725) Thauera aromatica bssA (AJ001848) Aromatoleum aromaticum EbN1 bssA (CR555306) Fort Lupton bssA OTU 2 Sulfate-reducing bacterium TRM1 bssA (EF123667) Casper bssA OTU 6 Sulfate-reducing bacterium PRTOL1 bssA (EU780921)

Desulfobacula toluolica bssA (CU466268) Geobacter sp. FRC-32 bssA (NC_011979) Geobacter metallireducens GS-15 bssA (CP000148) Geobacter grbiciae bssA (EF123664)

Geobacter sp. TMJ1 bssA (EF123666) Casper bssA OTU 5

Casper bssA OTU 4 Fort Lupton bssA OTU 1

Casper bssA OTU 3 Casper bssA OTU 1 Casper bssA OTU 2

100

100

100

100

100

100

81

98

90

100

100

100

100

100

100

78

99

82

88

100

100

100

100

79 91

100

92 98

100

100

100

74 89

99

97 100

97

100

98

89

94

92

68

65

75

90 70

84

100

0.1

bssA

assA

nmsA Putative uncharacterized glycyl radical enzymes

Anaerobic HC biodegradation gene probes described

Passaic River assA OTU 4 Passaic River assA OTU 5

Arthur Kill assA OTU 4 Arthur Kill assA OTU 5

Arthur Kill assA OTU 2 Arthur Kill assA OTU 3

Fort Lupton OTU 1 SDB Consortium assA OTU 2

SDB Consortium assA OTU 3 Gowanus Canal assA OTU 2

Passaic River assA OTU 6 Gowanus Canal assA OTU 4 Passaic River assA OTU 7 Passaic River assA OTU 8 Passaic River assA OTU 3

Newtown Creek assA OTU 1 Gowanus Canal assA OTU 5 Passaic River assA OTU 9

Passaic River assA OTU 1 Passaic River assA OTU 2

Desulfoglaeba alkenexedens ALDC assA (GU453656) SDB Consortium assA OTU 5

Strain HxN1 masD (AM748709) Ballast Water assA OTU 2

Desulfatibacillum alkenivorans AK-01 assA1 Desulfatibacillum alkenivorans AK-01 assA2 Ballast Water assA OTU 1 Arthur Kill assA OTU 1 Newtown Creek assA OTU 2

Propane-degrading consortium assA OTU 1 Ballast Water assA OTU 3

Gowanus Canal assA OTU 1 Gowanus Canal assA OTU 3 SDB Consortium assA OTU 1 SDB Consortium assA OTU 4

Fort Lupton assA OTU 2 Fort Lupton assA OTU 3

Fort Lupton putative glycyl radical enzyme OTU 1 Fort Lupton putative glycyl radical enzyme OTU 2

Delta proteobacterium NaphS6 nmsA (CU466269) Delta proteobacterium NaphS2 nmsA (CU466266)

Desulfotomaculum sp. Ox39 bssA (EF123665) Desulfobacterium cetonicum bssA (EF123662)

Thauera aromatica DNT-1 bssA (AB066263) Thauera aromatica T1 tutD (AF113168) Azoarcus sp. T bssA (AY032676) Azoarcus sp. DN11 bssA (AB285034)

Magnetospirillum sp. TS-6 bssA (AB167725) Thauera aromatica bssA (AJ001848) Aromatoleum aromaticum EbN1 bssA (CR555306) Fort Lupton bssA OTU 2 Sulfate-reducing bacterium TRM1 bssA (EF123667) Casper bssA OTU 6 Sulfate-reducing bacterium PRTOL1 bssA (EU780921)

Desulfobacula toluolica bssA (CU466268) Geobacter sp. FRC-32 bssA (NC_011979) Geobacter metallireducens GS-15 bssA (CP000148) Geobacter grbiciae bssA (EF123664)

Geobacter sp. TMJ1 bssA (EF123666) Casper bssA OTU 5

Casper bssA OTU 4 Fort Lupton bssA OTU 1

Casper bssA OTU 3 Casper bssA OTU 1 Casper bssA OTU 2

100

100

100

100

100

100

81

98

90

100

100

100

100

100

100

78

99

82

88

100

100

100

100

79 91

100

92 98

100

100

100

74 89

99

97 100

97

100

98

89

94

92

68

65

75

90 70

84

100

0.1

bssA

assA

nmsA Putative uncharacterized glycyl radical enzymes

-Callaghan, et al., 2010. ES&T. 44(19), 7287-7294.

Page 24: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0  

10  

20  

30  

40  

0   100   200   300  

HSD LSD

ULSD SHIP

BD

control

SO4 (

mM

) Sulfate Reduction by Incubations Containing

Seawater from a Navy Ballast Tank and Refinery Cuts of Diesel Fuel

No Difference in Rates

2ppmS

250-450ppmS

1530ppmS

Page 25: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Sulfate Reduction by Incubations Containing Contaminated Aquifer Sediments and Refinery

Cuts of Diesel Fuel

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

0   50   100   150   200  

BD HSD LSD

ULSD

control

SO4 (

mM

)

No Difference in Rates

Page 26: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Methane Production from a Methanogenic Consortium Capable of Hydrocarbon

Biodegradation

0  

5  

10  

15  

20  

25  

30  

0   50   100   150  

BD

HSD LSD

ULSD

control

CH

4 (m

M) No Difference in Rates

Page 27: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

DGGE profile of NAVY ballast tank communities incubated with ship fuel, diesel fuels

with different sulfur status, or biodiesel

Bacillus  sp.  

control  

Navy  ship  fuel

ULSD LSD HSD SOY Fuel-­free

Page 28: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

DGGE profile of NAVY ballast tank communities incubated with ship fuel, diesel fuels

with different sulfur status, or biodiesel

Bacillus  sp.  

control  

Navy  ship  fuel

ULSD LSD HSD SOY Fuel-­free

indistinguishable

Page 29: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tota

l OTU

%

Major Phylogenic Groups Identified With Pyrosequencing

Epsilonproteobacteria

Deferribacteres

Cyanobacteria

Alphaproteobacteria

Synergistetes

Desulfovibrionales

Gammaproteobacteria

Spirochaetes

Firmicutes

Bacteroidetes

Thermotogae

Deltaproteobacteria

Ballast Water

Page 30: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

Total  O

TU  %  

CompensaAon  Water  Filter  1  

CompensaAon  Water  Filter  2  

CompensaAon  Water  Filter  3  

No  Substrate  Control  

USS  Ge;ysburg  Diesel  

High  Sulfur  Diesel  

Low  Sulfur  Diesel  

Ultra  Low  Sulfur  Diesel  

Soy  Based  BioDiesel  

Dominant  Deltaproteobacteria    

LSD

HSD

ULSD

Ballast Water

No Diesel

Gettysburg

Biodiesel

~ half of these sequences have 100% similarity to the genus Desulfobacter, an acetate-utilizing SRB previously implicated in corrosion

Page 31: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Camelina  JP-­‐5  aZer  

Camelina  JP-­‐5    

before  

5  min  76  min  

JP-­‐5  petro  before  JP-­‐5  petro  aZer  

5  min   76  min  

GC-­‐MS  Comparison  of  TradiAonal  and  Alternate  Military  Fuels  

-­‐  before  and  afer  incubaAon  in  anaerobic  seawater    

Page 32: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0

10

20

30

40

50

60

0 50 100 150 200 250

Sulf

ate

(mM

)

Time (days)

Anaerobic Fuel/Seawater Incubations

Algal F76, CamJP5, ULSD

Un-amended, JP5, F76

Biodiesel

Similar results regardless of inoculum (fresh or marine) or

prior exposure history to hydrocarbon/methylesters

Page 33: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0

10

20

30

40

50

60

0 50 100 150 200 250

Sulf

ate

(mM

)

Time (days)

Anaerobic Fuel/Seawater Incubations

Algal F76, CamJP5, ULSD

Un-amended, JP5, F76

Biodiesel

Lee and Little Experiments Exhibited Corrosion and

Ended in 3 Months WHY??

Page 34: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof
Page 35: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Branched

tetradecane (C14)

Tridecane (C13)

Tetradecane (C14)

Pentadecane (C15)

Strict anaerobic incubations

Less stringent anaerobic incubations

JP-5 petro before

JP-5 petro after

JP-5 petro before

JP-5 petro after

20 min 40 min

5 min 76 min

Page 36: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Straight chain alkanes

Branched alkanes

Notable Fatty acids

Metabolites or other observations

JP5 C10-C15 A few Alkylated  catechols,  

benzoates,  and  phenols/a  few  low  MW  alcohols  and  

acids

Camelina-based JP5 C10-C18 C9-C20

Alkylated  catechols,and    benzoic  acid  /  a  few  low  MW  

alcohols  and  acids

F76 C11-C15 and C22 - Alkylated benzoates

Algal-based F76/petro F76

C10-C20 and C25 C11-C21

Catechol  and  alkylated  benzoates  /  a  few  low  MW  

alcohols  and  acids

Soy-based BD (20%)

C11-C14 and C22-C25 A few C5-C18 and

C20 C:16,  C18:0/1/2  removed;  

Catechols

ULSD C11-C22 - Alkylated catechols, benzoate, alkylated phenol

Less Stringent Anaerobic Incubations

Page 37: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Straight chain alkanes

Branched alkanes

Notable Fatty acids

Metabolites or other observations

JP5 C10-C15 A few Alkylated  catechols,  

benzoates,  and  phenols/a  few  low  MW  alcohols  and  

acids

Camelina-based JP5 C10-C18 C9-C20

Alkylated  catechols,and    benzoic  acid  /  a  few  low  MW  

alcohols  and  acids

F76 C11-C15 and C22 - Alkylated benzoates

Algal-based F76/petro F76

C10-C20 and C25 C11-C21

Catechol  and  alkylated  benzoates  /  a  few  low  MW  

alcohols  and  acids

Soy-based BD (20%)

C11-C14 and C22-C25 A few C5-C18 and

C20 C:16,  C18:0/1/2  removed;  

Catechols

ULSD C11-C22 - Alkylated catechols, benzoate, alkylated phenol

Less Stringent Anaerobic Incubations

Phenols & Catechols and Low

MW Fatty Acids

Page 38: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Catechol

Clear Indication of Aerobic Hydrocarbon

Metabolism

O2

O2

O2

Page 39: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Bacterial Communities in Less Stringent Anaerobic Incubations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Seawater ULSD Biodiesel 5%

Biodiesel 20%

JP5 F76 Camelina JP5

50:50 mix JP5

50:50 mix F76

Unclassified

Chloroflexi

Gammaproteobacteria

Epsilonproteobacteria

Deltaproteobacteria

Alphaproteobacteria

Firmicutes

WS3

Bacteroidetes

Planctomycetes

Verrucomicrobia

Lentisphaerae

*Deltaproteobacteria: SRBs Firmicutes: Clostridia

Page 40: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Desulfoglaeba  alkanexedens  strain  ALDC  • Reduces sulfate

• Degrades hydrocarbons via fumarate addition

• Mineralizes C6-C12 n-alkanes

• Known to cause localized corrosion of

carbon steel

• Syntrophic growth 2  um  

A  Model  Hydrocarbon-­‐Degrading  SRB  

Page 41: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Mass Spectra of Alkylsuccinic Acid Metabolites

2 8 5 5

7 3

1 4 7

3 8 7 Rel

ativ

e ab

unda

nce

Decane

271

CH CH COOSi(CH3)3

CH 2 COOSi(CH3)3

CH 3

(CH 2 ) 7 CH 3

271

(M-15)+ = 387

2 8

4 3

7 3

1 2 9

1 4 7

7 2 4 3

3 5 9

5 5

Rel

ativ

e ab

unda

nce

Octane CH CH

COOSi(CH3)3

CH 2 COOSi(CH3)3

CH 3

(CH 2 ) 5 CH 3

243

(M-15)+ = 359

4 3

5 5 7 3

1 4 7

2 1 5 331129

Mass/charge

Rel

ativ

e ab

unda

nce

1 7 2

2 1 7

2 6 2

1 2

2 1 7

2 6 2

1 7 2 2 6 2

2 1 7

Hexane CH CH

COOSi(CH3)3

CH 2 COOSi(CH3)3

CH 3

(CH 2 ) 3 CH 3

215

(M-15)+ = 331

succinyl moiety

di-silyl moiety

Page 42: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

0  

5  

10  

15  

20  

25  

30  

35  

40  

0   50   100   150   200   250   300  

Sulfa

te  (m

M)  

Time  (days)  

Unamended  

BD  

ULSD  

Key  West  Seawater/Sediments    +  Desulfoglaeba  alkanexedens  

Anaerobic  BiodegradaAon  of  ULSD  

Page 43: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00

25.00 30.00 35.00 40.00 45.00 50.00 55.00

C10  C11  

C12  

C13  

C14  

C15  C16   C17   C18   C19  

Time  (min)  

Respon

se  

TIC  overlay  before  and  aZer  incuba-on  with  ULSD  

Red  boxes  denote  the  degraded  por-ons  of  alkane  peaks   ***Desulfoglaeba  

is  known  to  degrade  C6-­‐C12  n-­‐alkanes  

Page 44: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Extracted  Ion  Chromatograms  Of  CnH(2n-­‐2)O4  Signature  Hydrocarbon  Metabolites  Detected  by  

LC-­‐QToF  Analysis  succinate  metabolites   Unknowns  

Page 45: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

14 16 18 20 22 24 26 28 30 32 34

ULSD  from  NAVY  ULSD  from  refinery  

Time  (min)  

Respon

se  

C10  C11  

C12  C13  

C14  

C15  

C16  

C17  

C18  

C19  

C20  

C21  

C22  

  Two  ‘different’  ULSDs  were  used……..    -­‐  One  directly  from  a  refinery  the  other  from  NAVY    -­‐  Slightly  different  when  analyzed  by  GC/MS  

           -­‐addi-ves?    -­‐  H2S?    -­‐  Signaling?  

But  Why??  

Page 46: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Summary  1)  FAME  biodiesel  is  more  labile  than  other  fuel  components  

and  can  exacerbate  metal  biocorrosion  2)  No  difference  in  the  suscep-bility  of  HSD,  LSD  or  ULSD  to  

anaerobic  biodegrada-on  in  marine  or  freshwater  environments;  addi-ves  in  fuel  likely  important  

3)  Whenever  fuel  biodegrada-on  was  coupled  to  sulfate  reduc-on,  the  corrosion  impact  was  high  

4)  Not  all  ULSDs  are  created  equal;  slight  differences  in  chemical  composi-on  can  be  important  

5)  Small  amounts  of  oxygen  can  have  a  large  impact  on  both  biodegrada-on  and  biocorrosion  

6)  The  presence  of  the  requisite  microorganisms  is  important;  inocula-on  with  a  hydrocarbon-­‐degrading  sulfate  reducing  bacterium  

Page 47: Biocorrosion(in(the(Diesel(Fuel( Infrastructure:Impactof

Acknowledgements  

OU  Biocorrosion  Center  Chris  Lyles  Deniz  Aktas  Tiffany  Lenhart  Irene  Davidova  Kathleen  Duncan  Iwona  Beech  Jan  Sunner  Brad  Stevenson  

Naval  Research  Laboratory  

Brenda  Liole    Jason  Lee  

ConocoPhillips  

Paul  Ryder  

Crew  of  the  USS  Geoysburg