biola(protein)

Upload: hasna-f-b

Post on 04-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Biola(Protein)

    1/34

    PROTEIN

    struktur dan fungsiLaboratorium Biokimia

    Fakultas Biologi UGM

  • 8/13/2019 Biola(Protein)

    2/34

    KUIS

    Apa dasarnya anda mengambil matakuliah

    Biokimia Lanjut

    Dengan mengikuti kuliah Biokimia Lanjut,

    harapan anda mendakitkan

  • 8/13/2019 Biola(Protein)

    3/34

  • 8/13/2019 Biola(Protein)

    4/34

  • 8/13/2019 Biola(Protein)

    5/34

    Central dogma

  • 8/13/2019 Biola(Protein)

    6/34

    Translasiproses pembacaan kodon menjadi

    asam amino yang saling bergabung melaluiikatan peptida

    Komponen dalam translasi

    1.mRNA tersusun dari kode genetik

    2.Ribosom

    3.tRNA pembawa a.a

    4.enzim

  • 8/13/2019 Biola(Protein)

    7/34

    Translation process consists of 3 main stages

    Initiation

    Elongation

    Termination

    InitiationActivation of amino acids forincorporation intoproteins.

  • 8/13/2019 Biola(Protein)

    8/34

    Activation of amino acids for

    incorporation into proteins.

  • 8/13/2019 Biola(Protein)

    9/34

    Kode genetikTiga nukleotida - kodonkode untuk

    asam amino pada protein

  • 8/13/2019 Biola(Protein)

    10/34

    Tidak semuakodon digunakan

    dengan frekuensiyang sama.

    Terdapat variasikodon yangdigunakan antarspesies yang

    berbeda.

  • 8/13/2019 Biola(Protein)

    11/34

    Wobble Hypothesis

  • 8/13/2019 Biola(Protein)

    12/34

    Relationships of DNA to mRNA to

    polypeptide chain.

  • 8/13/2019 Biola(Protein)

    13/34

  • 8/13/2019 Biola(Protein)

    14/34

    Transfer RNA (tRNA)

    Terdiri dari asam nukleat

    dan asam amino spesifik

    berfungsi untukmenghubungkan sekuenasam nukleatprovide thelink between the nucleicacid mRNA dengan asamamino yang dikodenya

    Antikodonsekuen yang

    terdiri dari 3 nukeotidapada tRNA yangkomplemen dengankodon

    Struktur tRNA

  • 8/13/2019 Biola(Protein)

    15/34

    Two initiation factors (IF1&IF3) bind to a 70S

    ribosome.promote the dissociationof 70S ribosomes into free30S and 50S subunits.

    mRNA and IF2, whichcarries- GTP- the charged tRNA

    bind to a free 30S subunit.

    After these have allbound, the 30S initiationcomplex is complete.

    Only tRNAfMetis accepted toform the initiation complex.

    All further charged tRNAsrequire fully assembled (i.e.,70S) ribosomes

    The Shine-Dalgarno

    sequence

    help ribosomesand mRNA aligns correctly forthe start of translation.

    Ribosome consists of- A site aminoacyl

    - P site peptidyl- E site exit

  • 8/13/2019 Biola(Protein)

    16/34

    Peptide bondformation

    catalyzed by anenzyme complexcalledpeptidyltransferase

    Peptidyltransferaseconsists of someribosomal proteins andthe ribosomal RNA acts as a ribozyme.

    The processis repeated until atermination signal isreached.

  • 8/13/2019 Biola(Protein)

    17/34

    Termination oftranslationoccurs whenone of the stop codons (UAA,

    UAG, or UGA) appears in theA site of the ribosome.

    No tRNAs correspond to thosesequences, so no tRNA

    is bound during termination.

    Proteins called release factorsparticipate in termination

  • 8/13/2019 Biola(Protein)

    18/34

  • 8/13/2019 Biola(Protein)

    19/34

    Posttranslational Processing of

    Proteins

    Folding

    Amino acid modification (some proteins)

    Proteolytic cleavage

    FOLDING Before a newly translated polypeptidecan be active, it must be folded into

    the proper 3-D structure and it mayhave to associate with other subunits.

  • 8/13/2019 Biola(Protein)

    20/34

    Enzymes/protein involve in folding process

    1. Cis-trans isomerase for proline

    Proline is the only amino acid in proteins forms peptide bondsin which the trans isomer is only slightly favored (4 to 1 versus1000 to 1 for other residues).

    Thus, during folding, there is a significant chance that thewrong proline isomer will form first. Cells have enzymesto catalyze the cis-trans isomerization necessary tospeed correct folding.

    2. disulfide bond making enzymes3. Chaperonins (molecular chaperones)

    a protein to help keep it properly folded and non-aggregated.

  • 8/13/2019 Biola(Protein)

    21/34

  • 8/13/2019 Biola(Protein)

    22/34

    Insulin is synthesized singlepolypeptidepreproinsulin

    has leader sequence(help it be transported through thecell membrane)

    Specific protease cleaves leader

    sequenceproinsulin.

    Proinsulin folds into specific 3Dstructure and disulfide bondsform

    Another protease cuts moleculeinsulin2 polypeptidechains

  • 8/13/2019 Biola(Protein)

    23/34

    Chaperones

    Function to keep a newlysynthesized protein from

    either improperly folding oraggregating

    After synthesized, protein

    needs to fold in order to haveits function

    The folding pattern is dictatedin the amino acid sequence of

    the protein.

    a. Some proteins capable tofold into its proper 3-Dstructure by itself withoutany help of other molecules

    b. Some proteins needchaperonesto fold(example in human hsp 70)

    c. Some proteins need biggerproteinchaperoninsto

    be able to fold correctly.

    Chaperoninsa polysubunitprotein form a cage likeshape give micro

    environment to protein

  • 8/13/2019 Biola(Protein)

    24/34

    Fig. 1. The consequences of 14-3-3 interaction with target proteins can be classified into several generic modes-of-action. These are represented

    here with 14-3-3 protein dimers shown in orange and interacting proteins in shades of blue, green and purple. (a) First, interaction can directly alter

    the activity of the target. This can occur through changes to the specific activity or the half-life of an enzyme. (b) A scaffold function, in which 14-3-3

    brings together two other proteins, is also a popular suggestion in the literature, although relatively few bona-fideexamples are knownall in

    animal cells [44]. (c) Conformational change brought about by interactions at multiple sites on a target protein is also known in animals [45]. (d)

    Binding of 14-3-3s to cleavable signal peptides (light-blue region) of nuclear-encoded animal mitochondrial and plant chloroplast proteins stimulate

    import into these organelles [46]. (e) Modulation of nuclear import and export is increasingly being revealed as a common mode-of-action of 14-3-

    3s. The best current model is that 14-3-3 can variously either mask or expose nuclear import and/or export signals on target proteins [47and 48]. (f)

    A further general role in protein transport in the endomembrane system has recently been uncovered in animal cells. 14-3-3s promote the forward

    transport of proteins arriving at the Golgi apparatus (pale greygreen) in COPII-coated vesicles derived from the endoplasmic reticulum (greygreen). Interaction with 14-3-3 masks -COP binding sites, preventing entry into the retrograde transport system [49and 50].

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667dhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD1-48GF2GB-1&_user=3304348&_coverDate=05%2F31%2F2003&_alid=580447545&_rdoc=1&_fmt=full&_orig=search&_sort=d&view=c&_acct=C000050802&_version=1&_urlVersion=0&_userid=3304348&md5=80d7d3feb1f1e0d45e7bffffa29c667d
  • 8/13/2019 Biola(Protein)

    25/34

    Protein Targeting

    Nascent proteins

    contain signal sequence

    determinetheir ultimate destination.

    Bacterianewly synthesized protein can: stay in thecytosol, send to the plasma membran, outer

    membrane, periplasmic, extracellular.Eukaryotescan direct proteins to internal sites

    lysosomes, mitochondria etc.

    Nascent polypeptideE.R and glycosylated golgicomplex and modified sorted for deliveryto lysosomes, secretory vesicle and plasmamembrane.

  • 8/13/2019 Biola(Protein)

    26/34

    Translokasi Protein ditranslokasi( disebut pro-

    protein)) membentuk kompleks

    dengan chaperon di sitosol

    Kompleks ini melindungi protein agar

    tidak mengalami folding,

    The complex keeps the protein from

    folding prematurely, which would

    prevent it from passing through the

    secretory porean ATPase that helps

    drive the translocation

    after the pro-protein is translocated,

    the leader peptide is cleaved by a

    membrane-bound protease and the

    protein can fold into its active 3-d

    form.

  • 8/13/2019 Biola(Protein)

    27/34

    Signal recognition particle (SRP) detects signalsequence and brings ribosome to the ER membrane

  • 8/13/2019 Biola(Protein)

    28/34

    Banyak protein

    mitokondrial

    disintesis di

    sitosol dan

    diimport ke

    organel

  • 8/13/2019 Biola(Protein)

    29/34

    Bagaimana mempelajari fungsi

    protein?

  • 8/13/2019 Biola(Protein)

    30/34

    This molecular model of the Hd3a protein was built using the Swiss-Protautomated comparative protein modeling server, based on its sequence homologyto two members of the RKIP protein family whose structures have beendetermined by x-ray crystallographic methods :Arabidopsis thalianaFT and TFL1(Protein databank accession numbers 1WKP and 1WKO, respectively).

    Molecular Model of the Hd3a Protein

    Hd3a protein

    contains a largecentral b -sheet(yellow ribbon)which is flanked onone side by asmaller b-sheet andon the other by an

    a-helix (red ribbon).

  • 8/13/2019 Biola(Protein)

    31/34

    . . . .10 . . . .20 . . . .30 . . . .40 . . . .50 . . . .60 . . . .70CEN_Anthirrinum_1:...MAAKVSSDPLVIGRVIGDVVDHFTSTVKMSVIYNSNNSIKHVYNGHELFPSAVTSTPRVEVHGGDMR: 67SP_Tomato_ 1:...MASKMC.EPLVIGRVIGEVVDYFCPSVKMSVVYNNN...KHVYNGHEFFPSSVTSKPRVEVHGGDLR: 63TFL1_Arabidopsis_1:MENMGTRVI.EPLIMGRVVGDVLDFFTPTTKMNVSYNKK....QVSNGHELFPSSVSSKPRVEIHGGDLR: 65FT_Arabidopsis_ 1:..MSIN..IRDPLIVSRVVGDVLDPFNRSITLKVTYGQR....EVTNGLDLRPSQVQNKPRVEIGGEDLR: 62Hd3a_Rice_ 1:..MAGSGRDRDPLVVGRVVGDVLDAFVRSTNLKVTYGSK....TVSNGCELKPSMVTHQPRVEVGGNDMR: 64consensus 1:---*****--*!!***!!*!*!*!-!--****-!*!*-*-----!*!!****!!-!***!!!!**!*!*!: 70

    . . . .80 . . . .90 . . . 100 . . . 110 . . . 120 . . . 130 . . . 140CEN_Anthirrinum_68:SFFTLIMTDPDVPGPSDPYLREHLHWIVTDIPGTTDSSFGKEVVSYEMP.....................:116SP_Tomato_ 64:SFFTLIMIDPDVPGPSDPYLREHLHWIVTDIPGTTDCSFGREVVGYEMPRPNIGIHRFVFLLFKQKKRQT:133TFL1_Arabidopsis_66:SFFTLVMIDPDVPGPSDPFLKEHLHWIVTNIPGTTDATFGKEVVSYELPRPSIGIHRFVFVLFRQKQRRV:135FT_Arabidopsis_63:NFYTLVMVDPDVPSPSNPHLREYLHWLVTDIPATTGTTFGNEIVCYENPSPTAGIHRVVFILFRQLGRQT:132

    Hd3a_Rice_ 65:TFYTLVMVDPDAPSPSDPNLREYLHWLVTDIPGTTAASFGQEVMCYESPRPTMGIHRLVFVLFQQLGRQT:134consensus 71:*!*!!*!*!!!*!*!!*!*!*!*!!!*!!*!!*!!*-*!!*!**-!!*!********-*******--***:140

    . . . 150 . . . 160 . . . 170 . . . 180 . . .CEN_Anthirrinum_ :..............................................:SP_Tomato_ 134:ISSAPVSRDQFSSRKFSEENELGSPVAAVFFNCQRETAARRR....:175TFL1_Arabidopsis_136:IFPNIPSRDHFNTRKFAVEYDLGLPVAAVFFNAQRETAARKR....:177FT_Arabidopsis_133:VY.APGWRQNFNTREFAEIYNLGLPVAAVFYNCQRESGCGGRRL..:175Hd3a_Rice_ 135:VY.APGWRQNFNTKDFAELYNLGSPVAAVYFNCQREAGSGGRRVYP:179consensus 141:**-**--*-*****-***-*-**-**************---*----:186

    CENAntirrhinum

    SP Tomato

    TFL1ArabidopsisFTArabidopsis

    Hd3a Riceconsensus

    CENAntirrhinumSP TomatoTFL1ArabidopsisFTArabidopsis

    Hd3a Riceconsensus

    CENAntirrhinum

    SP TomatoTFL1ArabidopsisFTArabidopsis

    Hd3a Riceconsensus

    Potential binding pocketDPD-X-P motif GIHR motif

    Hd3a shares high homology with other Phosphatidyl Ethanolamine Binding Proteinor Raf Kinase Inhibitor Protein (PEBP/RKIP) in various plant species

    Hd3a and FT has 73% homology

  • 8/13/2019 Biola(Protein)

    32/34

    Function of PEBPs (RKIP)

    Have diverse roles in animal, yeast and bacteria :

    Regulate signaling pathway to control growth anddifferentiation

    Inhibitor or signaling components to modulate the flux

    through the pathway (Hansawa et al.,2005)

    Biological function of Hd3a is unknown

    The combination of interacting proteins, resolved crystal structuresand mutant phenotypes will lead to comprehensive understandingof the mechanisms that facilitate the switch from vegetative phase

    to reproductive phase

  • 8/13/2019 Biola(Protein)

    33/34

    RKIP /PEBPsfrom structure to function

    bPEBP hPEBP

    CEN

    Hidrogen bond

    The arrangement of conserved residues

    forming the ligand-binding site

    Asp70,His86,Tyr120 and Gly110 (in hPEBP)

    (Banfield and Brady, 2000)

    Bind phosphoryl group Bind cacodylate ion

  • 8/13/2019 Biola(Protein)

    34/34

    (Ahn et al., 2006)

    RKIP /PEBPsfrom structure to function

    The two key conserved residues that bind the ligand (His and Asp)