biomass to liquid process: new kind of cobalt and iron ... · pdf filecatalysts for fischer...

221
UNIVERSITÀ DEGLI STUDI DI MILANO Scuola di Dottorato in Scienze e Tecnologie Chimiche Dipartimento di Chimica XXVI Ciclo Dottorato in Chimica Industriale Biomass to Liquid Process: new kind of cobalt and iron based catalysts for the Fischer-Tropsch Synthesis (Settori Scientifico Disciplinari: ING-IND/25; CHIM/04) Antonieta Di Fronzo (Matricola R09037) Tutor: Prof. Claudia L. Bianchi Co-Tutor: Prof. Carlo Pirola Coordinatore del Dottorato: Prof. Dominique Roberto A.A. 2012/2013

Upload: volien

Post on 01-Feb-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • UNIVERSIT DEGLI STUDI DI MILANO

    Scuola di Dottorato in Scienze e Tecnologie Chimiche Dipartimento di Chimica

    XXVI Ciclo Dottorato in Chimica Industriale

    Biomass to Liquid Process: new kind of cobalt and iron based catalysts for the

    Fischer-Tropsch Synthesis (Settori Scientifico Disciplinari: ING-IND/25; CHIM/04)

    Antonieta Di Fronzo (Matricola R09037)

    Tutor: Prof. Claudia L. Bianchi Co-Tutor: Prof. Carlo Pirola Coordinatore del Dottorato: Prof. Dominique Roberto

    A.A. 2012/2013

  • 2

  • 3

    TABLE OF CONTENTS

    General abstract ................................................................................................... 5 Chapter 1. General Introduction ........................................................................ 27 Chapter 2 Chemistry of Fischer-Tropsch Synthesis ............................................ 57

    2.1 FT Thermodynamics ................................................................................. 58 2.2 FT Reaction Mechanism ........................................................................... 59 2.3 FT Products Selectivity ............................................................................. 65 2.4 FT kinetics ................................................................................................. 68 2.5 Influence of FT process conditions ........................................................... 71

    Chapter 3. Catalysts for Fischer Tropsch Synthesis ............................................ 76 3.1 Iron and Cobalt industrial FT catalysts ..................................................... 80

    i) Iron catalysts: .......................................................................................... 80 ii) Cobalt catalysts: ..................................................................................... 81

    3.2 Chemical State of active phase ................................................................ 82 3.3 Size of active phase .................................................................................. 83

    Chapter 4. Experimental: FT plant and analytical methods ............................... 86 4.1 FT Laboratory plant .................................................................................. 88

    a) First FTS unit (Unit 1): ............................................................................. 88 4.1a Main parts of the plant ....................................................................... 90 4.2a Analytical instruments ........................................................................ 94 4.3a Analytical instruments calibration ..................................................... 98 4.4a Experimental procedure ................................................................... 109 b) Second FTS unit (Unit 2): ...................................................................... 114 4.1b Main parts of the plant .................................................................... 116 4.2b Analytical instruments ..................................................................... 119 4.3b Experimental procedure .................................................................. 121

    4.2 Experimental data elaboration .............................................................. 124 a)First FTS unit (Unit 1) ............................................................................. 124 4.2.5 Hydrogen ......................................................................................... 137 4.2.7 Oxygen Balance ............................................................................... 139 b)Seconf FTS unit (Unit 2) ......................................................................... 140

    4.3 Novelties on the FT plant made in this PhD work .................................. 142 Chapter 5. Catalysts preparation and characterization ................................... 143

    5.1 Catalysts preparation ............................................................................. 146 5.1.1 Catalyst preparation procedure ...................................................... 146

    5.2 Catalysts characterization: ..................................................................... 155 5.2.1 Catalysis characterization: introduction and theory ....................... 155

  • 4

    5.2.1.1 BET analysis .................................................................................. 157 5.2.2 Catalysts characterization: results .................................................. 174

    Chapter 6. High Fe Loaded Supported Catalysts for Biosyngas Fischer Tropsch Conversion: experimental and simulation results ........................................... 197

    6. Development of the kinetic model .......................................................... 197 6.1 Regression of kinetic constants .......................................................... 197 6.2 Mass Balance ...................................................................................... 199 6.3 Energy Balance ................................................................................... 200 6.4 Pressure variation............................................................................... 201 6.5 Catalyst Efficiency ............................................................................... 202

    Chapter 7. Fischer Tropsch runs results and discussion .................................. 204 Chapter 8. Final remarks and Conclusions ....................................................... 216 List of publications ........................................................................................... 219 Publications in Conference Proceedings (peer reviewed) ............................... 219 Communications at congress ........................................................................... 220

  • General abstract

    1. Introduction

    Nowadays it is imperative to develop economical and energy-efficient

    processes for the sustainable production of fuels and chemicals alternative to

    the ones deriving from petroleum. Climate change and air quality are major

    environmental concerns because they directly affect the way we live and

    breath. In order to meet the present and future threats generated by emissions

    to the atmosphere, environmental agencies around the world have issued

    more stringent regulations. One of them is the control of residual sulfur in

    diesel fuel and emission standards for particulates from diesel vehicles. All

    these facts have recently aroused renewed interest in the FischerTropsch

    Synthesis because it can produce super clean diesel oil fraction with high

    cetane number (typically above 70) without any sulfur and aromatic

    compounds, using syngas (mixture of H2, CO, CO2) from natural gas, CH4, coal

    or, as a new tendency, from biomass. [1, 2]. The essential target of FTS is to

    produce paraffins and olefins with different molecular weight and to limit the

    maximum formation of methane and CO2 [3].

    The main reactions involved in FTS are reported in the following scheme [4-8]:

    Irreversible reactions:

    1) n CO + 2n H2 CnH2n + n H2O for olefins

    2) n CO + (1+2n) H2 CnH(2n+2) + n H2O for paraffins

    3) 2n CO + n H2 CnH2n + n CO2 for olefins

    4) n CO + 2n H2 CnH(2n+1)OH + (n-1) H2O for alcohols

    Equilibrium:

    5) CO + H2O CO2 + H2 Water-gas-shift reaction (WGS)

  • General Abstract

    6

    6) CO + H2 C + H2O Carbon deposition

    7) 2 CO C + CO2 Boudouard equilibrium

    The whole reaction gives an energetic contribution strongly exothermic (about

    150 kJ/mol CO reacted). FTS is a particularly complex system, in which a

    number of different reactions are combined to a unique mechanism:

    irreversible Fischer Tropsch (FT) reactions produce hydrocarbons and some

    equilibrium reactions between CO, CO2, CH4 and C, such as the WGS reaction

    and the Boudouard equilibrium, are present too. Nevertheless, it is possible to

    suppose that FTS can be simplified as a combination of the FT reactions and the

    WGS reaction [7]. According this hypothesis, hydrocarbons are primary

    products of FT reaction, and CO2 can only be produced by WGS reaction, a

    reversible parallel-consecutive reaction with respect to CO [9].

    FTS usually requires catalysts based on cobalt or iron. Co-based catalysts have

    been more largely used due to their high selectivity to heavy hydrocarbons and

    low activity in the water-gas shift reaction, so limiting the CO2 formation.

    Moreover Co-based catalysts have shown longer life-time and higher CO

    conversion compared to the Fe-based ones [10]. Iron based catalysts are,

    recently, highly investigated for FTS. Compared to cobalt systems, iron-based

    catalysts are cheaper but less resistant to deactivation due to the oxidizing

    effect of water, despite activating Water Gas Shift reaction (CO + H2O CO2 +

    H2) well [5, 9]. Moreover they are flexible to changes in temperature, pressure

    and they can work at different H2/CO feed ratios (for iron based catalysts this

    ratio can be between 0.5 and 2.5) [11, 12].

    2. Aims of the work

    Considering very recent research results [13-15] the aim of the PhDs research

    was addressed toward the development of three particular kind of catalysts:

  • General Abstract

    7

    The first group of catalysts tested were the Co-based hydrotalcites (HTlc) with

    different amount of Co in two different pilot plants. HTlc-based materials have

    been recently reported as good catalysts for several pro