bivariate markov processes and matrix orthogonality

107
Markov processes Bivariate Markov processes Bivariate Markov processes and matrix orthogonality Manuel Dom´ ınguez de la Iglesia Departamento de An´ alisis Matem´ atico, Universidad de Sevilla 11th International Symposium on Orthogonal Polynomials, Special Functions and Applications Universidad Carlos III de Madrid, September 1st, 2011

Upload: lamdiep

Post on 11-Feb-2017

254 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Bivariate Markov processes

and matrix orthogonality

Manuel Domınguez de la Iglesia

Departamento de Analisis Matematico, Universidad de Sevilla

11th International Symposium on Orthogonal Polynomials,Special Functions and Applications

Universidad Carlos III de Madrid, September 1st, 2011

Page 2: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Outline

1 Markov processesPreliminariesSpectral methods

2 Bivariate Markov processesPreliminariesSpectral methodsAn example

Page 3: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Outline

1 Markov processesPreliminariesSpectral methods

2 Bivariate Markov processesPreliminariesSpectral methodsAn example

Page 4: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

1-D Markov processes

Let (Ω,F ,Pr) a probability space, a (1-D) Markov process withstate space S ⊂ R is a collection of S-valued random variablesXt : t ∈ T indexed by a parameter set T (time) such that

Pr(Xt0+t1 ≤ y |Xt0 = x ,Xτ , 0 ≤ τ < t0) = Pr(Xt0+t1 ≤ y |Xt0 = x)

for all t0, t1 > 0. This is what is called the Markov property.The main goal is to find a description of the transition probabilities

P(t; x , y) ≡ Pr(Xt = y |X0 = x), x , y ∈ S

if S is discrete or the transition density

p(t; x , y) ≡∂

∂yPr(Xt ≤ y |X0 = x), x , y ∈ S

if S is continuous.

Page 5: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

1-D Markov processes

Let (Ω,F ,Pr) a probability space, a (1-D) Markov process withstate space S ⊂ R is a collection of S-valued random variablesXt : t ∈ T indexed by a parameter set T (time) such that

Pr(Xt0+t1 ≤ y |Xt0 = x ,Xτ , 0 ≤ τ < t0) = Pr(Xt0+t1 ≤ y |Xt0 = x)

for all t0, t1 > 0. This is what is called the Markov property.The main goal is to find a description of the transition probabilities

P(t; x , y) ≡ Pr(Xt = y |X0 = x), x , y ∈ S

if S is discrete or the transition density

p(t; x , y) ≡∂

∂yPr(Xt ≤ y |X0 = x), x , y ∈ S

if S is continuous.

Page 6: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

1-D Markov processes

On the set B(S) of all real-valued, bounded, Borel measurablefunctions define the transition operator

(Tt f )(x) = E [f (Xt)|X0 = x ], t ≥ 0

The family Tt , t > 0 has the semigroup property Ts+t = TsTt

The infinitesimal operator A of the family Tt , t > 0 is

(Af )(x) = lims↓0

(Ts f )(x) − f (x)

s

and A determines all Tt , t > 0.There are 3 important cases related to orthogonal polynomials

1 Random walks: S = 0, 1, 2, . . ., T = 0, 1, 2, . . ..

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞).

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞).

Page 7: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

1-D Markov processes

On the set B(S) of all real-valued, bounded, Borel measurablefunctions define the transition operator

(Tt f )(x) = E [f (Xt)|X0 = x ], t ≥ 0

The family Tt , t > 0 has the semigroup property Ts+t = TsTt

The infinitesimal operator A of the family Tt , t > 0 is

(Af )(x) = lims↓0

(Ts f )(x) − f (x)

s

and A determines all Tt , t > 0.There are 3 important cases related to orthogonal polynomials

1 Random walks: S = 0, 1, 2, . . ., T = 0, 1, 2, . . ..

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞).

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞).

Page 8: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

1-D Markov processes

On the set B(S) of all real-valued, bounded, Borel measurablefunctions define the transition operator

(Tt f )(x) = E [f (Xt)|X0 = x ], t ≥ 0

The family Tt , t > 0 has the semigroup property Ts+t = TsTt

The infinitesimal operator A of the family Tt , t > 0 is

(Af )(x) = lims↓0

(Ts f )(x) − f (x)

s

and A determines all Tt , t > 0.There are 3 important cases related to orthogonal polynomials

1 Random walks: S = 0, 1, 2, . . ., T = 0, 1, 2, . . ..

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞).

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞).

Page 9: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

1-D Markov processes

On the set B(S) of all real-valued, bounded, Borel measurablefunctions define the transition operator

(Tt f )(x) = E [f (Xt)|X0 = x ], t ≥ 0

The family Tt , t > 0 has the semigroup property Ts+t = TsTt

The infinitesimal operator A of the family Tt , t > 0 is

(Af )(x) = lims↓0

(Ts f )(x) − f (x)

s

and A determines all Tt , t > 0.There are 3 important cases related to orthogonal polynomials

1 Random walks: S = 0, 1, 2, . . ., T = 0, 1, 2, . . ..

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞).

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞).

Page 10: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Random walks

We have S = 0, 1, 2, . . ., T = 0, 1, 2, . . . and

Pr(Xn+1 = j |Xn = i) = 0 for |i − j | > 1

i.e. a tridiagonal transition probability matrix (stochastic)

P =

b0 a0

c1 b1 a1

c2 b2 a2

. . .. . .

. . .

, bi ≥ 0, ai , ci > 0, ai+bi+ci = 1

⇒ Af (i) = ai f (i + 1) + bi f (i) + ci f (i − 1), f ∈ B(S)

Page 11: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 12: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a0

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 13: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5b1

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 14: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a1

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 15: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a2

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 16: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

c3

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 17: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5b2

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 18: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a2

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 19: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a3

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 20: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

c4

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 21: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a3

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 22: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5

a4

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 23: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·a0 a1 a2 a3 a4 a5

c1 c2 c3 c4 c5 c6

b0

b1 b2 b3 b4 b5b5

0 1 2 3 4 5b

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

T

S

b

Page 24: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Birth and death processes

We have S = 0, 1, 2, . . ., T = [0,∞) andPij(t) = Pr(Xt+s = j |Xs = i) independent of s with the properties

Pi ,i+1(h) = λih + o(h), as h ↓ 0, λi > 0, i ∈ S;

Pi ,i−1(h) = µih + o(h) as h ↓ 0, µi > 0, i ∈ S;

Pi ,i(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, i ∈ S;

Pi ,j(h) = o(h) for |i − j | > 1.

P(t) satisfies the backward and forward equation P ′(t) = AP(t)and P ′(t) = P(t)A with initial condition P(0) = I where A is thetridiagonal infinitesimal operator matrix

A =

−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .. . .

. . .

, λi , µi > 0

⇒ Af (i) = λi f (i + 1) − (λi + µi)bi f (i) + µi f (i − 1), f ∈ B(S)

Page 25: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Birth and death processes

We have S = 0, 1, 2, . . ., T = [0,∞) andPij(t) = Pr(Xt+s = j |Xs = i) independent of s with the properties

Pi ,i+1(h) = λih + o(h), as h ↓ 0, λi > 0, i ∈ S;

Pi ,i−1(h) = µih + o(h) as h ↓ 0, µi > 0, i ∈ S;

Pi ,i(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, i ∈ S;

Pi ,j(h) = o(h) for |i − j | > 1.

P(t) satisfies the backward and forward equation P ′(t) = AP(t)and P ′(t) = P(t)A with initial condition P(0) = I where A is thetridiagonal infinitesimal operator matrix

A =

−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .. . .

. . .

, λi , µi > 0

⇒ Af (i) = λi f (i + 1) − (λi + µi)bi f (i) + µi f (i − 1), f ∈ B(S)

Page 26: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Birth and death processes

We have S = 0, 1, 2, . . ., T = [0,∞) andPij(t) = Pr(Xt+s = j |Xs = i) independent of s with the properties

Pi ,i+1(h) = λih + o(h), as h ↓ 0, λi > 0, i ∈ S;

Pi ,i−1(h) = µih + o(h) as h ↓ 0, µi > 0, i ∈ S;

Pi ,i(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, i ∈ S;

Pi ,j(h) = o(h) for |i − j | > 1.

P(t) satisfies the backward and forward equation P ′(t) = AP(t)and P ′(t) = P(t)A with initial condition P(0) = I where A is thetridiagonal infinitesimal operator matrix

A =

−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .. . .

. . .

, λi , µi > 0

⇒ Af (i) = λi f (i + 1) − (λi + µi)bi f (i) + µi f (i − 1), f ∈ B(S)

Page 27: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Birth and death processes

We have S = 0, 1, 2, . . ., T = [0,∞) andPij(t) = Pr(Xt+s = j |Xs = i) independent of s with the properties

Pi ,i+1(h) = λih + o(h), as h ↓ 0, λi > 0, i ∈ S;

Pi ,i−1(h) = µih + o(h) as h ↓ 0, µi > 0, i ∈ S;

Pi ,i(h) = 1 − (λi + µi)h + o(h) as h ↓ 0, i ∈ S;

Pi ,j(h) = o(h) for |i − j | > 1.

P(t) satisfies the backward and forward equation P ′(t) = AP(t)and P ′(t) = P(t)A with initial condition P(0) = I where A is thetridiagonal infinitesimal operator matrix

A =

−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

. . .. . .

. . .

, λi , µi > 0

⇒ Af (i) = λi f (i + 1) − (λi + µi)bi f (i) + µi f (i − 1), f ∈ B(S)

Page 28: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

0 1 2 3 4 5b

T

S

t0

b

Page 29: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

λ0

0 1 2 3 4 5b

T

S

t0 t1

b

Page 30: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

λ1

0 1 2 3 4 5b

T

S

t0 t1 t2

b

Page 31: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6µ2

0 1 2 3 4 5b

T

S

t0 t1 t2 t3

b

Page 32: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

λ1

0 1 2 3 4 5b

T

S

t0 t1 t2 t3 t4

b

Page 33: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

λ2

0 1 2 3 4 5b

T

S

t0 t1 t2 t3 t4 t5

b

Page 34: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

λ3

0 1 2 3 4 5b

T

S

t0 t1 t2 t3 t4 t5 t6

b

Page 35: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6

λ4

0 1 2 3 4 5b

T

S

t0 t1 t2 t3 t4 t5 t6 t7

b

Page 36: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

· · ·λ0 λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5 µ6µ5

0 1 2 3 4 5b

T

S

t0 t1 t2 t3 t4 t5 t6 t7 t8

b

Page 37: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Diffusion processes

We have S = (a, b),−∞ ≤ a < b ≤ ∞, T = [0,∞).Suppose that as t ↓ 0

E [Xs+t − Xs |Xs = x ] = tτ(x) + o(t);

E [(Xs+t − Xs)2|Xs = x ] = tσ2(x) + o(t);

E [|Xs+t − Xs |3|Xs = x ] = o(t).

µ(x) is the drift coefficient and σ2(x) > 0 the diffusion coefficient.

Infinitesimal generator

A =1

2σ2(x)

d2

dx2+ τ(x)

d

dx

The transition density satisfies the backward differential equation

∂tp(t; x , y) =

1

2σ2(x)

∂2p(t; x , y)

∂x2+ τ(x)

∂p(t; x , y)

∂x

and the forward or evolution differential equation

∂tp(t; x , y) =

1

2

∂2

∂y2[σ2(y)p(t; x , y)] −

∂y[τ(y)p(t; x , y)]

Page 38: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Diffusion processes

We have S = (a, b),−∞ ≤ a < b ≤ ∞, T = [0,∞).Suppose that as t ↓ 0

E [Xs+t − Xs |Xs = x ] = tτ(x) + o(t);

E [(Xs+t − Xs)2|Xs = x ] = tσ2(x) + o(t);

E [|Xs+t − Xs |3|Xs = x ] = o(t).

µ(x) is the drift coefficient and σ2(x) > 0 the diffusion coefficient.

Infinitesimal generator

A =1

2σ2(x)

d2

dx2+ τ(x)

d

dx

The transition density satisfies the backward differential equation

∂tp(t; x , y) =

1

2σ2(x)

∂2p(t; x , y)

∂x2+ τ(x)

∂p(t; x , y)

∂x

and the forward or evolution differential equation

∂tp(t; x , y) =

1

2

∂2

∂y2[σ2(y)p(t; x , y)] −

∂y[τ(y)p(t; x , y)]

Page 39: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Diffusion processes

We have S = (a, b),−∞ ≤ a < b ≤ ∞, T = [0,∞).Suppose that as t ↓ 0

E [Xs+t − Xs |Xs = x ] = tτ(x) + o(t);

E [(Xs+t − Xs)2|Xs = x ] = tσ2(x) + o(t);

E [|Xs+t − Xs |3|Xs = x ] = o(t).

µ(x) is the drift coefficient and σ2(x) > 0 the diffusion coefficient.

Infinitesimal generator

A =1

2σ2(x)

d2

dx2+ τ(x)

d

dx

The transition density satisfies the backward differential equation

∂tp(t; x , y) =

1

2σ2(x)

∂2p(t; x , y)

∂x2+ τ(x)

∂p(t; x , y)

∂x

and the forward or evolution differential equation

∂tp(t; x , y) =

1

2

∂2

∂y2[σ2(y)p(t; x , y)] −

∂y[τ(y)p(t; x , y)]

Page 40: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Diffusion processes

We have S = (a, b),−∞ ≤ a < b ≤ ∞, T = [0,∞).Suppose that as t ↓ 0

E [Xs+t − Xs |Xs = x ] = tτ(x) + o(t);

E [(Xs+t − Xs)2|Xs = x ] = tσ2(x) + o(t);

E [|Xs+t − Xs |3|Xs = x ] = o(t).

µ(x) is the drift coefficient and σ2(x) > 0 the diffusion coefficient.

Infinitesimal generator

A =1

2σ2(x)

d2

dx2+ τ(x)

d

dx

The transition density satisfies the backward differential equation

∂tp(t; x , y) =

1

2σ2(x)

∂2p(t; x , y)

∂x2+ τ(x)

∂p(t; x , y)

∂x

and the forward or evolution differential equation

∂tp(t; x , y) =

1

2

∂2

∂y2[σ2(y)p(t; x , y)] −

∂y[τ(y)p(t; x , y)]

Page 41: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Ornstein-Uhlenbeck diffusion process with S = R

and σ2(x) = 1, τ(x) = −x .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Ornstein−Uhlenbeck process

T

S

Page 42: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Spectral methods

Given a infinitesimal operator A, if we can find a measure ω(x)associated with A, and a set of orthogonal eigenfunctions f (i , x)such that

Af (i , x) = λ(i , x)f (i , x),

then it is possible to find spectral representations of

Transition probabilities Pij(t) (discrete case)or densities p(t; x , y) (continuous case).

Invariant measure or distribution π = (πj) (discrete case) with

πj = limt→∞

Pij(t)

or ψ(y) (continuous case) with

ψ(y) = limt→∞

p(t; x , y).

Page 43: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Spectral methods

Given a infinitesimal operator A, if we can find a measure ω(x)associated with A, and a set of orthogonal eigenfunctions f (i , x)such that

Af (i , x) = λ(i , x)f (i , x),

then it is possible to find spectral representations of

Transition probabilities Pij(t) (discrete case)or densities p(t; x , y) (continuous case).

Invariant measure or distribution π = (πj) (discrete case) with

πj = limt→∞

Pij(t)

or ψ(y) (continuous case) with

ψ(y) = limt→∞

p(t; x , y).

Page 44: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Spectral methods

Given a infinitesimal operator A, if we can find a measure ω(x)associated with A, and a set of orthogonal eigenfunctions f (i , x)such that

Af (i , x) = λ(i , x)f (i , x),

then it is possible to find spectral representations of

Transition probabilities Pij(t) (discrete case)or densities p(t; x , y) (continuous case).

Invariant measure or distribution π = (πj) (discrete case) with

πj = limt→∞

Pij(t)

or ψ(y) (continuous case) with

ψ(y) = limt→∞

p(t; x , y).

Page 45: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Transition probabilities

1 Random walks: S = T = 0, 1, 2, . . .

f (i , x) = qi(x), λ(i , x) = x , i ∈ S, x ∈ [−1, 1].

Pr(Xn = j |X0 = i) = Pnij =

1

‖qi‖2

∫ 1

−1

xnqi (x)qj(x)dω(x)

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞)

f (i , x) = qi (x), λ(i , x) = −x , i ∈ S, x ∈ [0,∞].

Pr(Xt = j |X0 = i) = Pij(t) =1

‖qi‖2

∫ ∞

0

e−xtqi (x)qj (x)dω(x)

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞)

f (i , x) = φi (x), λ(i , x) = αi , i ∈ 0, 1, 2, . . ., x ∈ S .

p(t; x , y) =

∞∑

n=0

eαntφn(x)φn(y)ω(y)

Page 46: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Transition probabilities

1 Random walks: S = T = 0, 1, 2, . . .

f (i , x) = qi(x), λ(i , x) = x , i ∈ S, x ∈ [−1, 1].

Pr(Xn = j |X0 = i) = Pnij =

1

‖qi‖2

∫ 1

−1

xnqi (x)qj(x)dω(x)

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞)

f (i , x) = qi (x), λ(i , x) = −x , i ∈ S, x ∈ [0,∞].

Pr(Xt = j |X0 = i) = Pij(t) =1

‖qi‖2

∫ ∞

0

e−xtqi (x)qj (x)dω(x)

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞)

f (i , x) = φi (x), λ(i , x) = αi , i ∈ 0, 1, 2, . . ., x ∈ S .

p(t; x , y) =

∞∑

n=0

eαntφn(x)φn(y)ω(y)

Page 47: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Transition probabilities

1 Random walks: S = T = 0, 1, 2, . . .

f (i , x) = qi(x), λ(i , x) = x , i ∈ S, x ∈ [−1, 1].

Pr(Xn = j |X0 = i) = Pnij =

1

‖qi‖2

∫ 1

−1

xnqi (x)qj(x)dω(x)

2 Birth and death processes: S = 0, 1, 2, . . ., T = [0,∞)

f (i , x) = qi (x), λ(i , x) = −x , i ∈ S, x ∈ [0,∞].

Pr(Xt = j |X0 = i) = Pij(t) =1

‖qi‖2

∫ ∞

0

e−xtqi (x)qj (x)dω(x)

3 Diffusion processes: S = (a, b) ⊆ R, T = [0,∞)

f (i , x) = φi (x), λ(i , x) = αi , i ∈ 0, 1, 2, . . ., x ∈ S .

p(t; x , y) =

∞∑

n=0

eαntφn(x)φn(y)ω(y)

Page 48: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Invariant measure

1 Random walks: a non-null vector π = (π0, π1, . . . ) ≥ 0

πP = π ⇒ πi =a0a1 · · · ai−1

c1c2 · · · ci

=1

‖qi‖2

2 Birth-death: a non-null vector π = (π0, π1, . . . ) ≥ 0

πA = 0 ⇒ πi =λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

=1

‖qi‖2

3 Diffusion processes: ψ(y) such that

A∗ψ(y) = 0 ⇔1

2

∂2

∂y2[σ2(y)ψ(y)] −

∂y[τ(y)ψ(y)] = 0

⇒ ψ(y) =1

Sω(x)dx

ω(y)

Page 49: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Invariant measure

1 Random walks: a non-null vector π = (π0, π1, . . . ) ≥ 0

πP = π ⇒ πi =a0a1 · · · ai−1

c1c2 · · · ci

=1

‖qi‖2

2 Birth-death: a non-null vector π = (π0, π1, . . . ) ≥ 0

πA = 0 ⇒ πi =λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

=1

‖qi‖2

3 Diffusion processes: ψ(y) such that

A∗ψ(y) = 0 ⇔1

2

∂2

∂y2[σ2(y)ψ(y)] −

∂y[τ(y)ψ(y)] = 0

⇒ ψ(y) =1

Sω(x)dx

ω(y)

Page 50: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Invariant measure

1 Random walks: a non-null vector π = (π0, π1, . . . ) ≥ 0

πP = π ⇒ πi =a0a1 · · · ai−1

c1c2 · · · ci

=1

‖qi‖2

2 Birth-death: a non-null vector π = (π0, π1, . . . ) ≥ 0

πA = 0 ⇒ πi =λ0λ1 · · ·λi−1

µ1µ2 · · ·µi

=1

‖qi‖2

3 Diffusion processes: ψ(y) such that

A∗ψ(y) = 0 ⇔1

2

∂2

∂y2[σ2(y)ψ(y)] −

∂y[τ(y)ψ(y)] = 0

⇒ ψ(y) =1

Sω(x)dx

ω(y)

Page 51: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Outline

1 Markov processesPreliminariesSpectral methods

2 Bivariate Markov processesPreliminariesSpectral methodsAn example

Page 52: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

2-D Markov processes

Now we have a bivariate or 2-component Markov process of theform (Xt ,Yt) : t ∈ T indexed by a parameter set T (time) andwith state space C = S × 1, 2, . . . ,N, where S ⊂ R. The firstcomponent is the level while the second component is the phase.Now the transition probabilities can be written in terms of amatrix-valued function P(t; x ,A), defined for every t ∈ T , x ∈ S,and any Borel set A of S, whose entry (i , j) gives

Pij(t; x ,A) = PrXt ∈ A,Yt = j |X0 = x ,Y0 = i.

Every entry must be nonnegative and

P(t; x ,A)eN ≤ eN , eN = (1, 1, . . . , 1)T

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).

Page 53: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

2-D Markov processes

Now we have a bivariate or 2-component Markov process of theform (Xt ,Yt) : t ∈ T indexed by a parameter set T (time) andwith state space C = S × 1, 2, . . . ,N, where S ⊂ R. The firstcomponent is the level while the second component is the phase.Now the transition probabilities can be written in terms of amatrix-valued function P(t; x ,A), defined for every t ∈ T , x ∈ S,and any Borel set A of S, whose entry (i , j) gives

Pij(t; x ,A) = PrXt ∈ A,Yt = j |X0 = x ,Y0 = i.

Every entry must be nonnegative and

P(t; x ,A)eN ≤ eN , eN = (1, 1, . . . , 1)T

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).

Page 54: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

2-D Markov processes

Now we have a bivariate or 2-component Markov process of theform (Xt ,Yt) : t ∈ T indexed by a parameter set T (time) andwith state space C = S × 1, 2, . . . ,N, where S ⊂ R. The firstcomponent is the level while the second component is the phase.Now the transition probabilities can be written in terms of amatrix-valued function P(t; x ,A), defined for every t ∈ T , x ∈ S,and any Borel set A of S, whose entry (i , j) gives

Pij(t; x ,A) = PrXt ∈ A,Yt = j |X0 = x ,Y0 = i.

Every entry must be nonnegative and

P(t; x ,A)eN ≤ eN , eN = (1, 1, . . . , 1)T

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).

Page 55: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

2-D Markov processes

Now we have a bivariate or 2-component Markov process of theform (Xt ,Yt) : t ∈ T indexed by a parameter set T (time) andwith state space C = S × 1, 2, . . . ,N, where S ⊂ R. The firstcomponent is the level while the second component is the phase.Now the transition probabilities can be written in terms of amatrix-valued function P(t; x ,A), defined for every t ∈ T , x ∈ S,and any Borel set A of S, whose entry (i , j) gives

Pij(t; x ,A) = PrXt ∈ A,Yt = j |X0 = x ,Y0 = i.

Every entry must be nonnegative and

P(t; x ,A)eN ≤ eN , eN = (1, 1, . . . , 1)T

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).

Page 56: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

2-D Markov processes

Now we have a bivariate or 2-component Markov process of theform (Xt ,Yt) : t ∈ T indexed by a parameter set T (time) andwith state space C = S × 1, 2, . . . ,N, where S ⊂ R. The firstcomponent is the level while the second component is the phase.Now the transition probabilities can be written in terms of amatrix-valued function P(t; x ,A), defined for every t ∈ T , x ∈ S,and any Borel set A of S, whose entry (i , j) gives

Pij(t; x ,A) = PrXt ∈ A,Yt = j |X0 = x ,Y0 = i.

Every entry must be nonnegative and

P(t; x ,A)eN ≤ eN , eN = (1, 1, . . . , 1)T

The infinitesimal operator A is now matrix-valued.

Ideas behind: random evolutions

(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60’s and 70’s).

Page 57: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Discrete time quasi-birth-and-death processes

Now we have C = 0, 1, 2, . . . × 1, 2, . . . ,N, T = 0, 1, 2, . . . and

(Pii ′)jj′ = Pr(Xn+1 = i ,Yn+1 = j |Xn = i ′,Yn = j ′) = 0 for |i − i ′| > 1

i.e. a N × N block tridiagonal transition probability matrix

P =

B0 A0

C1 B1 A1

C2 B2 A2

. . .. . .

. . .

(An)ij , (Bn)ij , (Cn)ij ≥ 0, det(An), det(Cn) 6= 0∑

j

(An)ij + (Bn)ij + (Cn)ij = 1, i = 1, . . . ,N

Page 58: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 59: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 60: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 61: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 62: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 63: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 64: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 65: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 66: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24b

Page 67: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24b

Page 68: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 69: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 70: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 71: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 72: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 73: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 74: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 75: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 76: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 77: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

N = 4 phases

· · ·

· · ·

· · ·

· · ·

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24

b

Page 78: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Switching diffusion processes

We have C = (a, b) × 1, 2, . . . ,N, T = [0,∞). The transitionprobability density is now a matrix which entry (i , j) gives

Pij(t; x ,A) = Pr(Xt ∈ A,Yt = j |X0 = x ,Y0 = i)

for any t > 0, x ∈ (a, b) and A any Borel set.The infinitesimal operator A is now a matrix-valued differentialoperator (Berman, 1994)

A =1

2A(x)

d2

dx2+ B(x)

d1

dx1+ Q(x)

d0

dx0

We have that A(x) and B(x) are diagonal matrices and Q(x) isthe infinitesimal operator of a continuous time Markov chain, i.e.

Qii (x) ≤ 0, Qij(x) ≥ 0, i 6= j , Q(x)eN = 0

Page 79: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Switching diffusion processes

We have C = (a, b) × 1, 2, . . . ,N, T = [0,∞). The transitionprobability density is now a matrix which entry (i , j) gives

Pij(t; x ,A) = Pr(Xt ∈ A,Yt = j |X0 = x ,Y0 = i)

for any t > 0, x ∈ (a, b) and A any Borel set.The infinitesimal operator A is now a matrix-valued differentialoperator (Berman, 1994)

A =1

2A(x)

d2

dx2+ B(x)

d1

dx1+ Q(x)

d0

dx0

We have that A(x) and B(x) are diagonal matrices and Q(x) isthe infinitesimal operator of a continuous time Markov chain, i.e.

Qii (x) ≤ 0, Qij(x) ≥ 0, i 6= j , Q(x)eN = 0

Page 80: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Switching diffusion processes

We have C = (a, b) × 1, 2, . . . ,N, T = [0,∞). The transitionprobability density is now a matrix which entry (i , j) gives

Pij(t; x ,A) = Pr(Xt ∈ A,Yt = j |X0 = x ,Y0 = i)

for any t > 0, x ∈ (a, b) and A any Borel set.The infinitesimal operator A is now a matrix-valued differentialoperator (Berman, 1994)

A =1

2A(x)

d2

dx2+ B(x)

d1

dx1+ Q(x)

d0

dx0

We have that A(x) and B(x) are diagonal matrices and Q(x) isthe infinitesimal operator of a continuous time Markov chain, i.e.

Qii (x) ≤ 0, Qij(x) ≥ 0, i 6= j , Q(x)eN = 0

Page 81: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An illustrative example

N = 3 phases and S = R with

Aii(x) = i2, Bii(x) = −ix , i = 1, 2, 3.

0 0.5 1 1.5 2 2.5 3 3.5−8

−6

−4

−2

0

2

4

T

S

Bivariate Ornstein−Uhlenbeck process

2

Page 82: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An illustrative example

N = 3 phases and S = R with

Aii(x) = i2, Bii(x) = −ix , i = 1, 2, 3.

0 0.5 1 1.5 2 2.5 3 3.5−8

−6

−4

−2

0

2

4

T

S

Bivariate Ornstein−Uhlenbeck process

2

1

Page 83: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An illustrative example

N = 3 phases and S = R with

Aii(x) = i2, Bii(x) = −ix , i = 1, 2, 3.

0 0.5 1 1.5 2 2.5 3 3.5−8

−6

−4

−2

0

2

4

T

S

Bivariate Ornstein−Uhlenbeck process

2

1

3

Page 84: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An illustrative example

N = 3 phases and S = R with

Aii(x) = i2, Bii(x) = −ix , i = 1, 2, 3.

0 0.5 1 1.5 2 2.5 3 3.5−8

−6

−4

−2

0

2

4

T

S

Bivariate Ornstein−Uhlenbeck process

2

1

3

2

Page 85: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An illustrative example

N = 3 phases and S = R with

Aii(x) = i2, Bii(x) = −ix , i = 1, 2, 3.

0 0.5 1 1.5 2 2.5 3 3.5−8

−6

−4

−2

0

2

4

T

S

Bivariate Ornstein−Uhlenbeck process

2

1

3

2

3

Page 86: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Spectral methods

Now, given a matrix-valued infinitesimal operator A, if we can finda weight matrix W(x) associated with A, and a set of orthogonalmatrix eigenfunctions F(i , x) such that

AF(i , x) = Λ(i , x)F(i , x),

then it is possible to find spectral representations of

Transition probabilities P(t; x , y).

Invariant measure or distribution π = (πj ) (discrete case)with

πj = limt→∞

P·j(t) ∈ RN

or ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y)) (continuous case) with

ψj(y) = limt→∞

P·j(t; x , y)

Page 87: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Spectral methods

Now, given a matrix-valued infinitesimal operator A, if we can finda weight matrix W(x) associated with A, and a set of orthogonalmatrix eigenfunctions F(i , x) such that

AF(i , x) = Λ(i , x)F(i , x),

then it is possible to find spectral representations of

Transition probabilities P(t; x , y).

Invariant measure or distribution π = (πj ) (discrete case)with

πj = limt→∞

P·j(t) ∈ RN

or ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y)) (continuous case) with

ψj(y) = limt→∞

P·j(t; x , y)

Page 88: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Spectral methods

Now, given a matrix-valued infinitesimal operator A, if we can finda weight matrix W(x) associated with A, and a set of orthogonalmatrix eigenfunctions F(i , x) such that

AF(i , x) = Λ(i , x)F(i , x),

then it is possible to find spectral representations of

Transition probabilities P(t; x , y).

Invariant measure or distribution π = (πj ) (discrete case)with

πj = limt→∞

P·j(t) ∈ RN

or ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y)) (continuous case) with

ψj(y) = limt→∞

P·j(t; x , y)

Page 89: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Transition probabilities

1 Discrete time quasi-birth-and-death processes:C = 0, 1, 2, . . . × 1, 2, . . . ,N, T = 0, 1, 2, . . .(Grunbaum and Dette-Reuther-Studden-Zygmunt, 2007)

F(i , x) = Φi(x), Λ(i , x) = xI, i ∈ 0, 1, 2, . . ., x ∈ [−1, 1].

Pnij =

(∫ 1

−1

xnΦi(x)dW(x)Φ∗

j (x)

)(∫ 1

−1

Φj(x)dW(x)Φ∗j (x)

)−1

2 Switching diffusion processes: C = (a, b) × 1, 2, . . . ,N,T = [0,∞) (MdI, 2011)

F(i , x) = Φi(x), Λ(i , x) = Γi , i ∈ 0, 1, 2, . . ., x ∈ (a, b).

P(t; x , y) =

∞∑

n=0

Φn(x)eΓntΦ

∗n(y)W(y)

Page 90: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Transition probabilities

1 Discrete time quasi-birth-and-death processes:C = 0, 1, 2, . . . × 1, 2, . . . ,N, T = 0, 1, 2, . . .(Grunbaum and Dette-Reuther-Studden-Zygmunt, 2007)

F(i , x) = Φi(x), Λ(i , x) = xI, i ∈ 0, 1, 2, . . ., x ∈ [−1, 1].

Pnij =

(∫ 1

−1

xnΦi(x)dW(x)Φ∗

j (x)

)(∫ 1

−1

Φj(x)dW(x)Φ∗j (x)

)−1

2 Switching diffusion processes: C = (a, b) × 1, 2, . . . ,N,T = [0,∞) (MdI, 2011)

F(i , x) = Φi(x), Λ(i , x) = Γi , i ∈ 0, 1, 2, . . ., x ∈ (a, b).

P(t; x , y) =

∞∑

n=0

Φn(x)eΓntΦ

∗n(y)W(y)

Page 91: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Invariant measure

1 Discrete time quasi-birth-and-death processes (MdI, 2011)

Non-null vector with non-negative components

π = (π0;π1; · · · ) ≡ (Π0eN ; Π1eN ; · · · )

such that πP = π where eN = (1, . . . , 1)T and

Πn = (CT1 · · ·CT

n )−1Π0(A0 · · ·An−1) =

(∫ 1

−1

Φn(x)dW(x)Φ∗

n(x)

)

−1

2 Switching diffusion processes (MdI, 2011):

ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y))

A∗ψ(y) = 0 ⇔1

2

∂2

∂y2[ψ(y)A(y)] −

∂y[ψ(y)B(y)] +ψ(y)Q(y) = 0

⇒ ψ(y) =

(

∫ b

a

eTNW(x)eNdx

)

−1

eTNW(y)

Page 92: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Invariant measure

1 Discrete time quasi-birth-and-death processes (MdI, 2011)

Non-null vector with non-negative components

π = (π0;π1; · · · ) ≡ (Π0eN ; Π1eN ; · · · )

such that πP = π where eN = (1, . . . , 1)T and

Πn = (CT1 · · ·CT

n )−1Π0(A0 · · ·An−1) =

(∫ 1

−1

Φn(x)dW(x)Φ∗

n(x)

)

−1

2 Switching diffusion processes (MdI, 2011):

ψ(y) = (ψ1(y), ψ2(y), . . . , ψN(y))

A∗ψ(y) = 0 ⇔1

2

∂2

∂y2[ψ(y)A(y)] −

∂y[ψ(y)B(y)] +ψ(y)Q(y) = 0

⇒ ψ(y) =

(

∫ b

a

eTNW(x)eNdx

)

−1

eTNW(y)

Page 93: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An example coming from group representation

Let N ∈ 1, 2, . . ., α, β > −1, 0 < k < β + 1 and Eij will denote thematrix with 1 at entry (i , j) and 0 otherwise.For x ∈ (0, 1), we have a symmetric pair W,A(Grunbaum-Pacharoni-Tirao, 2002) where

W(x) = xα(1 − x)β

N∑

i=1

(

β − k + i − 1i − 1

)(

N + k − i − 1N − i

)

xN−iEii

A =1

2A(x)

d2

dx2+ B(x)

d

dx+ Q(x)

d0

dx0

A(x) = 2x(1− x)I, B(x) =

N∑

i=1

[α+1+N − i − x(α+β+2+N − i)]Eii

Q(x) =

N∑

i=2

µi (x)Ei ,i−1 −

N∑

i=1

(λi (x) + µi(x))Eii +

N−1∑

i=1

λi (x)Ei ,i+1,

λi (x) =1

1 − x(N − i)(i + β − k), µi (x) =

x

1 − x(i − 1)(N − i + k).

Page 94: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An example coming from group representation

Let N ∈ 1, 2, . . ., α, β > −1, 0 < k < β + 1 and Eij will denote thematrix with 1 at entry (i , j) and 0 otherwise.For x ∈ (0, 1), we have a symmetric pair W,A(Grunbaum-Pacharoni-Tirao, 2002) where

W(x) = xα(1 − x)β

N∑

i=1

(

β − k + i − 1i − 1

)(

N + k − i − 1N − i

)

xN−iEii

A =1

2A(x)

d2

dx2+ B(x)

d

dx+ Q(x)

d0

dx0

A(x) = 2x(1− x)I, B(x) =

N∑

i=1

[α+1+N − i − x(α+β+2+N − i)]Eii

Q(x) =

N∑

i=2

µi (x)Ei ,i−1 −

N∑

i=1

(λi (x) + µi(x))Eii +

N−1∑

i=1

λi (x)Ei ,i+1,

λi (x) =1

1 − x(N − i)(i + β − k), µi (x) =

x

1 − x(i − 1)(N − i + k).

Page 95: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

An example coming from group representation

Let N ∈ 1, 2, . . ., α, β > −1, 0 < k < β + 1 and Eij will denote thematrix with 1 at entry (i , j) and 0 otherwise.For x ∈ (0, 1), we have a symmetric pair W,A(Grunbaum-Pacharoni-Tirao, 2002) where

W(x) = xα(1 − x)β

N∑

i=1

(

β − k + i − 1i − 1

)(

N + k − i − 1N − i

)

xN−iEii

A =1

2A(x)

d2

dx2+ B(x)

d

dx+ Q(x)

d0

dx0

A(x) = 2x(1− x)I, B(x) =

N∑

i=1

[α+1+N − i − x(α+β+2+N − i)]Eii

Q(x) =

N∑

i=2

µi (x)Ei ,i−1 −

N∑

i=1

(λi (x) + µi(x))Eii +

N−1∑

i=1

λi (x)Ei ,i+1,

λi (x) =1

1 − x(N − i)(i + β − k), µi (x) =

x

1 − x(i − 1)(N − i + k).

Page 96: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

The orthogonal eigenfunctions Φi(x) of A are calledmatrix-valued spherical functions associated with the complexprojective space. There are many structural formulas availablestudied in the last years(Grunbaum-Pacharoni-Tirao-Roman-MdI).

Bispectrality: Φi(x) satisfy a three-term recurrence relation

xΦi (x) = AiΦi+1(x) + BiΦi(x) + CiΦi−1(x), i = 0, 1, . . .

whose Jacobi matrix describes a discrete-timequasi-birth-and-death process (Grunbaum-MdI, 2008).It was recently connected with urn and Young diagram models(Grunbaum-Pacharoni-Tirao, 2011).

The infinitesimal operator A describes a nontrivial switchingdiffusion process from which we can give a description of thematrix-valued probability density P(t; x , y) and invariantdistribution ψ(y) in terms of the eigenfunctions Φi(x) ,among other properties (MdI, 2011).

Page 97: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

The orthogonal eigenfunctions Φi(x) of A are calledmatrix-valued spherical functions associated with the complexprojective space. There are many structural formulas availablestudied in the last years(Grunbaum-Pacharoni-Tirao-Roman-MdI).

Bispectrality: Φi(x) satisfy a three-term recurrence relation

xΦi (x) = AiΦi+1(x) + BiΦi(x) + CiΦi−1(x), i = 0, 1, . . .

whose Jacobi matrix describes a discrete-timequasi-birth-and-death process (Grunbaum-MdI, 2008).It was recently connected with urn and Young diagram models(Grunbaum-Pacharoni-Tirao, 2011).

The infinitesimal operator A describes a nontrivial switchingdiffusion process from which we can give a description of thematrix-valued probability density P(t; x , y) and invariantdistribution ψ(y) in terms of the eigenfunctions Φi(x) ,among other properties (MdI, 2011).

Page 98: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

The orthogonal eigenfunctions Φi(x) of A are calledmatrix-valued spherical functions associated with the complexprojective space. There are many structural formulas availablestudied in the last years(Grunbaum-Pacharoni-Tirao-Roman-MdI).

Bispectrality: Φi(x) satisfy a three-term recurrence relation

xΦi (x) = AiΦi+1(x) + BiΦi(x) + CiΦi−1(x), i = 0, 1, . . .

whose Jacobi matrix describes a discrete-timequasi-birth-and-death process (Grunbaum-MdI, 2008).It was recently connected with urn and Young diagram models(Grunbaum-Pacharoni-Tirao, 2011).

The infinitesimal operator A describes a nontrivial switchingdiffusion process from which we can give a description of thematrix-valued probability density P(t; x , y) and invariantdistribution ψ(y) in terms of the eigenfunctions Φi(x) ,among other properties (MdI, 2011).

Page 99: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effectsconsiders a big population of constant size M composed of twotypes A and B .

A1+β

2−−→ B , B1+α

2−−→ A, α, β > −1

As M → ∞, this model can be described by a diffusion processwhose state space is S = [0, 1] with drift and diffusion coefficient

τ(x) = α+ 1 − x(α+ β + 2), σ2(x) = 2x(1 − x), α, β > −1

The N phases of our bivariate Markov process are variations of theWright-Fisher model in the drift coefficients:

Bii(x) = α+1+N− i − x(α+β+2+N− i), Aii(x) = 2x(1− x)

Now there is an extra parameter k ∈ (0, β + 1) in Q(x), whichmeasures how the process moves through all the phases.

Page 100: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effectsconsiders a big population of constant size M composed of twotypes A and B .

A1+β

2−−→ B , B1+α

2−−→ A, α, β > −1

As M → ∞, this model can be described by a diffusion processwhose state space is S = [0, 1] with drift and diffusion coefficient

τ(x) = α+ 1 − x(α+ β + 2), σ2(x) = 2x(1 − x), α, β > −1

The N phases of our bivariate Markov process are variations of theWright-Fisher model in the drift coefficients:

Bii(x) = α+1+N− i − x(α+β+2+N− i), Aii(x) = 2x(1− x)

Now there is an extra parameter k ∈ (0, β + 1) in Q(x), whichmeasures how the process moves through all the phases.

Page 101: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The Wright-Fisher diffusion model involving only mutation effectsconsiders a big population of constant size M composed of twotypes A and B .

A1+β

2−−→ B , B1+α

2−−→ A, α, β > −1

As M → ∞, this model can be described by a diffusion processwhose state space is S = [0, 1] with drift and diffusion coefficient

τ(x) = α+ 1 − x(α+ β + 2), σ2(x) = 2x(1 − x), α, β > −1

The N phases of our bivariate Markov process are variations of theWright-Fisher model in the drift coefficients:

Bii(x) = α+1+N− i − x(α+β+2+N− i), Aii(x) = 2x(1− x)

Now there is an extra parameter k ∈ (0, β + 1) in Q(x), whichmeasures how the process moves through all the phases.

Page 102: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The parameters α and β generally describe if the boundaries 0 and1 are either absorbing or reflecting.The matrix Q(x) controls the waiting times at each phase and thetendency of moving forward or backward in phases. These alsodepend on the position x of the particle.

Meaning of k (MdI, 2011)

If k . β + 1 ⇒ phase 1 is absorbing ⇒ Backward tendencyMeaning: The parameter k helps the population of A’s tosurvive against the population of B ’s.

If k & 0 ⇒ phase N is absorbing ⇒ Forward tendencyMeaning: Both populations A and B ’fight’ in the sameconditions.

Middle values of k: Forward/backward tendency.

More information: arXiv:1107.3733.

Page 103: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The parameters α and β generally describe if the boundaries 0 and1 are either absorbing or reflecting.The matrix Q(x) controls the waiting times at each phase and thetendency of moving forward or backward in phases. These alsodepend on the position x of the particle.

Meaning of k (MdI, 2011)

If k . β + 1 ⇒ phase 1 is absorbing ⇒ Backward tendencyMeaning: The parameter k helps the population of A’s tosurvive against the population of B ’s.

If k & 0 ⇒ phase N is absorbing ⇒ Forward tendencyMeaning: Both populations A and B ’fight’ in the sameconditions.

Middle values of k: Forward/backward tendency.

More information: arXiv:1107.3733.

Page 104: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The parameters α and β generally describe if the boundaries 0 and1 are either absorbing or reflecting.The matrix Q(x) controls the waiting times at each phase and thetendency of moving forward or backward in phases. These alsodepend on the position x of the particle.

Meaning of k (MdI, 2011)

If k . β + 1 ⇒ phase 1 is absorbing ⇒ Backward tendencyMeaning: The parameter k helps the population of A’s tosurvive against the population of B ’s.

If k & 0 ⇒ phase N is absorbing ⇒ Forward tendencyMeaning: Both populations A and B ’fight’ in the sameconditions.

Middle values of k: Forward/backward tendency.

More information: arXiv:1107.3733.

Page 105: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The parameters α and β generally describe if the boundaries 0 and1 are either absorbing or reflecting.The matrix Q(x) controls the waiting times at each phase and thetendency of moving forward or backward in phases. These alsodepend on the position x of the particle.

Meaning of k (MdI, 2011)

If k . β + 1 ⇒ phase 1 is absorbing ⇒ Backward tendencyMeaning: The parameter k helps the population of A’s tosurvive against the population of B ’s.

If k & 0 ⇒ phase N is absorbing ⇒ Forward tendencyMeaning: Both populations A and B ’fight’ in the sameconditions.

Middle values of k: Forward/backward tendency.

More information: arXiv:1107.3733.

Page 106: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

A variant of the Wright-Fisher model

The parameters α and β generally describe if the boundaries 0 and1 are either absorbing or reflecting.The matrix Q(x) controls the waiting times at each phase and thetendency of moving forward or backward in phases. These alsodepend on the position x of the particle.

Meaning of k (MdI, 2011)

If k . β + 1 ⇒ phase 1 is absorbing ⇒ Backward tendencyMeaning: The parameter k helps the population of A’s tosurvive against the population of B ’s.

If k & 0 ⇒ phase N is absorbing ⇒ Forward tendencyMeaning: Both populations A and B ’fight’ in the sameconditions.

Middle values of k: Forward/backward tendency.

More information: arXiv:1107.3733.

Page 107: Bivariate Markov processes and matrix orthogonality

Markov processes Bivariate Markov processes

Feliz cumpleanos, Paco!