blackbody radiation and the dimension of spaceas the final result for the bound ol! (d - 3) will...

8
lm'edigació'l /{cl}isia Mexicana de Fisiea 35 No. 1(1989) 97-10~ Blackbody radiation and the dimension of space José Leonel Torres and Pedro Ferreira I1errejón DepartatTIcllto de Física, Universidad Afichoocana, 58260 Mordia, Michoacán, México (recibido el 7 de mayo de 1988; aceptado el3 de agosto de 1988) Abstract. A thermal radíation cavity is lIsed as a probe to test for a possible deviation of space from exaet tri-dimcnsionality. \Ve consider a O-dimensional eavity assuming that sueh derivation would be reflected in the observed discrepane)' betwC'C1lthe standard throrctical prediction and experimental values of the radiance and the sJlCClral distribution. Corrections lo tite Stefall.Boltzmann radiance and tlle Planck spectrum are calculated, which tUfll ollt lo be proportional lo (D-3), as expected. For a small cavity there are fu rther correctiolls to these formulas, eoming from its sizc and shape. Considering thcll cosmic background radiation, i.e., thc largcst possihlc cavity, we get frolll lhe rcported experimental errors for the radiance and thc spcctrum, a bound ID - 31~ 10- 3 . This value is considerahly largcr then the bOlllllls rccently obtained using other precisely measurcd phenomena as probcs. PACS: 9B.70.Vc 1. Introduction In recenl years the possibilily of space-time baving a dilllcllsion different froID 4 has frcqucntly becn considercd. This conjedure was origillally advallced in Kaluza's farnous paper [1] of 1921, which proposcd a space-lime dimcnsionality of 5 to unify classical gravitation and elcctromagnd~m, giving rise to the I\aluza-Klein theories, dormant for several decades until thcir revival in the lale 1960's in a quantum field theoretical version lhat evolved illlo tile rnodern supersyrnmetric theories trying to unify gravily with the olher inleraclions [2]. This lhcoretical road lo higher dimensiollalities converged with a rathcr distanl one at firsl, Ilamely, thal opened up by the dual rnodels of strong interactions [3]' whieh lcd firsl to the slring theory of strong interactions and lhen to lhc grand unified "string lheorics of everything" of our days, all of them mathernat.ieally consislent only in a space-lirnc with dimension larger lhan 4. Olher theoretieal sehemcs dealing wilh space dimcllsionalitics differcnt from 3 cven at low energies have arisec.l in the study of critical phcllornena [4], and of fractal structurcs [5). In fact, even lhe possibility of a nOTl-conlinuous spacc-time has becn considcred, whose discrctcness would becornc apparenl at high cnergy [6]. At sorne poinl the questiolJ of spacc-time dimensionalily Illllst be addrcssed cxperirnentally, looking for residual effects of abnormal dimensions detectable at presently available energies, mueh lower than the Planck cnergy 10 19 Gev. These residual effccts would appear as irreducible deviations of experimental results froro

Upload: others

Post on 22-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

lm'edigació'l /{cl}isia Mexicana de Fisiea 35 No. 1(1989) 97-10~

Blackbody radiation and the dimension of spaceJosé Leonel Torres and Pedro Ferreira I1errejón

DepartatTIcllto de Física, Universidad Afichoocana, 58260 Mordia, Michoacán, México(recibido el 7 de mayo de 1988; aceptado el3 de agosto de 1988)

Abstract. A thermal radíation cavity is lIsed as a probe to test for apossible deviation of space from exaet tri-dimcnsionality. \Ve consider aO-dimensional eavity assuming that sueh derivation would be reflectedin the observed discrepane)' betwC'C1lthe standard throrctical predictionand experimental values of the radiance and the sJlCClral distribution.Corrections lo tite Stefall.Boltzmann radiance and tlle Planck spectrumare calculated, which tUfll ollt lo be proportional lo (D-3), as expected.For a small cavity there are fu rther correctiolls to these formulas, eomingfrom its sizc and shape. Considering thcll cosmic background radiation,i.e., thc largcst possihlc cavity, we get frolll lhe rcported experimentalerrors for the radiance and thc spcctrum, a bound ID - 31~ 10-3. Thisvalue is considerahly largcr then the bOlllllls rccently obtained usingother precisely measurcd phenomena as probcs.

PACS: 9B.70.Vc

1. Introduction

In recenl years the possibilily of space-time baving a dilllcllsion different froID 4 hasfrcqucntly becn considercd. This conjedure was origillally advallced in Kaluza'sfarnous paper [1] of 1921, which proposcd a space-lime dimcnsionality of 5 to unifyclassical gravitation and elcctromagnd~m, giving rise to the I\aluza-Klein theories,dormant for several decades until thcir revival in the lale 1960's in a quantum fieldtheoretical version lhat evolved illlo tile rnodern supersyrnmetric theories tryingto unify gravily with the olher inleraclions [2]. This lhcoretical road lo higherdimensiollalities converged with a rathcr distanl one at firsl, Ilamely, thal openedup by the dual rnodels of strong interactions [3]' whieh lcd firsl to the slring theoryof strong interactions and lhen to lhc grand unified "string lheorics of everything" ofour days, all of them mathernat.ieally consislent only in a space-lirnc with dimensionlarger lhan 4.

Olher theoretieal sehemcs dealing wilh space dimcllsionalitics differcnt from 3cven at low energies have arisec.l in the study of critical phcllornena [4], and of fractalstructurcs [5). In fact, even lhe possibility of a nOTl-conlinuous spacc-time has becnconsidcred, whose discrctcness would becornc apparenl at high cnergy [6].

At sorne poinl the questiolJ of spacc-time dimensionalily Illllst be addrcssedcxperirnentally, looking for residual effects of abnormal dimensions detectable atpresently available energies, mueh lower than the Planck cnergy 1019 Gev. Theseresidual effccts would appear as irreducible deviations of experimental results froro

Page 2: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

98 J. L. Torres and P. Fcrr'fim I/arrjón

predictions of tite standard three- or four.dimensional theories. This criterion \\'asfirst used by Zeilinger and Svozil in a 1985 paper [7]. Expecting deviations frorIl four-dimellsionality to be quite small at lo\\' cnC'rgies, they defined fractional dimcnsioTlsin tcrlIls of the lIausdorff measure of rcgions of spacc-tirnc. Cltoosing the anomalousmagnetic moment 9 of the electron as a pro he, alJ(l performing thc QED perturbativeloop intcgrations through the lIausdorff IIwasurc, instead of tite usual HiclIlallll-Sticltjes on(', they obtaincd to first ordcr in the fine strueture constant n

( 1 )

with J) the spacc-time dimension, dcfilH'd !hrough its 11aIIsdorff measure. IdC'lltifyingthe diferencc D.g bctwecn tile standard tlworctical predictioIl (using .l-dimcnsionalQED) ami the experimental rcsult for !J, wilh lhe qllantity (6.g)theor. = g(ñ) - 09(.1),they oblain

- (,),) ( ') )D - .1 '" - =-- ,- /:;g,o C+IIl7f

(2)

wiJcrc e = EnJer's constant. Frolll tile hes! a\'ailablc D.g lhey get the devial ion frolll4-dimcllsiollalily

jj - 4", -(".:I:lo 2.5) x 10-'.

\Vorking along this line of thought, ~liill{'l"and Schii.fcr [8] chose two ver)' pre-cisely lTIeasured phenomena: tile advance of r..lercury's perihelion ami the LambsltiCt oC tite 2PI/2 and 281/2 states in hydrogcn. '!I each case, inslead oC introdllcingCractional dimensions through the lIausdorff IIlcasurc oC sets, they followed a sorne-what more delicate procedure: they gencraliz('f.! the theory of the phenornenon underconsideration to a space with onc time and J) space dilllcnsions, with D an integcr.Solving tite differential equations of the extended thcory, they analytically continuedthe final result to arbitrary vallles of D. Identifying again lhe difference betwe('nthe standard (D = 3) result and tiJe experimental value, with a deviation from thestandard prediction caused by de asslITlwdc1imcllsionality D, they arrived at bOlllldsto the quantity D (or (D - 3). In the case of the advance oC 1\1ercury's perihelioll,they wrotc down Einstein's equatiolls Corgeneral rclativity in an arbitrary 1lt1lIlbcrof dimeIlsions, considered tiJe slln-planet problc!lI and got for the pcriltelioll shiftper rcvoiution

(1 )

where 111 is the sun mass, L the system's angular mornentuffi, 6.4>3 = 67ftn2/ ¡} thestandard result form (3 + l)-dimensional general rclativity, and 7f(D - 3) repre-scnts the clTcct oC the assumed deviatioll oCspace frolll tri-dimensionality. Using tlle

Page 3: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

JJlacklx>dymdiation and the dimension o/ spaCf 99

cxperimental reslllt fort .ó.</J the)' obtaincd the bouncl

ID - 31:¿ 10-'. (5 )

For the Lamo shift problcIll tIJey wrote clown the 5chrodinger (''<Iuation withrclativistie and spin-orbit lerms in D spalial dimcnsions, and ealculatcd the efrcel(.6.E)u; 011 lIJe lamb shift,

(6)

whcre Z is the nuclear charge, m the cleetron mass and a the fine strlleturc eonstaill.This t.erm is presenl ('ven in the non-re1ativistic limit becausc the 50(4) sYIllIlletryof tile normal e¡lIantulIl Illcchanical I\cpler problclIl is broken for D f:. 3. Equating(.ó.E)Ls with the difrercnce hct\\'l'ell tIJe standard (D = 3) QED prediction for titeLamo shift and its experimental value, lhey get

(7)

this being the most str:ngcnt bound lo date on possiblc dcviatiolls from tridimen-sionality at low cIlcrgies.

Following thc same line of argument, we propose using thermal radiation in aeavit)' as a probe to test for possiLle dcviations from tridimensionality. Measurementof the radianec amI the spectrum are reasonably accuratc [9J, and discrepancieswilh respect lo lhc Stcfan.Bollzmann law and the Planck fre<¡ucney distribution,respedivdy, should provide bounds for the quantily (D - 3).

Blakbody radiation has bccn cmploycd in the rast to get bounds on a possiblephoton rnass [101, assuming that lhe disagrcemenl found Lelween experimenlal val-ues aJl(I lheoretical prediction~' cO'lld be associaled with tile cfrcel of a tiny rnass forlight, aJl(I using Proca's instcad of ~Iaxwcll's cquations to describe c1ectromagnetieradiation. In this articlc we will lake a strictly zera photan mass, and aSSlltnc thatthe abscrved difrercnct's come exclusivcly fram a dimensional cfreel.

2. A IJ-dimensional radiation cavity

For a tridimensional cavity thc partition funetion Z is givcll by

1"X = -2 L In (1 - e-p,) "" -2 lo'" d,,( ... ) 1n(1 - e-Ph") (8)nomll.t .• Ornod •.~

where fJ = tr, £ = !Iv (negleeting as usual the zero-point encrgy); ltu: factor 2 islhe numher of photon polarizations, and ( ... ) is a fllnd.ion of the fr('!jucne)' v ofgcometrieal origin, whosc cxaet valuc is not wriUcll down lo foclIs allentioll 011 tile

Page 4: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

100 J, 1.. Torres and P, Ferrcim llerrejón

quantitics of interest. The Jlaturc of the approximation involved whcn going fromthe sum to tite integral will be considcrcd latter.

This formula gcncralizes in D dirncnsions to

In20= -AO L In(l_e-Oh") :O-AO l'" dv( ... )ln(l-e-Oh") (9)nonnll1!no,I ••"

where AlJ is tiJe T1umberof plloton polarizalions in [) dirnensions and the Hew factor( ... ) in the integral now corncs from iHlding O\'cr all normal modes in a D-cuhe. Tllisequation is valid assuming €Il = nhll, ¡.t:, the sarne spcctrum as in threc dimcnsions(the zero point energy is simply negledcd from lhe bcginlling, bccallse, being aconstant, it affccts ncitller lhe radiance Ilor the spcctrum, just as in the ordinaryca.fie).

'rhe value of AlJ alld thesc cnergy eigcnvalucs are readily obtaincd frolll a gcn-eralization of lIJe ~Iaxwell frec Lagrangiall lo D-dimensional spacc [11):

" 1 J ID F''"¡"Cf) = -- ( X' '¡IV'<1

( 10)

with FIJ,v = DV ,V'-DII AV (Ji, 11= O, 1, ... 1 D). \Vriling dowll for A" an cxpansioll innormalmodes analogous to thal in (3+1) spacc-time, tite lIamiltonian froln Eq. (lO)imnlf_,,<lialclygivcs tbe spcetrum €n = (n + ~)hv - nhv if lhe zero-point encrgy isneglectcd. Just as in the ordinary case, the longitudinal photon is c1iminalcd throughthe equatiolls of molion, ¡.l., lhe Maxwcll equatioTls generalizcd lo D-spacc; lhetimc-like piloto n is absenl due to gauge invariance. lIellce the rcmaining Ilumber ofindcpcndenl Al' componenls, or photon poiarizations, is '\D = D - l.

Using spherical coordinates in D-space thc parlition functioll becorncs (s<'-"CAp-pendix)

InZo = (11 )

with L lhe linear size of tile ravity (assuTned a D-cube), ami r thc gamma function,1\11 lhe thcrlllodYllal1lics of lhc systclll is obtaincd from lhis cxpression in lhe usualway: the internal ellcrgy dcnsity Uf) = -.(r CJI3ffn )v' with V = 1/) lite cavityvolumc, is givcn by

( 12)

where ( is Riemann's z-funetion. This exprcssion rc(luces lo the usual onc in :1dimensions whcn IJ = 3, as il must. 1'0 wrile clown lhe radiance Rf). thc gco-mclrical argument Icading lo R = (¡)u in thrcc dinl<'T1sionsI1ll1sl be extended

Page 5: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

BlacklxHiy mdiation and thc dimension oJ spacc 101

lo D-space (see Appendix):

This formula reduces to n = ~u for D = 3.The spectral radiancc Po(v, T) is obtained froln RJ) = fooo dVPD(V, T). Usiog

Eq. (11)

2,,(D-t)j' ¡!VDPD(V T) - ------- (14)

, - (D-tl'( D,t ) c~hv _ I'

whieh reduces to the Planck density PI' = ~ lJi~3¡ ",hen D = 3." -

3. Bounds for the dimension of space

1'0 extrad bOllllds for D from Eqs. (12-1'1), \\'e must first analytically continuethese formulas, proved for integer D, to arbitrary values of D. Then we must definequantities fin and Pn with tIJe same units as RSIJ amI Pp, the eorrespondingStcfan-Boltzmann radiance and Planck spcetrum in thrcc dimensions

- _ 0-3PD = L PD'

'1'0 firsl order in (D - 3) one lhen get.s rmm Eqs. (12-1'1),

- [ (LkT)]R[) = RSLJ 1 + ,,¡(lJ - 3) in --,;;;- ,

PD = Pp [1 + ",(D - 3) In c:)],

(15)

(16)

(17)

(18)

with 01 and 0'2 constants of order lInity, \\'hosc exact valucs will oot be rcquired,as the final result for the bound Ol! (D - 3) will sho\\'. The terms proportionalto (D - 3) in Eqs. (17) and (18) thcn represen! the first order corrections to theStcfan-Doltzmann radiancc and the Planck spectrum when one assumes a spacedimensionality different from 3.

'1'0 get a bound for D we thcn compare the tcrm proportional to (D-3) in eitheroC the abo\'c two cquations with the corrcsponding experimental error: identifyingthe central valuc in each case with RSlJ(T) or p¡.(v, T), (D - 3) must be smallcnough for the dimensional corrcetioll to he compat.ible with the reported error.

Page 6: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

102 J. L. Torres mul P. Ferrcim Ilerrejón

To carry out this procedure onc must choose the ilppropriate cavity slze l.,temperature T and frcqucncy v. The choice is dclcrlllined by the faet that tll('(D - 3) corrcction tcrm in Eqs. (17) and (18) has to compete with another theo ...retiral corrcetion, which depcnds on the form ancl sizc of the cavity. Ew'n in t1m'edimensions, the Stefan-Boltzmann \'alue for the rildiance, ilnd the Planck sIH'ctrum,are rigorously valid only for infinitc1y largc cavitics. For finitc Orles \\'e must changcthcsc exprcssions in the following way [9]:

[51\ (he)']RI,J = RSB 1 - 16~JV A.T '

P[3 = Pp [1 _ ~ (':)'] ,, 81l"V V

( 19)

(20)

where A is of the forlll 01., with 1. él.typicilllcngt.h of t.he cavity, and o a nlllllber oforder unity (for exalllplc, .\ = 3/. for a cube, A = 1.1 + 1.2 + 1.3 for a paraltelepipcd,A ~ 6/l for a sphcre, ctc.). This grolTIetrical corn'ctioll \",'a.sca!Culated sUllIlIlingover the first 106 norIllal modes in Eq. (8), instead of approximatillg the sum byan integral as indicated there. Tlle corrections due to ca\'ity size ami shape in J)dimensions must have the same form as those in Eqs. (19) and (20), with pcrhapsa difrerent nurncrical faelor in A, and most probably ill)(1exponcnt (D - 1) instcadof 2. AH wc need is that such extra terms vanish too in the I¡mit of ver}' largecavities, and this general feature of the thermodynamic limit canuot be challgccl bygoing to dimensionalities difrerent from 3.

Then, to avoid the complicatioTl of geometrical corrC'Ctions compcting with di-mensional ones \\'e must consider the lilrgcst possihlc ca\'ity, that is, cosmic back-ground radiation (cnu), and this implies L ~ 10:!8cm (the size of the ohserv('duniverse), T ~ a K and v ~ 1011 Hz, to stay close lo the Illilximtllll in tile spedruII1,

The experimental errors for both the radiance and the spcctruTll in clln Illca-surcmcnls are of order ten percenl [12), so from Eqs. (17) and (18) the S31l1Cbotllldresults:

(21)

This is to be compared wilh lhe bounds mcntioned in the illtroductioll, cotlling fromthe anomalous magndic moment of the eleclron (ID - 31~ 10-7), from the ad\'anceof Mercury's periheliou (ID-31;S 10-9), aud from the Lalllb shift (1f}-31;S 10-11).Thus we are led to lhe conclusion that thermal radiation mcthods cannot impro\'c OH

existing low encrgy bounds ror the dimension of spacc: tltis would imply measuringthe cosmic background radiation with a precision greatcr than 10-9• totally hcyondpresent capabilities.

Page 7: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

lJlackbody mdiation and lhe dimensiotl o/ space 103

Appendix

Thc nccesary formulas lo go from carlcsian lo sphcrical coordinates in J) dilllensionswill be inc!udeti here, as they lurned out to be difficult lo fino or proveo Let thecartesian coordinates or a D-vector be (XI, X2, ..• , X Dlo and its spherical coordinatcsbe (r, 01, O2, ...• O V-2, 4», with the ranges O :S. Oj :S. 1l'"1 o:s. 4> :S. 211' ror the angles;lhe)' are connccted through

XI = rsinOlsin02 ... sinOD_2sinr)

X2 = r sin 01 sin O2 .•• sin O D-2 cos 4>

so thc melric is

Xj = rsinOl ... sinOV_jCOSOD_j+l,

Xv = rCOjiOl,

(j > 2)(A - 1)

d. (1 2 .2 . 2 O 2. 2 O . 2 O 2 . 2 O . 2 O )9ij = lag 1 r ,t Slll 1,r sm I sm 2, ... , r Slll l ... sm V-2,

and t1le .Jacobiall becolllcs

J ¡;; D-l(' O )D-2(. O )D-3 . O= v 9 = r sm I slO 2 ... sm D-2'

(A - 2)

(A - 3)

To calculatc the gcomctrical factor ( ... ) in the radiancc, 'R.D = (... )uv, theusual cOllstruct of a semi-infinite cavity with a little hole at the origin gives thecorred result, beillg carerul about the fad that a little hole in D dimensions is(D - l )-dimensional.

References

1. T.KaJuza, SitzuFlg!iber. K. PreU!i!i. Akad. lViss. KI (1921) 966. This paper hasbe<~1l translated jnto English and incllldcd in many books on Kaluza.Klcin thcories(eL HeL [2)). Klcin', paper is a1,o hi,torically important: O. Klein, Z. Phys. 37 (1926)895.

2. Hcccnt work 011 Kaluza-Klein theories and supcrsymmctr)' is revjcwed in n.c. Lee,Editor, /lllrodllctiml lo h"nlll::a.Klcin Thcorics, \Vorld Sci('htific, Singapore (1981).

3. For a rcvjcw of dual a.nd carly string rnorlels"scc J. Scherk, Rev. Mod. Phys. 47 (1975)123. Grand unified tileories are considered in fieL (2) and, starting from the stringpoint of view, in E. Crcmmcr, B. Julia, and J. Sherk, Phy!i. Lett. 76B (1973) 409.

4. S. ~Ia, /levo .\10<1. I'liys. 45 (1973) 589. H. Beckmann and F. Karsch, Phys. /levo Lett.43 (1979) 1277.

Page 8: Blackbody radiation and the dimension of spaceas the final result for the bound Ol! (D - 3) will sho\\'. The terms proportional to (D - 3) in Eqs. (17) and (18) thcn represen! the

104 J. L. Torres and P. Fer,-eim llerrcjólI

5. R.R. Mandelbroot, Fmctat'l; Form, Chancc arld Dimrn,'lwll. Fn'cman, San Francisco(1977). Y. Gcfén, Y. Mcir, B.B. ~Iandf.'lbroot, alld A ... \lIarony, ¡'hys. /lCI). Letl. 50(1983) 145; G. Ilhanol, 11. l'euherger, and J.A. Shapiro. ¡bid. 53 (1984) 2277. G.Rhanot, D. Dukc, and R. Sal ••..ador, Phys. Len 165D (19S;j) 35.5.

6. V. I':apluno\'sky alld M. Weinstcin, Phy.'l. Rct,. D31 (198.')) 1879.7. A. Zeilinger and K. Svozil. Phys. Ret •. Ldt. 54 (1985) 2;'.'):3.8. n. Müller and A. Scha.fN, Phys. /lcv. Let!. 56 (198G) 121.5. Th(' sign uf ~lercury.s

perihdion shift has b(~n changed (cL Er¡. (10) in :-'Iiiller allc1 Scltiifer, and Eq. (.1)in this work), because it mnst correspond to an all\'ancc, not a rdardalion of thesemimajor axis.

9. W. R. B1('••..in and \V.J. Brown, Atetrologia 7 (1971) 15. II.P. Balt(,s and F.I\.Kneubühl, I/cltl. J)hy.~. Arta 45 (1972) .¡8I.

10. J. Torres.llernández, Phy.'1. Nev. A32 (1985) 623. J.L. Torres and V. Yép('z, Unl.Mcx. Fis. 34 (1988) 69.

11. AII the fol1owing st('ps paraJlel the corresponding on('s in :J-sparl'. eL ,1.D. Iljorkcn andS.D. Drell, Relutivi8tic Quurllum Field8, !\lcGraw-lIill Boo~ Co., New York (1965),pp. 68- 73.

12. D.P. Wool1y and P.L. Hicilards, Ap. J. 248 (1981) 18. C.F. Smoot, e, Witl'bsky, N.Mandolesi, ILB. Patridge, G. Sironi, L. Danese, and C. D('Zotti, ¡'hy,'l. Uev Lett. 51(1983) 1099. D.M. Meyer alld M. Jura, Al'. J. (I"'ltcr.<) 276 (198.1) LI. J.M. U","and D.T. Wilkinsoll, Ap_ J. (Lclters) 277 (198-1) LI.

Resumen. Se utiliza una cavidad de radiación térmica para explo-rar la posibilidad de una desviación del espacio f('specto a la tri-dimensionaJidad que se le asigna. Analizamos una cavidad de radiaciónD-dimensional, suponiendo que la dl's\'iarión sería reflejada ('11 la dis-crepancia obser ••..ada entre los valores teóricos y expcrimentales para laradiancia y la distribución cspectrt\J. y ca1cu\;unos las corrcspondicntescorrccciones a la radiancia de St('fan-Boltzman y la distribución ('SI)('(-

tra.l de Planck, las cuales resultan proporcionales a (lJ - 3), como erade esperarse. En el caso de una ca ••..idad P('{lllCña ('xisten corrcccionesadiciona1('s a estas expresiones, prO\'f'nientes de Sil forma)' tamaño.Considerando entonces la radiación cósmica d(' 3 K, ('s decir la cavidadmá.xima posible, ohtcnemos, a partir de los ('rrores experiml'ntales r('-portados para la radiancia ':i el espcctro, la cota IIJ - 31 ~ lO-J. Estelímite es considerahlemente mayor quc los oht<!lIidos f('cientemente apartir de otros fenómenos medidos con alta precisión.