bloch, landau, and diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/kim1_colloquium_kitp.pdf ·...

35
Philip Kim Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter’s Butterfly in Graphene

Upload: others

Post on 20-Jan-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Philip Kim

Physics Department, Columbia University

Bloch, Landau, and Dirac:

Hofstadter’s Butterfly in Graphene

Page 2: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean
Page 3: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Acknowledgment

Funding:

hBN samples: T. Taniguchi & K. Watanabe (NIMS)

Theory: P. Moon & M. Koshino (Tohoku)

Prof. Jim Hone

Prof. Ken Shepard

Prof. Cory Dean

(now at CUNY)Lei Wang Patrick Maher Fereshte Ghahari Carlos Forsythe

Page 4: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Bloch Waves: Periodic Structure & Band Filling

Felix Bloch

Zeitschrift für Physik, 52, 555 (1929)

Periodic Lattice

a

A0 : unit cell volume

k

e

Block Waves:

Page 5: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Bloch Waves: Periodic Structure & Band Filling

Felix Bloch

Periodic Lattice

a

A0 : unit cell volume

k

e

k

e

eF

n(E)

Zeitschrift für Physik, 52, 555 (1929)

Block Waves:Band Filling factor

MacDonald (1983)

Page 6: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Landau Levels: Quantization of Cyclotron Orbits

Lev Landau

Zeitschrift für Physik, 64, 629 (1930)

Free electron under magnetic field

Each Landau orbit contains magnetic flux quanta

Energy and orbit are quantized:

Massively degenerated energy level

2-D

Density o

f Sta

tes

e

2-dimensional electron systems

Landau level filling fraction:

eF

Page 7: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Harper’s Equation: Competition of Two Length Scales

Proc. Phys. Soc. Lond. A 68 879 (1955)

a

Tight binding on 2D Square lattice with magnetic field

Harper’s Equation

Two competing length scales:

a : lattice periodicity

lB : magnetic periodicity

Page 8: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Commensuration / Incommensuration of Two Length Scales

Spirograph

lBa

a / lB = p/q

Page 9: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Hofstadter’s Butterfly

When b=p/q, where p, q are coprimes, each LL splits into q sub-bands that are p-fold degenerate

Energy bands develop fractal structure when magnetic length is of order the periodic unit cell

Harper‟s Equation

energy (in unit of band width)

f (

in u

nit

off

0)

0 1

1

Page 10: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Energy Gaps in the Butterfly: Wannier Diagram

0 1

1

e/W

n0: # of state per unit cell

f : magnetic flux in unit cell

n : electron density

1/21/31/4

1/21/31/41/5

Hofstadter‟s Energy SpectrumTracing Gaps in f and n

0 1

1

Wannier, Phys. Status Solidi. 88, 757 (1978)

Diophantine equation for gaps

t : slope, s : offset

Page 11: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Streda Formula and TKNN Integers

What is the physical meaning of the integers s and t ?Band Filling factor

Quantum Hall Conductance

Page 12: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

0 1

1

e/W

Experimental Challenges

0 20 40 60 80 100 120 140 1600.1

1

10

100

1000

10000

Bo (

Tesla

)

unit cell (nm)

Obvious technical challenge:

a = 1nm

Disorder, temperature

Hofstadter (1976)

Page 13: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

-Schlosser et al, Semicond. Sci. Technol. (1996)

Experimental Search For Butterfly

Albrecht et al, PRL. (2001);

Geisler et al, PRL (2004)

• Unit cell limited to ~40-100 nm• limited field and density range accessible, weak perturbation• Do not observe „fully quantized‟ mingaps in fractal spectrum

Page 14: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Electrons in Graphene: Effective Dirac Fermions

K K’

kx

ky

E

DiVincenzo and Mele, PRB (1984); Semenov, PRL (1984)

Effective Dirac Equations

kvvH FFeff

0

0

yx

yx

ikk

ikk

Graphene, ultimate 2-d conducting system

Band structure of graphene

Paul Dirac

Novoselov et al. (2004)

Page 15: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Graphene: Under Magnetic Fields

N = 1

N = 2

N = 3

N = -3

N = 0

N = -1

N = -2

Energ

y

DOSkx' ky'

E

Quantization Condition

Energ

y (

eV)

B (T)

0 10 20

0

-0.1

-0.2

0.1

0.2

Novoselov et al (2005)

Zhang et al (2005)

Quantum Hall Effect

Page 16: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Hexa Boron Nitride: Polymorphic Graphene

Boron Nitridegraphene

Band Gap Dielectric Constant Optical Phonon Energy Structure

BN 5.5 eV ~4 >150 meV Layered crystal

SiO2 8.9 eV 3.9 59 meV Amorphous

Comparison of h-BN and SiO2

a0 = 0.250 nma0 = 0.246 nm

Page 17: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Stacking graphene on hBN

Mobility > 100,000 cm2V-1s-1

Dean et al. Nature Nano (2009)

• Co-lamination techniques• Submicron size precision• Atomically smooth interface

Polymer coating/cleaving/peeling

Micro-manipulatedDeposition

Remove polymerAnealing

Page 18: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

5o 10

o

15o20

o30

o

Graphen/hBN Moire Pattern

Page 19: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Moire pattern in Graphene on hBN:

a new route to Hofstadter’s butterfly?

Xue et al, Nature Mater (2011);

Decker et al Nano Lett (2011)

Graphene on BN exhibits clear Moiré pattern

q=5.7o q=2.0o q=0.56o

9.0 nm

13.4 nm

Minigap formation near the Dirac point due to Moire superlattice

momentum

Page 20: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Transport Measurement Graphene with Moire Superlattice

~ 30 V ~ 30 V

lT = 14.6 nm

1 mm

Moiré lAFM = 15.5 nm

UHV AFM (Ishigami group)

Dirac point

Second Dirac point E

k Zone folding and mini-gap formation

Page 21: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Abnormal Landau Fan Diagram in Bilayer on hBN

Special Samples with Large Moire Unit Cell

VG (Volts)

B(T

esla

)

Rxx (kW)Vxx

I

|Rxy| (kW)

B(T

esla

)

VG (Volts)

I

Vxy

T=300 mK T=300 mK1.7 K1.7 K

Low Magnetic field regime

Page 22: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

How to “Read” Normal Landau Fan Diagram?

Landau Fan Diagram for “typical” graphene

0

5

10

0-1-2 1n (cm-2)

B(T

)

0

5

Rxx (kW)Rxx

0

1Rxx (kW)

0

5

10

0-1-2 1n (cm-2)

B(T

)

0

15

|Rxy| (kW)| Rxy |

-2n =-6 n =2-3-4-5

n =-2n =-6

n =-10

n =2n =4

-3-4-5

Page 23: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Quantum Hall-like Transport

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

RXX

RXY

filling fraction (n)

RX

X(k

W)

B=18T

-16

-12

-8

-4

0

4

8

12

16

RX

Y (

kW

)

VG (Volts)

B(T

esla

)

Rxx (kW)Vxx

I

T=300 mK

Rxx

Landau level filling factor

Quantum Hall conductance

Quantum Hall Effect in Graphene Moire

Page 24: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Quantum Hall Effect with Two Integer Numbers

(t, s)

(-4, 0)

(-8, 0)

(-12, 0)

(-16, 0)

(4, 0)

(8, 0)

(12, 0)

(16, 0)

(3, 0)

(-2, -2)

(-4, 1)

(-2, 1)

(-1, 1)

(-3, 2)(-4, 2)

(-2, 2)

(-1, 2)

n/n0: density per unit cell; f : flux per unit cell

(-3, 1)

0 15Rxx (kW)Quantization of xx and xy

Page 25: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Quantum Hall Effect with Two Integer Numbers

RXX RXY

RXX (kW) RXY (kW)

B(T

)

B(T

)

t = -4t = -8

t = -12

t = -16

t = -4t = -8

t = -12

t = -16

Vg (V)Vg (V)s =-4 s =-4 s = 0s = 0s =-2 s =-2

t =0t =-2t =-4t =-6

t =-8

t =0t =-2t =-4t =-6

t =-8

Page 26: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

RXX RXY

RXX (kW) RXY (kW)

B(T

)

B(T

)

Vg (V)Vg (V)s =-2s =-2

t =-6

t =-8

t =-6

t =-8

Quantum Hall Effect with Two Integer Numbers

Page 27: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

RXY

RXY (kW)

B(T

)Vg (V)

s =-2

t =-6

t =-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140

1

2

3

4

5

(1/6)h/e2

RX

Y (

kW

)

B (Tesla)

t =-6, s =-2

0 1 2 3 4 5 6 7 8 9 10 110

1

2

3

4

RX

Y (

kW

)

B (Tesla)

(1/8)h/e2

t =-8, s =-2

Quantum Hall Effect with Two Integer Numbers

Page 28: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Recursive QHE near the Fractal Bands

σxy

Higher quality sample with lower disorder

1/2

1/3

Hall conductivity across Fractal Band

0.0 0.2 0.4 0.6 0.80

50

100

f / f0

xx

(e

2/h

)

-20

-10

0

10

20

30

xy (e

2/h )

At the Fractal Bands

Sign reversal of xy

Large enhancement of xx

1/2

1/3

1/4

1/5

Recursive QHE!

Page 29: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Summary and Outlook

Energy spectroscopy is needed for the next step

• Graphene on hBN with high quality interface created Moire pattern with supper lattice modulation

• Quantum Hall conductance are determined by two TKNN integers.

• Anomalous Hall conductance at the fractal bands

Open Questions: • Elementary excitation of the fractal gaps?• Role of interactions, Hofstadter Butterfly in

FQHE?

Page 30: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Fractal Gaps: Energy Scales

Fractal Gap Size

83 K

Large odd integer gap indicates (fractal) quantum Hall ferromagentism!!

Page 31: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

SU(4) Quantum Hall Ferromagnet in Graphene

q

Valley spinSpin

X

SU(4)<

yy

yy

K

K‟

K‟

K

Yang, Das Sarma and MacDonal, PRB (2006);

K’ K’

kx

ky

E

Magnetic Wave Function

Under magnetic fields:

pseudospin = valley spin

Degree of freedom:

Spin (1/2), Valleys

Charge Density WaveKekule DistortionAnti FerroMagneticFerroMagnetic

Possible SU(4) Quantum Hall Ferromagnetism at the Neutrality

Page 32: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Partial list of references

Nature of Quantum Hall Ferromagnetism in Graphene

Electron Interaction Fractal Spectrum

Page 33: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Graphene Franctional Quantum Hall Effect

5 mm

Dean et al. Nature Physics (2011)

Fractional Quantum Hall Gaps

Page 34: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Vg (V)

B(T

)

xy (mS)0 1-1

Hall Conductivity

Fractional Quantum Hall Effect in Moire Superlattice

Single layer graphene on hBN @ 20 mK up to 35 T

Fractional Quantum Hall Effect

2/3

4/35/3

7/3

Rxx

Rxy

xx (e2/h)

(n)

4/3 5/3 7/38/3

13/310/3

Page 35: Bloch, Landau, and Diraconline.itp.ucsb.edu/online/colloq/kim1/pdf/Kim1_Colloquium_KITP.pdf · Theory: P. Moon & M. Koshino (Tohoku) Prof. Jim Hone Prof. Ken Shepard Prof. Cory Dean

Acknowledgment

Funding:

hBN samples: T. Taniguchi & K. Watanabe (NIMS)

Theory: P. Moon & M. Koshino (Tohoku)

Prof. Jim Hone

Prof. Ken Shepard

Prof. Cory Dean

(now at CUNY)Lei Wang Patrick Maher Fereshte Ghahari Carlos Forsythe