bm cycle 7 session 1

95
7/23/2019 BM Cycle 7 Session 1 http://slidepdf.com/reader/full/bm-cycle-7-session-1 1/95 PAN African e-Network Project  PGD IT  BASIC MATHEMATICS Semester - I  Session - 1 Dr. Nitin Pane!

Upload: nash

Post on 18-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 1/95

PAN African e-Network Project

 PGD IT

 BASIC MATHEMATICS

Semester - I

 Session - 1

Dr. Nitin Pane!

Page 2: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 2/95

Detailed Syllabus

1. Introduction to sets (sets of numbers (N, Z, Q etc)),subsets, proper subsets, power sets, universal set, nullset, euality of two sets, !enn dia"rams .

#. Set operations (union, intersection, complement and

relative complement)$. %aws of al"ebra of sets (&'e idempotent laws, t'e

associative laws, t'e commutative laws, t'e identitylaws, t'e complement laws (i.e. ∪ c * +, ∩ c * ,(c)c * , +c * , c * +), De -or"ans laws) proofs oft'e laws usin" labelled "eneral !enn dia"ram, proofs ofresults usin" t'e laws

Page 3: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 3/95

Instructional /b0ectives

Illustrate properties of set al"ebra usin"!enn2dia"rams.

3rove various useful results of set al"ebra.

Page 4: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 4/95

Session /b0ectives

1. Introduction of sets

2. R epresentation of sets

3. Types of sets

4. Subsets and proper subsets

5. Universal sets

6. Euler-Venn diagram

7. Algebra of sets (i.e. union, intersection, difference etc.)

8. Complement of set

9. Laws of algebra of sets

10.De Morgan’s laws

Page 5: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 5/95

Introduction to Sets

4eor"e 5antor (167821918), in 1698, wast'e first to define a set formally.

Definition 2 Set  set is a unordered collection of :ero of more

distinct well defined ob0ects.

&'e ob0ects t'at ma;e up a set are calledelements or members of t'e set.

Page 6: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 6/95

Introduction to Set &'eory

  set  is a structure, representin" anunordered collection ("roup, plurality) of:ero or more distinct (different) ob0ects.

Set t'eory deals wit' operations between,relations amon", and statements aboutsets.

Page 7: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 7/95

<asic notations for sets

=or sets, we’ll use variables S, T , U , …  >e can denote a set S in writin" by listin" all of

its elements in curly braces

 ? @a, b, cA is t'e set of w'atever $ ob0ects are denotedby a, b, c.

Set  builder notation =or any proposition P ( x )over any universe of discourse, @ x BP ( x )A is the

set of all x such that P(x).  e."., @ x  B x  is an inte"er w'ere x C and x E8 A

Page 8: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 8/95

+Famples for Sets

GStandardH Sets Natural numbers N * @, 1, #, $, A

Inte"ers Z * @, 2#, 21, , 1, #, A

3ositive Inte"ers Z+ * @1, #, $, 7, A Jeal Numbers R * @7K.$, 21#, π, A

Jational Numbers Q * @1.8, #.L, 2$.6, 18, A

(correct definition will follow)

Page 9: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 9/95

Specifyin" Sets

&'ere are two ways to specify a set1. If possible, list all t'e members of t'e set.

+.". * @a, e, i, o, uA

#. State t'ose properties w'ic' c'aracteri:ed t'emembers in t'e set.

+.". < * @F F is an even inte"er, F C A>e read t'is as G< is t'e set of F suc' t'at F is an even

inte"er and F is "rater t'an :eroH. Note t'at we canMt listall t'e members in t'e set <.5 * @ll t'e students w'o sat for <I& I&111 paper in #$AD * @&all students w'o are doin" <I&A ? is not a set

because G&allH is not well defined. <ut+ * @Students w'o are taller t'an L =eet and w'o are doin"

<I&A ? is a set.

Page 10: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 10/95

<asic properties of sets

Sets are in'erently unordered  ? No matter w'at ob0ects a, b, and c denote,

@a, b, cA * @a, c, bA * @b, a, cA *

@b, c, aA * @c, a, bA * @c, b, aA.  ll elements are distinct  (uneual)

multiple listin"s ma;e no differenceO

 ? @a, b, cA * @a, a, b, a, b, c, c, c, cA. ? &'is set contains at most $ elementsO

Page 11: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 11/95

Some 3roperties of Sets

&'e order in w'ic' t'e elements are presentedin a set is not important. ?  * @a, e, i, o, uA and

 ? < * @e, o, u, a, iA bot' define t'e same set. &'e members of a set can be anyt'in".

In a set t'e same member does not appear

more t'an once. ? = * @a, e, i, o, a, uA is incorrect since t'e element PaMrepeats.

Page 12: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 12/95

Some 5ommon Sets

>e denote followin" sets by t'e followin"symbols ? N * &'e stet of positive inte"ers * @1, #, $, A

 ? Z * &'e set of inte"ers * @,2#, 21, , 1, #, A

 ? J * &'e set of real numbers

 ? Q * &'e set of rational numbers

 ? 5 * &'e set of compleF numbers

Page 13: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 13/95

Some Notation

5onsider t'e set * @a, e, i, o, uA t'en

>e write GPaM is a member of PMH as ?

a ∈  >e write GPbM is not a member of PMH as ? b ∉ 

 ? Note b ∉  ≡ ¬ (b ∈ )

Page 14: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 14/95

Definition of Set +uality

&wo sets are declared to be eual if and only if  t'ey contain eFactly t'e same elements.

In particular, it does not matter how the set is

defined or denoted. =or eFample &'e set @1, #, $, 7A *

@ x  B x  is an inte"er w'ere x C and x E8 A *@ x  B x  is a positive inte"er w'ose suare

  is C and E#8A

Page 15: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 15/95

Infinite Sets

5onceptually, sets may be infinite (i.e., notfinite, wit'out end, unendin").

Symbols for some special infinite setsN * @, 1, #, …A &'e natural numbers.Z * @…, 2#, 21, , 1, #, …A &'e inte"ers.R * &'e “r eal” numbers, suc' as

$K7.16#67K19#979616191K#6197$1#8… Infinite sets come in different si:esO

Page 16: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 16/95

&'e +mpty Set

∀∅ (“null”, “t'e empty set”) is t'e uniueset t'at contains no elements w'atsoever.

∀∅ * @A * @ x|FalseA

No matter t'e domain of discourse,we 'ave t'e aFiom

¬∃ x  x ∈∅.

Page 17: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 17/95

niversal Set and +mpty Set

&'e members of all t'e investi"ated setsin a particular problem usually belon"s tosome fiFed lar"e set. &'at set is called t'e

universal set and is usually denoted by PM. &'e set t'at 'as no elements is called t'e

empty set and is denoted by Φ or @A. ? +.". @F B F# * 7 and F is an odd inte"erA * Φ

Page 18: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 18/95

!enn Dia"rams

  pictorial way of representin" sets.

&'e universal set is represented by t'einterior of a rectan"le and t'e ot'er setsare represented by dis;s lyin" wit'in t'erectan"le. ? +.". * @a, e, i, o, uA

ae

iou

A

Page 19: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 19/95

<asic Set Jelations -ember of   x ∈S (“ x  is in S”) is t'e proposition t'at ob0ect x  

is an ∈lement  or member  of set S. ? e.g. $∈N, “a”∈@ x B x  is a letter of t'e alp'abetA

5an define set euality in terms of ∈ relation∀S,T  S*T ↔ (∀ x  x ∈S ↔  x ∈T )“&wo sets are eual iff  t'ey 'ave all t'e samemembers.”

 x ∉S ≡ ¬( x ∈S) “ x  is not in S”

Page 20: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 20/95

+uality of two Sets

  set PM is eual to a set P<M if and only if bot'sets 'ave t'e same elements. If sets PM and P<Mare eual we write * <. If sets PM and P<M arenot eual we write ≠ <.

In ot'er words we can say  * < ⇔ (∀F, F∈  ⇔ F∈<) ? +.".

  * @1, #, $, 7, 8A, < * @$, 7, 1, $, 8A, 5 * @1, $, 8, 7AD * @F F ∈ N ∧  E F E LA, + * @1, 1R8, , ##, 8A t'en * < *D * + and ≠ 5. 9

Page 21: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 21/95

5ardinality of a Set

&'e number of elements in a set is calledt'e cardinality of a set. %et PM be any sett'en its cardinality is denoted by BB

+.". * @a, e, i, o, uA t'en BB * 8.

Page 22: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 22/95

Subsets

Set PM is called a subset of set P<M if andonly if every element of set PM is also anelement of set P<M. >e also say t'at PM is

contained in P<M or t'at P<M contains PM. It isdenoted by ⊆ < or < ⊇ .

In ot'er words we can say

( ⊆ <) ⇔ (∀F, F ∈ ⇒ F ∈ <)

Page 23: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 23/95

Subset ctd

If PM is not a subset of P<M t'en it is denotedby ⊆ < or < ⊇  ? +.". * @1, #, $, 7, 8A and < * @1, $A and 5

* @#, 7, LA t'en < ⊆  and 5 ⊆ 

1 35

24

6

BA

C

Page 24: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 24/95

Subsets  <  G is a subset of <H

  < if and only if every element of is alsoan element of <.>e can completely formali:e t'is  < ⇔ ∀F (F∈  → F∈<)

+Famples

A = {3, 9}, B = {5, 9, 1, 3}, AA = {3, 9}, B = {5, 9, 1, 3}, A B ?B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3}, AA = {3, 3, 3, 9}, B = {5, 9, 1, 3}, A B ?B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4}, AA = {1, 2, 3}, B = {2, 3, 4}, A B ?B ?

Page 25: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 25/95

Subsets seful rules

  * < ⇔ ( <) (< ) ( <) (< 5) ⇒  5 (see !enn Dia"ram)

UU

AABB

CC

Page 26: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 26/95

Some 3roperties Je"ardin"

Subsets =or any set PM, Φ ⊆  ⊆ 

=or any set PM, ⊆ 

  ⊆ < ∧ < ⊆ 5 ⇒ ⊆ 5

  * < ⇔  ⊆ < ∧ < ⊆ 

Page 27: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 27/95

3roper Subsets

Notice t'at w'en we say ⊆ < t'en it iseven possible to be * <.

>e say t'at set PM is a proper subset ofset P<M if and only if ⊆ < and ≠ <. >edenote it by ⊂ < or < ⊃ .

In ot'er words we can say( ⊂ <) ⇔ (∀F, F∈  ⇒ F∈< ∧ ≠<)

Page 28: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 28/95

3roper (Strict) Subsets Supersets

S⊂T (GS is a proper subset of T H) meanst'at S⊆T but  . Similar for S⊃T.

S  T 

Example:

{1,2} ⊂{1,2,3}

Venn ia!"am e#ui$alen% o& S ⊂T 

Page 29: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 29/95

!enn Dia"ram for a 3roper Subset

Note t'at if ⊂ < t'en t'e !enn dia"ramdepictin" t'ose sets is as follows

If ⊆ < t'en t'e disc s'owin" P<M may overlapwit' t'e disc s'owin" PM w'ere in t'is case it isactually * <

B A

Page 30: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 30/95

3ower Set

&'e set of all subsets of a set PSM is called t'epower set of PSM. It is denoted by 3(S) or #S.

In ot'er words we can say

3(S) * @F F ⊆ SA +.". * @1, #, $A t'en

3() * @Φ, @1A, @#A, @$A, @1, #A, @1, $A, @#, $A, @1, #, $AA

Note t'at B3(S)B * #BSB

. +.". B3()B * #BB * #$ * 6.

Page 31: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 31/95

Set /perations 2 5omplement

&'e (absolute) complement of a set PM ist'e set of elements w'ic' belon" to t'euniversal set but w'ic' do not belon" to .

&'is is denoted by c or T or U . In ot'er words we can say

 c * @F F∈ ∧ F∉ A

Page 32: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 32/95

!enn Dia"ram for t'e 5omplement

A

A'

Page 33: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 33/95

&'e nion /perator 

=or sets A, , t'eir  union  A∪ is t'e setcontainin" all elements t'at are eit'er in A,or  (“∨”) in  (or, of course, in bot').

=ormally, ∀ A, A∪ * @ x B x ∈ A ∨  x ∈A. Note t'at A∪ contains all t'e elements of

 A and it contains all t'e elements of  ∀ A, ( A∪ ⊇  A) ( A∪ ⊇ )

Page 34: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 34/95

Set /perations 2 ∪nion

nion of two sets PM and P<M is t'e set of allelements w'ic' belon" to eit'er PM or P<Mor bot'. &'is is denoted by ∪ <.

In ot'er words we can say

  ∪ < * @F F∈  ∨ F∈<A

+.". * @$, 8, KA, < * @#, $, 8A  ∪ < * @$, 8, K, #, $, 8A * @#, $, 8, KA

Page 35: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 35/95

@a,b,cA∪@#,$A * @a,b,c,#,$A

@#,$,8A∪@$,8,KA * @#,$,8,$,8,KA *@#,$,8,KA

nion +Famples

Page 36: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 36/95

!enn Dia"ram Jepresentation for

nion

BA

A ∪ B

35(

2

Page 37: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 37/95

Set /perations 2 Intersection

Intersection of two sets PM and P<M is t'eset of all elements w'ic' belon" to bot' PMand P<M. &'is is denoted by ∩ <.

In ot'er words we can say

  ∩ < * @F F∈  ∧ F∈<A

+.". * @$, 8, KA, < * @#, $, 8A  ∩ < * @$, 8A

Page 38: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 38/95

&'e Intersection /perator 

=or sets A, , t'eir intersection  A∩ is t'eset containin" all elements t'at aresimultaneously in A and (“∧”) in .

=ormally, ∀ A, A∩≡@ x B x ∈ A   x ∈A. Note t'at A∩ is a subset of A and it is a

subset of  ∀ A, ( A∩ ⊆  A) ( A∩ ⊆ )

Page 39: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 39/95

Page 40: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 40/95

!enn Dia"ram Jepresentation for

Intersection

BA

A ∩ B

35(

2

Page 41: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 41/95

1 people were surveyed. 8# people in a survey owned acat. $L people owned a do". #7 did not own a do" or cat.

Draw a !enn dia"ram.

universal set is 1 people surveyed

C D

Set !  is t'e cat owners and Set " is t'e do"

owners. &'e sets are N/& dis0oint. Somepeople could own bot' a do" and a cat.

24

Since #7did not owna do" orcat, t'eremust be KLt'at do.

n)C ∪  D* + (6

&'is n means t'enumber of elementsin t'e set

8# W $L * 66 sot'ere must be66 2 KL * 1#people t'at own

bot' a do" anda cat.

12

40 24

Coun%in! o"mula:

n) A

∪  B

* +n) A

* -n) B

* .n) A

∩  B

*

Page 42: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 42/95

Page 43: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 43/95

Set /perations 2 Difference

&'e difference or t'e relative complement of aset P<M wit' respect to a set PM is t'e set ofelements w'ic' belon" to PM but w'ic' do not

belon" to P<M. &'is is denoted by <. In ot'er words we can say

  < * @F F∈  ∧ F∉<A

+.". * @$, 8, KA, < * @#, $, 8A  < * @$, 8, KA @#, $, 8A * @KA

Page 44: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 44/95

Set Difference

=or sets A, , t'e difference of A and ,written A−, is t'e set of all elements t'atare in A but not .

 A −  ≡ { x | x ∈ A ∧ F∉}  = { x  | ¬(  x ∈ A →  x ∈ ) }

 lso called&'e com$lement  of   with res$ect to  A.

Page 45: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 45/95

!enn Dia"ram Jepresentation for

Difference

BA

A B

35(

2

Page 46: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 46/95

Set 5omplements

&'e uni%erse of discourse can itself beconsidered a set, call it U .

&'e com$lement  of A, written , is t'ecomplement of A w.r.t. U , i.e., it is U − A.

&.g., If U *N,

 A

,}(,6,4,2,1,7{}5,3{   =

Page 47: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 47/95

-ore on Set 5omplements

 n euivalent definition, w'en U  is clear

}8{  A x x A   ∉=

 AU 

 A

5 t i 3 d t

Page 48: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 48/95

5artesian 3roduct&'e ordered n2tuple (a1, a#, a$, , an) is an orderedcollection of ob0ects.

&wo ordered n2tuples (a1, a#, a$, , an) and

(b1, b#, b$, , bn) are eual if and only if t'ey contain eFactly

t'e same elements in t'e same order , i.e. ai * bi for 1 ≤ i ≤ 

n.&'e 5artesian product of two sets is defined as

 ×< * @(a, b) B a∈  ∧ b∈<A

+Fample  * @F, yA, < * @a, b, cA ×< * @(F, a), (F, b), (F, c), (y, a), (y, b), (y, c)A

5 t i 3 d t

Page 49: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 49/95

5artesian 3roduct

&'e 5artesian product of two sets is defined as ×< * @(a,

b) B a∈  ∧ b∈<A+Fample

  * @"ood, badA, < * @student, profA

 ×< * @

(good, student),(good, student), ((good, prof),good, prof), (bad, student),(bad, student), (bad, prof)(bad, prof)}} 

(student, good),(student, good), (prof, good),(prof, good), (student, bad),(student, bad), (prof, bad)(prof, bad)}} BB××A = {A = {

5 t i 3 d t

Page 50: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 50/95

5artesian 3roduct

Note t'at

 ×∅ * ∅ ∅×  * ∅

 =or non2empty sets and < ≠< ⇔ ×< ≠ <× 

 B×<B * BB⋅B<B

&'e 5artesian product of two or more sets is defined as

 1× #×× n * @(a1, a#, , an) B ai∈  for 1 ≤ i ≤ nA

Page 51: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 51/95

Set Identities

Identity  A∪∅* A   A∩U * A

Domination  A∪U'U A∩∅*∅

Idempotent  A∪ A * A '  A∩ A Double complement

5ommutative  A∪'∪ A A∩'∩ A

 ssociative  A∪(∪! )*( A∪)∪!   A∩(∩! )*( A∩)∩! 

 A A   =*)

Page 52: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 52/95

Some 3roperties

  ⊆ ∪< and < ⊆ ∪<  ∩< ⊆  and ∩< ⊆ <

B∪<B * BB W B<B 2 B∩<B  ⊆< ⇒ <c⊆ c

  < * ∩<c 

If ∩< * Φ t'en we say PM and P<M aredis0oint.

Page 53: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 53/95

 l"ebra of Sets

Idempotent laws ?  ∪  *

 ?  ∩  *

 ssociative laws ? ( ∪ <) ∪ 5 * ∪ (< ∪ 5)

 ? ( ∩ <) ∩ 5 * ∩ (< ∩ 5)

Page 54: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 54/95

 l"ebra of Sets ctd

5ommutative laws ?  ∪ < * < ∪ 

 ?  ∩ < * < ∩ 

Distributive laws ?  ∪ (< ∩ 5) * ( ∪ <) ∩ ( ∪ 5)

 ?  ∩ (< ∪ 5) * ( ∩ <) ∪ ( ∩ 5)

Page 55: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 55/95

 l"ebra of Sets ctd

Identity laws ?  ∪ Φ *

 ?  ∩  *

 ?  ∪  *  ?  ∩ Φ * Φ

Involution laws ? (c)c *

Page 56: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 56/95

 l"ebra of Sets ctd

5omplement laws ?  ∪ c *

 ?  ∩ c * Φ

 ? c * Φ  Φc *

Page 57: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 57/95

 l"ebra of Sets ctd

De -or"anMs laws ? ( ∪ <)c * c ∩ <c

 ? ( ∩ <)c * c ∪ <c

Note 5ompare t'ese De -or"anMs lawswit' t'e De -or"anMs laws t'at you find inlo"ic and see t'e similarity.

Page 58: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 58/95

3rovin" Set Identities

&o prove statements about sets, of t'e form& 1 * & # (w'ere & s are set eFpressions),'ere are t'ree useful tec'niues

3rove & 1 ⊆ & # and & # ⊆ & 1 separately. se lo"ical euivalences.

se a membershi$ table.

Page 59: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 59/95

3roofs

<asically t'ere are two approac'es inprovin" above mentioned laws and anyot'er set relations'ip

 ? l"ebraic met'od ? sin" !enn dia"rams

=or eFample lets discuss 'ow to prove

 ? ( ∪ <)c * c ∩ <c

Page 60: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 60/95

3roofs sin" l"ebraic -et'od

F∈(∪<)c ⇒ F∉ ∪<⇒ F∉  ∧ F∉<

⇒ F∈ c 

∧ F∈

<c

⇒ F∈ c∩<c

⇒ (∪<)c ⊆ c∩<c

)α* 

Page 61: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 61/95

3roofs sin" l"ebraic -et'od

ctdF∈ c∩<c ⇒ F∈ c ∧ F∈<c

⇒ F∉  ∧ F∉<

⇒ F∉ ∪<

⇒ F∈(∪<)c

⇒ c

∩<c

 ⊆ (∪<)c

)β* 

)α* ∧ )β*  ⇒ )A∪B*'  + A'∩B'

Page 62: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 62/95

3roofs sin" !enn Dia"rams

Note t'at t'ese indicated numbers arenot t'e actual members of eac' set.&'ey are re"ion numbers.

BA

A ∪ B

3

41

2

Page 63: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 63/95

3roofs sin" !enn Dia"rams ctd

1, #, $, 7

  1, # (i.e. &'e re"ion for PM is 1 and #)

< #, $∴ ∪< 1, #, $

∴ (∪<)c  7 )α* 

Page 64: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 64/95

3roofs sin" !enn Dia"rams ctd

 c  $, 7<c  1, 7

∴ c∩<c  7)β* 

)α* ∧ )β*  ⇒ )A∪B*'  + A'∩B'

Page 65: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 65/95

5lass +Fercise 2 1

Let A !a, b, c, d", # !a, b, c" and$ !b, d". %ind all sets & suc' t'at

(i) (ii)

Page 66: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 66/95

Solution(i)

( ) { } { } { } { } { } { } { }{ }= φ3 < , a , b , c , a, b , a, c , b, c , a, b, c

( ) { } { } { }{ }= φ3 5 , b , d , b, d

⊂ ⊂X < and X 5Q

( ) ( ) ( ) ( )⇒ ∈ ∈ ⇒ ∈X 3 < and X 3 5 X 3 < 3 5I

{ }⇒ = φX , b

⊂ ⊄(ii) Now, X and X <

& is subset of A but & is not subset of #.⇒( ) ( ) ( ) ( )⇒ ∈ ∉ ⇒ ∈ −X 3 but F 3 < X 3 3 <

Page 67: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 67/95

Solution contd..

∴ =X !d", !a, d" !b, d", !c, d", !a, b, d", !a, c, d",

!b, c, d", !a, b, c, d"

ere note t'at to obtain & we 'ave added eac'element of (#) wit' *d’ w'ic' is in A not in #.

Page 68: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 68/95

5lass +Fercise 2 #

%or any two sets A and #, prove t'at

Page 69: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 69/95

Solution%irst let A #. +'en

= =  < and < U I

⇒ =  < <U I

∴ = ⇒ =  < < < ...(i)U I

=5onversely, let < <.U I

∴ ∈ ⇒ ∈F F <U

⇒ ∈F <I

⇒ ∈ ∈F and F <

⇒ ∈F <

Page 70: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 70/95

Solution contd..∴ ⊆  < ...(ii)

ow let∈ ⇒ ∈y < y <U

⇒ ∈y <I

⇒ ∈ ∈y and y <

⇒ ∈y

∴ ⊆< ...(iii)

%rom (ii) and (iii), we get A #

= ⇒ =&'us, < < < ...(iv)U I

= ⇔ ==rom (i) and (iv), < < <U I

5l + i $

Page 71: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 71/95

5lass +Fercise 2 $

f suc' t'at ,describe t'e set

Page 72: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 72/95

Solutione 'ave { }= ∈aN aFF N

{ } { }∴ = ∈ =$N $FF N $, L, 9, 1#, 18, ...

{ } { }= ∈ =KN KFF N K, 17, #1, #6, ...

{ }=Yence, $N KN #1, 7#, L$, ...I   { }= ∈ =#1FF N #1N

ote t'at w'ere c L$M of a, b.=aN bN cNI

5l + i 7

Page 73: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 73/95

5lass +Fercise 2 7

f A, # and $ are any t'ree sets, t'enprove t'at

Page 74: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 74/95

SolutionLet / be any element of .( )−  < 5I

( ) ( )∴ ∈ − ⇒ ∈ ∉F < 5 F and F < 5I I

( )⇒ ∈ ∉ ∉F and F < or F 5

( ) ( )⇒ ∈ ∉ ∈ ∉F and F < or F and F 5

( ) ( )⇒ ∈ − ∈ −F < or F 5

( ) ( )⇒ ∈ − −F < 5U

( ) ( ) ( )∴ − ⊆ − −  < 5 < 5 ...(i)I U

Solution contd

Page 75: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 75/95

Solution contd..Again y be any element of .( ) ( )− −  < 5U

( ) ( ) ( ) ( )∴ ∈ − − ⇒ ∈ − ∈ −y < 5 y < or y 5U

( ) ( )⇒ ∈ ∉ ∈ ∉y and y < or y and y 5

( )⇒ ∈ ∉ ∉y and y < or y 5

( )( )⇒ ∈ ∉y and y < 5I   ( )⇒ ∈ −y < 5I

( ) ( ) ( )∴ − − ⊆ −  < 5 < 5 ...(ii)U I

%rom (i) and (ii),

( ) ( ) ( )− = − −  < 5 < 5 3r oved.I U

5l + i 8

Page 76: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 76/95

5lass +Fercise 2 8

Let A, # and $ be t'ree sets suc' t'at  and , t'en prove t'atA $ 0 #

Page 77: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 77/95

SolutionQ   =>e 'ave < 5.U

( )∴ − = −5 < < <U

( )   [ ]′ ′= − =  < < X Z X ZU I Q I

( ) ( )′ ′=   < < < [<y distributive law\I U I

( )′= φ  <I U

′=  <I

* ? <

[ ]= φ* < 3r oved.Q I

5l + i L

Page 78: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 78/95

5lass +Fercise 2 L

f A, # and $ are t'e sets suc' t'at  t'en prove t'at

Solution

Page 79: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 79/95

SolutionLet / be any arbitrary element of $ 0 #.

∴ ∈ − ⇒ ∈ ∉F 5 < F 5 and F <[ ]⇒ ∈ ∉ ⊂F 5 and F <Q

⇒ ∈ −F 5

∴ − ⊂ −5 < 5 3r oved.

5l + i K

Page 80: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 80/95

5lass +Fercise 2 K

f A, # and $ are t'e t'ree sets and 1is t'e universal set suc' t'at n(1) 233, n(A) 433, n(#) 533 and, find

Solution

Page 81: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 81/95

( ) ′′ ′ =  < <Q I U #y 6e Morgan’s law

( ) ( )( )′′ ′∴ =n < n <I U

( ) ( )= −n n <U

( ) ( ) ( ) ( ) = − + − n n n < n <I

233 0 7433 8 533 0 933:

533

5l + i 6

Page 82: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 82/95

5lass +Fercise 2 6

n a class of 5; students, 92 'aveta<en mat'ematics, 93 'ave ta<enmat'ematics but not p'ysics. %ind

t'e number of students w'o 'aveta<en bot' mat'ematics and p'ysicsand t'e number of students w'o 'aveta<en p'ysics but not mat'ematics,if it is given t'at eac' student 'as

ta<en eit'er mat'ematics or p'ysicsor bot'.

S l ti

Page 83: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 83/95

SolutionMethod I:

Let M denote t'e set of students w'o'ave ta<en mat'ematics and be t'eset of students w'o 'ave ta<en p'ysics.

( ) ( ) ( )= = − =n - 3 $8, n - 1K, n - 3 1DU

=iven t'at

( ) ( ) ( )=>e ;now t'at n - ? 3 n - ? n - 3I

( )⇒ = −1 1K n - 3I

( )⇒ = − = ⇒n - 3 1K 1 KI  2 students 'ave ta<enbot' mat'ematics and p'ysics.

Solution contd..

Page 84: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 84/95

Solution contd..ow we want to find n( 0 M).

( ) ( ) ( ) ( )∴ = + −n - 3 n - n 3 n - 3U I

⇒ 5; 92 8 n() 0 2

⇒ n() 5; 0 93 4;

( ) ( ) ( )∴ − = −n 3 - n 3 3 - 3I

4; 0 2 9>

⇒ 9> students 'ave ta<en p'ysics but not mat'ematics.

S l ti td

Page 85: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 85/95

Solution contd..Method II:

Venn diagram met'od?

- 3

a b c

( ) = + + =4iven t'at n - 3 a b c $8 ...(i)U

n(M) a 8 b 92 ...(ii)

n(M 0 ) a 93 ...(iii)

S l ti td

Page 86: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 86/95

Solution contd..e want to find b and c

%rom (ii) and (iii),b 92 0 93 2 2 students 'aveta<en bot' p'ysics and mat'ematics.

%rom (i), 93 8 2 8 c 5;

c 5; 0 92 9>

⇒ 9> students 'ave ta<en p'ysics but not mat'ematics.

5lass +Fercise 9

Page 87: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 87/95

5lass +Fercise 2 9

f A and # be t'e two sets containing5 and @ elements respectively, w'at

can be t'e minimum and ma/imumnumber of elements in

S l ti

Page 88: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 88/95

SolutionAs we <now t'at,

( ) ( ) ( ) ( )= + −n < n n < n <U I

( )∴ n <U is minimum or ma/imum accordingly as

( )n <I is ma/imum or minimum respectively.

Case I: 'en is minimum, i.e. 3( )n <I   ( )n <I

+'is is possible only w'en .= φ  <I

( ) ( ) ( ) ( )∴ = + −n < n n < n <U I

5 8 @ 0 3

∴ Ma/imum number of elements in   <U

Solution contd..

Page 89: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 89/95

Case II: 'en is ma/imum( )n <I

+'is is possible only w'en . n t'is case⊆  <

=  < <U

( ) ( )∴ = =n < n < LU

∴ Minimum number of elements in is @.  <U

5lass +Fercise 1

Page 90: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 90/95

5lass +Fercise 2 1

But of >>3 boys in a sc'ool, 44C playcric<et, 4C3 play 'oc<ey, and 55@ playbas<etball. Bf t'e total, @C play bot'

bas<etball and 'oc<eyD >3 play cric<etand bas<etball and C3 play cric<et and'oc<eyD 4C play all t'e t'ree games.%ind t'e number of boys w'o did notplay any game.

S l ti

Page 91: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 91/95

SolutionMethod I:

Let $, # and denote t'e set of boysplaying cric<et, bas<etball and 'oc<eyrespectively.

ere given t'at

n($) 44C, n() 4C3, n(#) 55@

( ) ( ) ( )= = =n < Y L7, n 5 < 6, n 5 Y 7I I I

( ) =n 5 < Y #7I I

Q e <now t'at

  ( ) ( ) ( ) ( ) ( )= + + − −n 5 < Y n 5 n < n Y n 5 <U U I

( ) ( ) ( )− +n < Y n 5 Y n 5 < YI I I I

44C 8 55@ 8 4C3 0 >3 0 @C 0 C3 8 4C

@C3

Solution contd

Page 92: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 92/95

Solution contd..∴ umber of boys not playing any game is

+otal number of students 0 ( )n 5 < YU U

>>3 0 @C3 4C3

Method II:

Venn diagram met'od?

a b c

d

e

"

5 <

Y

t is given t'at

n($) a 8 b 8 d 8 e 44C ...(i)n() d 8 e 8 f 8 g 4C3 ...(ii)

n(#) b 8 c 8 e 8 f 55@ ...(iii)

Solution contd..

Page 93: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 93/95

( )n < Y * e W f * L7 ...(iv)I

( )n 5 < * b W e * 6D ...(v)I

( )n 5 Y * d W e * 7D ...(vi)I

( )n 5 < Y * e * #7 ...(vii)I I

+ = ⇒ = − =d e 7D d 7D #7 1LQ

+ = ⇒ = − =b e 6D b 6D #7 8L

+ = ⇒ = − =e f L7 f L7 #7 7D

+ + + = ⇒ = − − −b c e f $$L c $$L 8L #7 7Q 49@

 "ain d W e W f W " * #7 " * #7 ? 1L ? #7 ? 7

  * #7 ? 6

  * 1L

Solution contd..

Page 94: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 94/95

and a 8 b 8 d 8 e 44C

  a 44C 0 ;@ 0 9@ 0 4C  44C 0 @

  94>

∴ EeFuired number of students not playing any game >>3 0 (a 8 b 8 c 8 d 8 e 8 f 8 g)

>>3 0 (94> 8 ;@ 8 49@ 8 9@ 8 4C 8 C3 8 9@3)

>>3 0 @C3

4C3

Page 95: BM Cycle 7 Session 1

7/23/2019 BM Cycle 7 Session 1

http://slidepdf.com/reader/full/bm-cycle-7-session-1 95/95

&'an; ou

3lease forward your uery &o [email protected]