boiler steam cycle hysysv8.6

27
Rev 1.0 ‐1‐ February 26, 2015 Steam Cycle Simulation – HYSYS v8.6 The attached gives steps to set up a simulation in HYSYS v8.6 to model a simple Rankine steam cycle for electricity production. The system consisting of: Fuel gas side with air blower, combustion chamber, & fuel gas side of the steam boiler. Steam side with steam turbine, steam condenser, condensate pump, & steam side of the boiler. The simulation will first be set up assuming isentropic steps for the rotating equipment. It will then be modified to account for more realistic efficiencies (both thermodynamic and mechanical). When the simulation is set up the overall PFD should look like the following figure. Create new simulation file Start the program from Start, All Programs, Aspen Tech, Process Modeling V8.6, Aspen HYSYS, Aspen HYSYS V8.6. When the program opens choose the New button.

Upload: ricaerdo

Post on 24-Sep-2015

59 views

Category:

Documents


4 download

DESCRIPTION

HRSG sim

TRANSCRIPT

  • Rev1.0 1 February26,2015

    SteamCycleSimulationHYSYSv8.6TheattachedgivesstepstosetupasimulationinHYSYSv8.6tomodelasimpleRankinesteamcycleforelectricityproduction.Thesystemconsistingof:

    Fuelgassidewithairblower,combustionchamber,&fuelgassideofthesteamboiler. Steamsidewithsteamturbine,steamcondenser,condensatepump,&steamsideofthe

    boiler.Thesimulationwillfirstbesetupassumingisentropicstepsfortherotatingequipment.Itwillthenbemodifiedtoaccountformorerealisticefficiencies(boththermodynamicandmechanical).WhenthesimulationissetuptheoverallPFDshouldlooklikethefollowingfigure.

    CreatenewsimulationfileStarttheprogramfromStart,AllPrograms,AspenTech,ProcessModelingV8.6,AspenHYSYS,AspenHYSYSV8.6.WhentheprogramopenschoosetheNewbutton.

  • Rev1.0 2 February26,2015

    DefinetheComponents&thePropertyModelsSpecifycomponents,fluidpropertypackages,&crudeoilassays

    Thefirststepistoaddtwosetsofpurechemicalspeciestorepresent:

    Steamasmodeledbypurewater&usingpropertycorrelationsconsistentwiththeASMESteamTables.

    Thenaturalgasfuel,air,&combustionexhaustaspurelightcomponentsmodeledbythePengRobinsonequationofstate(EOS).

    Letsdothesteamfirst.WithComponentListshighlightedclickontheAddbutton.Fromthelistofpurecomponentspickwater.Werenowreadytopickthepropertymodel.

  • Rev1.0 3 February26,2015

    Thenextstepistopickafluidpropertypackage.FromtheFluidPackagesscreenclicktheAddbutton.ChoosetheASMESteamoptionandmakesureitisassociatedwithComponentList1.

    Nowletsaddcomponentstomodelthefuelsideofthesystem.GobacktotheComponentListsitem&clickontheAddbuttontocreateComponentList2.Weneedcomponentsforthefollowing:

    Naturalgas.Fornowletsmodelthisasapossiblemixtureofmethane,ethane,&propane. Air.Fornowwellmodelthisasamixtureofoxygen&nitrogen. Combustiongases.Attheminimumwellalsoneedcarbondioxideandwater.However,

    wellalsowanttotakeintoaccountincompletecombustion(formingcarbonmonoxide)aswellasNOxformation(fornowjustasNO,NO2,&N2O).

    Fromthelistofpurecomponentspickthefollowingchemicalspecies.Thenextstepistoassociateadifferentfluidpropertypackageforthesecompounds(sincetheASMESteamTablesareonlyappropriateforpurewater).GobacktotheFluidPackagesscreen&clicktheAddbutton.ChoosethePengRobinsonoptionandmakesureitisassociatedwithComponentList2.

  • Rev1.0 4 February26,2015

    Nowisagoodtimetosavethefilebeforewestartsettinguptheprocesssimulation.ClicktheFiletab&thentheSaveAsitem.

  • Rev1.0 5 February26,2015

    Setup&SolvetheFlowsheetWorkingUnitsActivatetheSimulationoption.Notethatyoullseeablankflowsheet.WewouldliketoshowthecalculationswithamodifiedsetofSIunits,inparticular:

    TemperatureasC. Pressureasbar(absolute). Massflowaskg/sec. Molarflowaskg.mol/sec. HeatdutyaskJ/sec. PoweraskW.

    UndertheHometabclicktheUnitSetsbutton.UndertheAvailableUnitsSetsselectSI.YoucanexaminethelistunderDisplayUnitstodeterminewhatwillbeusedforthedisplayoftheresultsaswellasthedefaultunitsfortheinput.Mostoftheunitsarewhatwedesire,butnotall.Forexample,youcanseethatPressurewillbereportedinkPa,notquitewhatwewant.

    Letscreateanewsetofunits&callitSIbarsec.WiththeSIunitshighlightedintheAvailableUnitsSetslistclicktheCopybutton.ChangetheUnitSetNametoSIbarsec.LetsnowexaminetheDisplayUnitsfortheonesofinterest(Temperature,Pressure,etc.)andmakesurethatareconsistentwithwhatwewant.TochangeweneedonlyclickonthedropdownlistintheUnitscolumn.Forexample,tochangePressurefromkPatobarweonlyneedtochoosetheappropriateoptionfromthelist.WhendoneclicktheOKbutton.

  • Rev1.0 6 February26,2015

    SteamCycleWewillwanttocreateasimpleRankinecyclewiththefollowingprocessconditions:

    Saturatedsteamproductionat125bar. Finalcondensationto20C. Steamturbineoperatingatidealreversibleconditions. Condensatepumpoperatingatidealreversibleconditions. Noextrapressuredropthroughheatexchangersorpiping.

    LetsplacethefollowingunitsfromtheModelPalettetotheflowsheet1:Heater,Cooler,Expander,&Pump.Ultimatelyitwillbedepictedasfollows.

    Letsdefinethecondensatepumpfirst.Doubleclickonthepumpicon(probablycalledP100).ChangethenametoCondensatePump.Specifynewstreamsfortheinlet,Condensate,theoutlet,HPWater,&theenergystream,WPump.MakesurethattheBasis1fluidpackageischosen.

    1IftheModelPaletteisnotvisiblechoosetheViewtab&clickontheModelPalettebutton.

  • Rev1.0 7 February26,2015

    Wewanttomakethisanidealreversiblepump.ClickontheParametersoption&changetheAdiabaticEfficiencyto100%.

    Wecaninitializethewatercirculatingintheloopfromhere,too.ClickontheWorksheettab&choosetheCompositionoption.Enter1fortheH2OvalueundertheCondensatecolumn.Aninputformwillpopup&allowyoutoverifythatthisrepresentstheMolesFractionsbasis.ClicktheOKbutton.

    ClickonConditionssowecanentervaluesfortheCondensateenteringthepump.SpecifytheTemperatureas20CandtheVapourfractionas0(i.e.,asaturatedliquid).Letsuseaflowbasisof1kg/s.NoticethatCondensatestreamisfullydefined&otherassociatedvaluesarecalculated(suchasthepressure,molarflow,heatflow,etc.)

    Nowletsdefinethesteamsideoftheboiler.Doubleclickontheheatericon(probablycalledE100).ChangethenametoSteamBoiler.Pulldownthelistfortheinputstream&chooseHPWater.Specifynewstreamsfortheoutlet,HPSteam,&theenergystream,QBoiler.MakesurethattheBasis1fluidpackageischosen.

  • Rev1.0 8 February26,2015

    Wewanttoassumeanegligiblepressuredropthroughthisexchanger.ClickontheParametersoption&changetheDeltaPto0.

    Nowletsspecifytheconditionsforthehighpressuresteam.ClickontheWorksheettab&theConditionsoption.SpecifythePressureas125barandtheVapourfractionas1(i.e.,asaturatedvapor).NoticethatafterenteringthepressuretherestoftheconditionsfortheHPWaterstreamarecalculated(sincewenowknowtheoutletpressureofthepump,too).AfterenteringthevaporfractiontherestoftheconditionscanbecalculatedfortheoutletHPSteam&therequireddutyQBoiler.Nowletsdefinethesteamturbine.Doubleclickontheexpandericon(probablycalledK100).ChangethenametoSteamTurbine.Pulldownthelistfortheinputstream&chooseHPSteam.Specifynewstreamsfortheoutlet,TurbineExhaust,&theenergystream,WSteamTurbine.MakesurethattheBasis1fluidpackageischosen.

  • Rev1.0 9 February26,2015

    Wewanttomakethisanidealreversibleexpander.ClickontheParametersoption&changetheAdiabaticEfficiencyto100%.

    Donotapplyanyotherconditionsatthistime.Nowletsdefinethecondenser.Doubleclickonthecoolericon(probablycalledE101).ChangethenametoSteamCondenser.Pulldownthelistfortheinputstream&chooseTurbineExhaust.Pulldownthelistfortheoutletstream&chooseCondensate.Specifyanewenergystream,QCondenser.MakesurethattheBasis1fluidpackageischosen.

    Wewanttoassumeanegligiblepressuredropthroughthisexchanger.ClickontheParametersoption&changetheDeltaPto0.

    Nowallunits&streamsshouldbefullycalculated.Therearevariouswaystoviewtheresults.OnewayistoclickontheWorkbookitem.UndertheMaterialStreamstabwecanseetemperatures,pressures,&phaseconditions(i.e.,vaporfractions).UndertheEnergyStreamstabwecanseethecalculatedexchangerduties&rotatingequipmentpowers.

  • Rev1.0 10 February26,2015

    Wecanalsoviewthisbasicinformationdirectlyontheflowsheet.Rightclickthevariousstreams&choosetheShowTableoption.Thiscanbedoneforallofthestreamsofinterest.(Thetableswillprobablyhavetobemovedaroundtomaketheresultsreadable.)Bydefaultthematerialstreamtablesshowthetemperature,pressure,&overallmolarflow.Toaddvaporfractiondoubleclickonthetable,clickAddVariable,chooseVapourFraction,clickOK,&closethePFDTableform.

  • Rev1.0 11 February26,2015

    ThereisathirdoptionthatwouldallowyoutocalculatethethermalefficiencyofthesteamcycleaswellassummarizetheresultsaddaSpreadsheettothesimulation.FromtheModelPaletteaddaSpreadsheet;doubleclicktoopen.ChangethenametoSteamCycleSummary.ClickontheParameterstabandchangetheNumberofColumnstoatleast5andtheNumberofRowstoatleast11.ClickontheSpreadsheettab&setuptextfieldsthatlooklikethefigureontheright.

  • Rev1.0 12 February26,2015

    WenowwanttoassociatemanyofthecelllocationstoresultscalculatedbyHYSYS.Forexample,rightclickoncellB2&chooseImportVariable;chooseCondensate,Temperature,&thenclickOK.Notethatthetemperatureof20.00Cappearsinthetable;alsonotethatitisformattedasboldblue,meaningthatthisisauserinputvalue.(Italsodenotesthatitcanbechangedfromhere,butmoreofthatlater.).Whenallvariablesareassociatedwiththeappropriatecellsthespreadsheetshouldlookasfollows.

    Nowletsaddacouplecalculations.

    ThenetpowerproducedwillbethatfromtheSteamTurbineminusthatneededbytheCondensatePump.IncellD10entertheformula=D8D9.

    Wealsowouldtodirectlycalculatethethermalefficiencyofthesteamcycle,i.e.,theratioofthenetpowerproducedbytheheatinfromtheboiler.IncellD11entertheformula=100*D10/B8.

  • Rev1.0 13 February26,2015

    Nowwehaveasummarytablethatwillshowinasingleplacematerialstreamresults,energystreamresults,unitoperationparameters,&calculatedresults.Forexample,wecanseethatthiscombinationofconditionswillresultinasteamcyclewitha41.25%thermalefficiency.

    Notethatthisisalsoalivetable.Wecanchangeparametershere&theothervalueswillautomaticallyrecalculate.Forexample,ifweweretochangetheSteamTurbine&CondensatePumpadiabaticefficienciesto85%,thenallvalueswouldberecalculatedandwecouldseethatthethermalefficiencydropsto34.94%.

    Fuel&CombustionSystemWewillwanttocreateasimplenaturalgasburner/boilerwiththefollowingprocessconditions:

    Naturalgasisavailableatindustrialdeliverypressure,20barg&15C.Wewillcharacterizethenaturalgasas100%methane.

    Airisavailableat25C.Wewillcharacterizetheairasa21/79O2/N2molarmixtureandbonedry(i.e.,nowater).Wewanttoaddenoughairsothatthereis20%excessoxygenbasedoncompletecombustionofthenaturalgas.

    Thecombustionprocessoccursnearsatmosphericconditionssothenaturalgasmustbeletdowninpressure.However,ablowerisneededtopushtheairintothecombustionchamber.

    Thepressuredropthroughtheburner/boiler/fluecombinationis0.3bar.

  • Rev1.0 14 February26,2015

    Thefluegasisexhaustedtotheatmosphereat120C,atemperaturehighenoughtopreventanyliquiddropout&subsequentcorrosionproblems.

    LetsplacethefollowingunitsfromtheModelPalettetotheflowsheet:Valve,Compressor,GibbsReactor2,&Cooler.Ultimatelyitwillbedepictedasfollows.(WelldiscusstheSpreadsheet,Set,&Adjustoperationsaswego.)

    Letsdefinethenaturalgas&letdownvalvefirst.Doubleclickonthevalveicon(probablycalledVLV100).ChangethenametoGasLetDownValve.Specifynewstreamsfortheinlet,FuelGas,&theoutlet,LPFuel.MakesurethattheBasis2fluidpackageischosen.

    2NotethatreactormodelsareundertheColumnstaboftheModelPalette.

  • Rev1.0 15 February26,2015

    Wewillinitializethenaturalgasfromhere.ClickontheWorksheettab&choosetheCompositionoption.Enter1fortheMethanevalueundertheFuelGascolumn.Aninputformwillpopup&allowyoutoverifythatthisrepresentstheMolesFractionsbasis.ClicktheNormalizebuttontosettheothercompositionsaszero.ClicktheOKbutton.

    ClickonConditionssowecanentervaluesfortheFuelGasenteringthepump.SpecifytheTemperatureas15CandthePressureas20barg(notethatthepressuregetsautomaticallyadjustedtoanabsolutebasis).Letsuseaflowbasisof1kg.mol/s.Letsspecifytheoutletpressureof0.3bargintheLPFuelcolumn(notethatthepressuregetsautomaticallyadjustedtoanabsolutebasis).NoticethatboththeFuelGas&LPFuelstreamsarefullydefined&otherassociatedvaluesarecalculated(suchasthemassflow,heatflow,etc.)

  • Rev1.0 16 February26,2015

    Nowletsdefinetheair&theairblower.Doubleclickonthecompressoricon(probablycalledK100).ChangethenametoAirBlower.Specifynewstreamsfortheinputstream,Air,theoutlet,Air2,&theenergystream,WAirBlower.MakesurethattheBasis2fluidpackageischosen.

    Wewanttomakethisanidealreversiblecompressor.ClickontheParametersoption&changetheAdiabaticEfficiencyto100%.

  • Rev1.0 17 February26,2015

    Wewillinitializetheairstreamfromhere.ClickontheWorksheettab&choosetheCompositionoption.Enter0.21fortheOxygenvalueundertheAircolumn.Aninputformwillpopup&allowyoutoverifythatthisrepresentstheMolesFractionsbasis&finishenteringtherestofthevalues.Enter0.79fortheNitrogenvalue.ClicktheNormalizebuttontosettheothercompositionsaszero.ClicktheOKbutton.

    ClickonConditionssowecanentervaluesfortheAirenteringthepump.SpecifytheTemperatureas25CandthePressureas0barg(notethatthepressuregetsautomaticallyadjustedtoanabsolutebasis).Asastartingpointletsdefinetheflowrateas12kg.mol/hr.Finally,letsspecifytheoutletpressureforAir2as0.3bargtomatchthatofthefuelgasaftertheletdownvalve.NoticethatboththeAir&Air2streamsarefullydefined&otherassociatedvaluesarecalculated(suchasthemassflow,heatflow,etc.)Nowitstimetomodelthecombustionportionofthefuelgasburner.Therearevariousoptionsfordoingthis.Oneofthesimplest(andwouldnormallybedoneforhandcalculations)wouldbetodefineallcombustionreactions&specifytheextentofconversionforeach.Instead,weregoingtotakeadvantageofthefullthermodynamiccapabilitiesofHYSYS&useareactorthatwillminimizetheGibbsfreeenergy.Allwehavetodoislisttheexpectedproducts&HYSYSwillcalculatetheresultingproductdistributionthathonorsthematerial&energybalancesaswellasanychemicalequilibriumlimitations.

  • Rev1.0 18 February26,2015

    DoubleclickontheGibbsReactoricon(probablycalledGBR100).ChangethenametoCombustion.SelecttheexistingLPFuel&Air2streamsasinlets.Specifynewstreams,CombustionGas,asthevapouroutlet&CombustionLiquidsastheliquidoutlet.MakesurethattheBasis2fluidpackageischosen.

    Thatsprettymuchit.Thedefaultsarezeropressuredrop&includeallspeciesinthecomponentlistaspotentialproduct.WecanexaminetheresultsbyclickingontheWorksheettab.SelectingConditionsshowsthatthereisonlyagasproducedatatemperatureof1731C.WecanthenlookattheresultingcompositionbyselectingComposition.Theresultsare,bydefault,shownasmolefractions.Notethatallofthemethanehasbeenconsumed.ThereisasmallamountofCOformed(asincompletecombustion)butsomeNOxhasalsobeencreatedfromtheN2intheair.

    Nowletsseehowmuchheatcanbetransferredoutofthecombustiongases.

  • Rev1.0 19 February26,2015

    Nowletsspecifythecombustiongassideoftheboiler.Doubleclickontheheatericon(probablycalledE100).ChangethenametoHRSG.Pulldownthelistfortheinputstream&chooseCombustionGas.Specifynewstreamsfortheoutlet,FlueGa,&theenergystream,QHRSG..MakesurethattheBasis2fluidpackageischosen.Wewillnotspecifyapressuredropacrosstheexchanger.Rather,wellspecifythepressureoutthestack.ClickontheWorksheettab&theConditionsoption.SpecifythePressureas0bargandtheTemperatureas120C.Nowtheconditionsfortheinlet&outletstreamscanbedeterminedaswellasthedutyavailable(asQHRSG).Therearestillacoupleitemstobedonetocleanupthesimulation.ThefirstisforamatterofconveniencehowshouldwespecifythepressureoftheAir2streamoutoftheblower?RightnowthepressureintotheCombustionoperationissetseparatelyforthetwoinletstreams(LPFuel&Air2).Ifastudywastobeperformed&thepressureweretochangethenhavingthespecificationsintwoseparatelocationscouldleadtothembeingchangeddifferently.Itsurewouldbenicetosetitonlyinonelocation&thenhavetheotherlocationupdateautomatically.WecandothiswithaSetoperation.FromtheModelPaletteplaceaSetoperationontheflowsheet.Doubleclickonit(probablycalledSET1).RenameasSetBlowerOutlet.DefinetheTargetVariableasthepressureoftheAir2stream.WellusetheSourceasthevaluefromLPFuel.OncethisisimplementedanychangesmadetothepressureofLPFuelwillbeautomaticallytransmittedtotheoutletpressureoftheairblower.

  • Rev1.0 20 February26,2015

    Thesecondchangeinvolvesaconvenientwaytomakesurethatthecorrectamountofairisaddedtomatchtheexcessoxygenspec.Theamountofstoichiometricoxygenisdeterminedfromthecombustionreactions.Formethane,ethane,&propanethereactionsare,respectively: CH4+2O2CO2+2H2O C2H6+3.5O22CO2+3H2O C3H8+5O23CO2+4H2OThisshowsthatweneedtoknowthecompositionofthefuelgas(inmolaramounts)todeterminethestoichiometricamountofoxygenneeded.Theexcesspartisadditionaloxygen(asamultiplier)thatisadded.ThefinalconsiderationisthatthespecificationinHYSYSisnotjustfortherateofoxygenbutratheroftheair;sowehavetotakeintoaccountthecompositionoftheairaccountforthelargeamountofnitrogenalsobeintroducedintotheCombustionoperation.Sincewehavesetthecompositionofthefuelgastobepuremethane&thebasisflowrateto1kg.mol/secthenthestoichiometricoxygenflowrateistwicethis,2kg.mol/sec.Wealsoneedtoincreasethisby20%toincludethedesiredexcess.Andweneedtotakeintoaccounttheoxygencontentintheairtodeterminetheairrate.Sooverall: 2

    2

    Oair

    O

    1 2 1 0.2 11.43kg.mol/sec0.21excessstoich

    n fn

    y

    .WecoulddothesecalculationspriortorunningHYSYSandentertheairrate.OrwecoulddothecalculationswithinHYSYS.FromtheModelPaletteaddaSpreadsheet;doubleclicktoopen(probablycalledSPRDSHT1).ChangethenametoAirRateCalc.Usethedefaultnumberofrows&columns.ClickontheSpreadsheettab&setuptextfieldsthatlooklikethefigureontheright.

  • Rev1.0 21 February26,2015

    WenowwanttoassociatemanyofthecelllocationstoresultscalculatedbyHYSYS.Forexample,rightclickoncellD3&chooseImportVariable;chooseAir,MastComponentMoleFrac,Oxygen,&thenclickOK.Letsassociateallofthedesiredmolarflowrates.Forexample,forthefuel,rightclickoncellB4&chooseImportVariable;chooseFuelGas,MolarFlow,&thenclickOK.AssociatethemolarflowfortheairtothecellD7.

    Nowletsaddthefollowingcalculations:

    cellD4,=(B2*2+B3*3.5+B4*5)*B5 cellD4,=D4*(1+D2) cellD4,=D5/D3 cellD4,=D7D6

  • Rev1.0 22 February26,2015

    Nowwehaveatablethatwillcalculatethedesiredairflowrateforthespecifiedfuelgasflowrate.ThoughthespreadsheetcannotdirectlysettheairflowratewecandoitmanuallybydirectlychangingthevalueincellD7.

    EventhoughthespreadsheetitselfcannotdirectlysettheflowrateoftheAirstreamitcanbeusedaspartofanAdjustoperation.FromtheModelPaletteplaceanAdjustoperationontheflowsheet.Doubleclickonit(probablycalledADJ1).RenameasAdjustAirRate.DefinetheAdjustedVariableasthemolarflowoftheAirstream.Wellusethecalculationforthedifferencebetweenthedesiredairrate&theactualastheTargetVariable;thisiscellD8intheAirRateCalcspreadsheet.SettheSpecifiedTargetValueas0.

  • Rev1.0 23 February26,2015

    Tofinishwehavetosetvaluestocontrolthecalculations.ClickontheParameterstab.Increasethenumberofiterations(heresetfrom10to100).Settheminimumallowedvalueto0&themaximumallowedvaluetosomethingabovetheactualvalue(heresetto100).ThestatusareawillswitchtoOKwheniterationsaecompleted.

    WecanopenuptheAirRateCalcspreadsheet&seethattheAirflowratehasbeenadjustedtomatchtheexcessoxygenspecification.

    TyingtheTwoSystemsTogetherEventhoughthesteamcycle&fuelgassystemsareinthesameHYSYSflowsheettheyarereallymodeledseparately.Thesteamcyclehasconvergedwithabasisof1kg/secwatercirculationrate&thefuelsystemhasconvergedwithabasisof1kg.mol/secfuelgas.Wewilltiethesystemstogetherbypushingthedutyavailablefromthefuelsideoftheboilertothesteamside&adjustingthewatercirculationrateinthesteamcycle.

  • Rev1.0 24 February26,2015

    Beforewemakeanydirectconnectionsletscreateaspreadsheettosummarizetheresultsfromthetwosystems.FromtheModelPaletteaddaSpreadsheet;doubleclicktoopen.ChangethenametoOverallPerformance.ClickontheSpreadsheettab&setuptextfieldsthatlooklikethefigureontheright.

    Associatethematerialflows,temperature,&energyflowsasshowninthefigureontheright.

    Nowletsconnectthetwosystems.

  • Rev1.0 25 February26,2015

    DoubleclickontheCondensatestreaminthesteamcycleanddeletethevalueforthemassflowrate.Noticethattheintrinsicpropertiesforthestreamarestillcalculated(suchasthemolarenthalpy)buttheextrinsicpropertiesthatdependontheflowratearenowmissing.

    DoubleclickontheiconfortheHRSGexchanger.GototheDesigntab&changetheEnergystreamfromQHRSGtoQBoiler.Thesimulationwillstillshowthatitiscomplete.YouwillwanttodeletetheunnecessarystreamQHRSGfromtheFlowsheet.

    Sowhatschanged?Goback&lookattheCondensatestream.NoticethatHYSYShascalculatedawatercirculationratetomatchuptheamountofboilerheatneededinthesteamcycle(onakJ/kgbasis)withtheproperwaterflowrate(onakg/secbasis).

    AdditionalStream&UnitAnalysesThereareadditionalanalysesthatwemaywanttoperformforthissimulation.Sincethegoaloftheprocessistocreatepowerweshouldbeveryinterestedtodeterminethevariousthermal

  • Rev1.0 26 February26,2015

    efficienciesofthesystems.WehavealreadystartedthisanalysisbyputtingcalculationsintotheSteamCycleSummaryspreadsheettocalculatethesteamcyclesthermalefficiencybasedontheHYSYSresults.Tocalculatetheefficiencyoftheboilerweneedtodeterminetheheatingvalueofthefuelgasused.WehavealreadysetuptheformatoftheOverallPerformancespreadsheettodothesecalculations.OpentheOverallPerformancespreadsheetAssociatecellB3willtheHHVrightclickonthecell&chooseImportVariable;chooseFuelGas,HigherHeatingValue,thenclickOK.AssociatecellB4willtheLHVrightclickonthecell&chooseImportVariable;chooseFuelGas,LowerHeatingValue,thenclickOK.AddformulasintoD2&D3toputtheheatingonaflowingbasis(i.e.,multiplytheheatingvaluebythemolarflowrate).NotethateventhoughthenumbersappearunitlesstheyreallyhaveunitsofkJ/sec.Letsadd2columnsfortheefficiencyvalues.GototheParameterstab&changethenumberofcolumnsfrom4to6.Setuplabelsasshownontheright.

    Nowwewanttoaddformulastocalculatethevariousvalues:

  • Rev1.0 27 February26,2015

    cellF2,=D4/D2(alsochangeVariableTypetoUnitless) cellF3,=D4/D3(alsochangeVariableTypetoUnitless) cellF5,=(D8D7)/D4 cellF7,=(D8D7D6)/D2(alsochangeVariableTypetoUnitless) cellF8,=(D8D7D6)/D3(alsochangeVariableTypetoUnitless)

    TherearemanyothercapabilitiesthatcanbeaddedsincetheSpreadsheetoperationcanmakechanges&calculationsinalivefashion.Forexample,anentirecontrolsheetcouldbesetuptomodifyvalues&directlycalculateresults.Cellscouldbesetupforthefollowinginputs:

    Fuelgasflowrateanditspressure&temperature. Theairsatmosphericpressure&temperature. Airshumidity(wouldalsorequireadditionaloperationstoproperlyaddwaterwhile

    keepingtherestofthecomponentsrelativeamountsthesame). Desiredexcessair. Pressuredropthroughtheboilersystem. Allowablestackoutlettemperature. Condensationtemperatureinthesteamcycle. Pressuredropthroughthesteamsideoftheboiler. Degreesofsuperheatintheboilersystem. Adiabatic&mechanicalefficienciesofallrotatingequipment.