boiling heat transfer r22

21
Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels* Kwang-Il Choia, A.S. Pamitran a, Chun-Young Oh b, Jong-Taek Oh c,* A Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea B Refrigeration Research Institute, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea C Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea Sudheer Nandi (Ph.D.),M.Tech,MBA. Sustainable Energy . S.korea

Upload: sudheer-nandi

Post on 25-May-2015

151 views

Category:

Engineering


7 download

DESCRIPTION

Heat transfer perforamance

TRANSCRIPT

Page 1: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ.

Boiling heat transfer of R-22, R-134a, and CO2 in horizontal smooth minichannels*

Kwang-Il Choia, A.S. Pamitran a, Chun-Young Oh b, Jong-Taek Oh c,*A Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea

B Refrigeration Research Institute, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of KoreaC Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1,

Dunduk-Dong, Yeosu, Chonnam 550-749, Republic of Korea

Sudheer Nandi(Ph.D.),M.Tech,MBA.

Sustainable Energy . S.korea

Page 2: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 2

• http://www.sciencedirect.com/science/article/pii/S0140700702000403#

http://www.youtube.com/watch?v=s-YmfZNKnlU

Page 3: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 3

Qualitative classification flow regimes.

MIT Department of Nuclear Science and Engineering

Page 4: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 4

Page 5: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 5

Heat transfer and flow regimes in a vertical heated channel. (Thermal non‐equilibrium ef-fects have been neglected in sketching the bulk temperature)

Page 6: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 6

Abstract• This study examined convective boiling heat transfer in horizontal minichannels using R-22, R-134a, and CO2.

• The local heat transfer coefficients were obtained for heat fluxes ranging from 10 to 40 kW , mass fluxes ranging from 200 to 600 kg , a saturation temperature of 10 °C, and quality up to 1.0.

• The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm. The section was heated uniformly by applying an electric current to the tubes directly.

• Nucleate boiling heat transfer was the main contribution, particularly at the low quality region.

• An increasing and decreasing heat transfer coefficient occurred at the lower vapor quality with increasing heat flux and mass flux.

• The mean heat transfer coefficient ratio of R-22:R-134a:CO2 was approximately 1.0:0.8:2.0. Laminar flow was observed in the minichannels.

• A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in minichannels was developed with a mean deviation of 11.21%.

Keywords: Refrigerant; R-22; R-134a; R-744; Carbon dioxide; Experiment; Heat transfer; Boiling; Micro channel; smooth tube; Horizontal tube

Page 7: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 7

Page 8: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 8

Experimental apparatus

The experimental test facility and test section.

Page 9: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 9

Experimental conditions

Page 10: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 10

Page 11: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 11

The effect of mass flux on heat transfer coefficient: (a)R-22, (b) R-134a, and (c) CO2

Page 12: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 12

The experimental data on Wojtan et al. [20] flow pattern map for R-22.

Page 13: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 13

The effect of heat flux on heat transfer coefficient: (a) R-22,(b) R-134a, and (c) CO2.

Page 14: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 14

The comparison of the heat transfer coefficientThe effect of inner tube diameter on heat transfer coefficient for R-22.

Page 15: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 15

Development of a new correlation

Page 16: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 16

Page 17: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 17

Two-phase heat transfer multiplier as a function of Diagram of the experimental heat transfer coefficient, hexp.,vs prediction heat transfer coefficient, hpred.

Heat transfer coefficient comparisonNucleate boiling contribution

Page 18: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 18

Page 19: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 19

References[1] Z.Y. Bao, D.F. Fletcher, B.S. Haynes, Flow boiling heat transfer of freon R11 and HCFC123 in narrow passages, Int. J.Heat Mass Transfer 43 (2000) 3347e3358.

[2] W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, Int. J. Heat Mass Transfer 47 (2004) 5749e5763.

[3] S.G. Kandlikar, M.E. Steinke, Predicting heat transfer during flow boiling in minichannels and microchannels, ASHRAE Trans. CH-03-13-1 (2003)

667e676.

[4] T.N. Tran, M.W. Wambsganss, D.M. France, Small circularand rectangular-channel boiling with two refrigerants, Int. J. Multiphase Flow 22 (3) (1996)

485e498.

[5] J. Pettersen, Flow vaporization of CO2 in microchannels tubes, Exp. Therm. Fluid Sci. 28 (2004) 111e121. [6] C.Y. Park, P.S. Hrnjak, Flow boiling heat transfer of

CO2 at low temperatures in a horizontal smooth tube, ASME Trans. 127 (2005) 1305e1312.

[7] Y. Zhao, M. Molki, M.M. Ohadi, S.V. Dessiatoun, Flow boiling of CO2 in microchannels (DA-00-2-1), ASHRAE Trans. (2000) 437e445.

[8] R. Yun, Y. Kim, M.S. Kim, Convective boiling heat transfer characteristics of CO2 in microchannels, Int. J. Heat. Mass Transfer 48 (2005) 235e242.

[9] S.H. Yoon, E.S. Cho, Y.W. Hwang, M.S. Kim, K. Min, Y. Kim, Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation de-

velopment, Int. J. Refrigeration 27 (2004) 111e119.

[10] A.S. Pamitran, K.I. Choi, J.T. Oh, H.K. Oh, Forced convective boiling heat transfer of R-410A in horizontal minichannels, Int. J. Refrigeration 30 (2007) 155e165.

[11] J.P. Wattelet, J.C. Chato, A.L. Souza, B.R. Christoffersen, Evaporative characteristics of R-12, R-134a, and a mixture at low mass fluxes, ASHRAE Trans.

94-2-1 (1994) 603e615.

[12] D.S. Jung, M. McLinden, R. Radermacher, D. Didion, A study of flow boiling heat transfer with refrigerant mixtures, Int. J. Heat Mass Transfer 32 (9)

(1989) 1751e1764.

[13] M.M. Shah, Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Trans. 2673 (1988) 185e196.

[14] K.E. Gungor, H.S. Winterton, Simplified general correlation for saturated flow boiling and comparisons of correlations with data, Chem. Eng. Res. 65

(1987) 148e156.

Page 20: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 20

[15] J.C. Chen, A correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322e329.

[16] C.S. Kuo, C.C. Wang, In-tube evaporation of HCFC-22 in a 9.52 mm micro-fin/smooth tube, Int. J. Heat Mass Transfer 39 (1996) 2559e2569.

[17] P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Appl. Therm. Eng. 17 (8e10) (1997) 705e715.

[18] G.M. Lazarek, S.H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small diameter vertical tube with R-113, Int. J. Heat Mass Trans-

fer 25 (1982) 945e960.

[19] M.W. Wambsganss, D.M. France, J.A. Jendrzejczyk, T.N. Tran, Boiling heat transfer in a horizontal small-diameter tube, J. Heat Transfer 115 (1993) 963e975

[20] L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I e a new diabatic two-phase flow pattern map, Int. J.

Heat Mass Transfer 48 (2005)2955e2969.

[21] N. Kattan, J.R. Thome, D. Favrat, Flow boiling in horizontal tubes: part 1 e development of a diabatic two-phase flow pattern map, J. Heat Transfer 120 (1998)

140e147.

[22] D. Steiner, Heat transfer to boiling saturated liquids, in:Verein Deutcher Ingenieure (Ed.), VDI-Wa¨rmeatlas. (VDI Heat Atlas), VDI-Gessellschaft

Verfahrenstechnik und Chemieinge nieurwesen (GCV), Du¨sseldorf, Germany, 1993 (J.W. Fullarton, translator).

[23] Y.Y. Yan, T.F. Lin, Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe, Int. J. Heat Mass Transfer 41 (1998) 4183e4194.

[24] M.G. Cooper, Heat flow rates in saturated nucleate pool boiling e a wide-ranging examination using reduced properties, Advances in Heat Transfer 16 (1984)

157e239 (Academic Press).

[25] K. Stephan, M. Abdelsalam, Heat-transfer correlations for natural convection boiling, Int. J. Heat Mass Transfer 23 (1980) 73e87.

[26] D. Chisholm, A theoretical basis for the LockharteMartinelli correlation for two-phase flow, Int. J. Heat Mass Transfer 10 (1967) 1767e1778.

[27] D. Jung, Y. Kim, Y. Ko, K. Song, Nucleate boiling heat transfer coefficients of pure halogenated refrigerants, Int. J. Refrigeration 26 (2003) 240e248.

Page 21: Boiling heat  transfer  r22

Thermal Energy Conversion Control Lab. Chonbuk Nat’I Univ. 21

Thank you for listening