bond requirements of straight beam bars passing through ... · 美國混凝土學會(aci) 352...

67
高強度鋼筋混凝土之梁柱接頭設計 李宏仁 高強度鋼筋混凝土(New RC)結構設計與施工技術研討會 2016.12.09 國立雲林科技大學 營建工程系 副教授 營建材料暨技術服務中心 主任 (TAF認證 實驗室主管) 美國混凝土學會(ACI) 352 梁柱接頭委員會 委員 ACI-ASCE Committee 352, "Recommendations for Design of Beam- Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R-02)," American Concrete Institute, Farmington Hills, MI, 2002, pp. 38. Key reference

Upload: others

Post on 17-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 高強度鋼筋混凝土之梁柱接頭設計

    李宏仁

    高強度鋼筋混凝土(New RC)結構設計與施工技術研討會2016.12.09

    國立雲林科技大學營建工程系 副教授營建材料暨技術服務中心主任(TAF認證實驗室主管)

    美國混凝土學會(ACI) 352 梁柱接頭委員會 委員

    ACI-ASCE Committee 352, "Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R-02)," American Concrete Institute, Farmington Hills, MI, 2002, pp. 38.

    Key reference

  • -

    500,000

    1,000,000

    1,500,000

    2,000,000

    2,500,000

    3,000,000

    3,500,000

    4,000,000

    4,500,000

    5,000,000

    -

    50

    100

    150

    200

    250

    Usage License by Story, Above 21 story buildings and floor area

    Buildings Total floor areas (m²)

    2016

    (Buildings)(m2)

    1995 2005

    2

    資料來源:內政部統計處核發建築物使用執照按層數別分21層以上棟數及總樓地板面積註:2016年至9月底止227棟今年是歷史新高點….

    Background

    TaipeiTokyo

    集中在新北市、台北市、台中市及高雄市等都會

  • 3

    New RC 預鑄工法

    參考日本都市更新經驗

    The Tokyo Towers, 2008年完工時為日本最高(58F, 192m)之New RC住宅

    (都市再生開發案)

  • Emulative Precast Beam-Column

    Connections

    Cast-in-place concrete

    Column unit

    Grouted coupling sleeve

    Beam unit

    Grout

    Column unit Roughened surface

    Beam unit

    • 現場只澆置接合部及樓板混凝土• 快速、高品質• “Emulation” of monolithic concrete structures

    (亞利預鑄)

  • Advantages

    20層樓案例比較

  • ACI 318

    Joint Design Problems

    1000x1000-mm Column

    600-mm beam width (TYP.)

    𝑉𝑛 = 𝛾 𝑓𝑐′𝐴𝑗

    𝛾 =? 𝛾 =? 𝐴𝑗 =?

    (40x48-in.)

    (24-in.)

    Plan view of connection

  • • Development Length

    • Anchorage Length

    • Confinement

    • Joint Shear Strength

    • Mechanical Splices…

    Challenge for Connection Design

    using SD690 reinforcing steel bars

  • Development length requirement at

    interior joint

    ACI 318-1420

    b

    c

    d

    h

    MPa420 20

    y

    b

    cf

    d

    h ACI 352-02

    Zhu and Jirsa (1983) evaluated the

    test results of 18 interior beam–

    column joints and concluded that a

    minimum column depth of 20 to

    22𝑑𝑏 is appropriate to avoid bondfailure at an interstory drift of 3%

    for Grade 420 bars and a concrete

    strength of 28 to 35 MPa.

    Code background

  • Laboratory Specimen under Cyclic Deformation Loading

    Axial Load

    6 m

    3.2 m +─ +

    P

    Lateral Load Q

  • Laboratory testing

  • “J” failure versus “B” failure

    32/600/

    729/103/

    30.1/,

    bc

    yac

    nmjh

    dh

    ff

    VV

    61/450/

    508/61/

    95.0/,

    bc

    yac

    nmjh

    dh

    ff

    VV

    04.0/ cg fAP 00.0/ cg fAP

  • “BJ” failure versus “BJa” failure

    25/005/

    470/56/

    08.1/,

    bc

    yac

    nmjh

    dh

    ff

    VV

    19/004/

    347/31/

    78.0/,

    bc

    yac

    nmjh

    dh

    ff

    VV

    06.0/ cg fAP 10.0/ cg fAP

  • 13

    Video of Specimen EW0 beyond 2% drift

    19/004/

    347/31/

    78.0/,

    bc

    yac

    nmjh

    dh

    ff

    VV

  • Bond failure along beam bars in beam-column joint (BJa failures)

    14

    G.L

    Plastic

    Hinge

    ch

    Bond stress

    ch

    bd

    Pinching effect

    Strength and stiffness degradation,

    poor hysteresis behavior

    Low residual stiffness at small displacement

    Unlikely to repair

  • T1= As,topao fy

    T2= As,botao fy

    QCc2

    Cc1

    Cs2= As,topk2ao fy

    Cs1= As,botk1ao fy

    hcColumn depth

    db

    Average bond focres

    Beam bar diameter

    with flange in

    compression

    Typical As,top As,bot

    and then k1 k2

    (c)Q

    1

    221joint

    b

    ccb

    sc

    L

    L

    jd

    hLQ

    QCCTV

    ka

    a 14

    2

    yob

    bpcb fd

    uhd

    bp

    yos

    bp

    yo

    b

    c

    u

    u

    d

    h

    a

    a

    a

    k

    44

    1

    Horizontal shear and bond forces acting on the joint concrete

    jcjo AfV int

  • Comparison of the Overstrength Factors for International Design Criteria

    Design codes and standards

    Grade Yield strength, min (MPa)

    Yield strength, max (MPa)

    𝛼𝑜 factor

    ACI 318 (2014)(ASTM A706-15)

    420550

    420550

    540675

    1.25

    AIJ Guideline (1999)(Nishiyama 2009)

    390490

    590A590B685A685B

    390490590590685685

    510625675650785755

    1.311.281.141.101.141.10

    Eurocode 8 (2004) All - - 1.20NS 3101 (2006)(AS/NZS 4671:2001)

    300E500E

    300500

    380600

    1.25

  • Factor 𝜶𝒔 accounting for the bar stress level developed in the joint

  • bp

    yos

    b

    c

    u

    d

    h

    a

    a

    4

    Available bond strength

  • Relative column dimension required by different codes and recommendations (1/2)

  • Relative column dimension required by different codes and recommendations (2/2)

  • Min. Col. Dimensions required by

    different codes and recommendations

    𝑓𝑐′(MPa) 35 35 35 70 70 70

    Design Criteria 𝑓𝑦(MPa) 420 550 690 420 550 690

    AIJ Guideline (1999) 29 37 44 18 23 28

    Eurocode 8 (2004) 33 42 50 21 26 31

    NZS 3101 (2006) 25 32 38 18 23 27

    Brooke & Ingham (2013) 26 33 40 18 23 29

    Li & Leong (2014) 28 35 43 20 25 31

    Proposed Eq. 22 28 34 15 19 24

    Kelly et al. (2014) 19 28 37 14 19 26

    ACI 352R-02 20 26 33 20 26 33

    Note: Reference beam-column joint with a column axial load of

    0.2A𝑔𝑓𝑐′; bottom-to-top reinforcement ratio of 0.75; equal diameters for

    top and bottom bars.

  • Comparison

    • Recommended

    cp

    yos

    b

    c

    f

    d

    h

    6a

    aand 20

    Kelly et al. (2014)c

    y

    b

    c

    f

    f

    d

    h

    3.1)(

    4.22

    1and 20

    (SI unit)

    Kelly, D.; Lepage, A.; Mar, D.; Restrepo, J.; Sanders, J.; and Taylor, A., "Use of

    High-Strength Reinforcement for Earthquake-Resistant Concrete Structures,"

    Tenth US National Conference on Earthquake Engineering, Anchorage, Alaska,

    2014.

    Lee, H.-J., Chen, H.-C., Tsai, T.-C., (2016), “Minimum column depth for

    acceptable bond performance of straight beam bars in beam-column joints,” The

    18th Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building

    Structures (SEEBUS 2016), Tainan, Taiwan, December 2-3, 2016.

  • RC

    New RC

    Database construction

    JP75%

    US12%

    TW7%

    NZ5%

    KO1%

    • 357 test data published in Japan, US, NZ, and Taiwan

    • Unified database for normal-strength and high-strength RC

    • Beam-column joints without trans. beams/slabs, eccentricity

    Column bar versusyf cf

  • Relations between failure modes, displacement

    ductility, and the experimental-to-nominal shear

    strength ratio for the 202 interior joints assembled

    by Lee and Hwang (2013)

    𝑉𝑗ℎ,𝑚𝑉𝑛

    Displacement ductility ratio

  • Selected 59+6 = 65 interior joints

    • Bar 𝑓𝑦 not less than 400 MPa

    • A minimum of two cycles at the limiting drift ratio

    • BJ or BJa failure

  • Evaluation of the hysteretic behavior at

    the limiting drift cycle(>3.5% 2nd or 3rd)

    1

    19.0PPD EE

    10.0)(4

    1

    s

    Deq

    E

    E

    DE

    PPE

    %33

    %36

    iKoK

    01.0io KK

    sE

    StrengthStiffnessEnergy dissipation

    𝑄 ≥ 0.75𝑄𝑚

    𝐾𝑜 ≥ 0.05𝐾𝑖

    Τ𝐸𝐷 𝐸𝑃𝑃 ≥ 0.125

    ACI 374.1-05

    𝜉𝑒𝑞 ≥ 0.125

  • Energy dissipation Index

    Provided-to-required development length ratio

    cp

    yos

    b

    c

    f

    f

    d

    h

    6a

    aa

    cp

    yos

    b

    c

    f

    f

    d

    h

    6a

    aa

    𝐸𝐷𝐸𝑃𝑃

    𝜉𝑒𝑞

  • Strength and stiffness degradation

    Provided-to-required development length ratio

    cp

    yos

    b

    c

    f

    f

    d

    h

    6a

    aa

    cp

    yos

    b

    c

    f

    f

    d

    h

    6a

    aa

    mQ

    Q

    i

    o

    K

    K

  • Performance Evaluation

    n

    mjh

    V

    V ,

    cp

    yos

    b

    c

    f

    f

    d

    h

    6a

    aaProvided-to-required

    development length ratio

  • Final Recommendations

    20 and 6

    oflarger thecp

    yos

    b

    c

    f

    d

    h

    a

    a

    os

    tops

    o

    sA

    A

    aaa

    11

    7.01

    ,

    where

    20.10.29.0

    cg

    PfA

    Pa

    Brooke and

    Ingham (2013)

    NZS 3101 (2006)

    Omitting tfaa

  • cp

    yos

    f

    f

    5a

    aa

    cp

    yos

    b

    c

    f

    f

    d

    h

    6a

    aa

    20 ,

    6max

    cp

    yos

    b

    c

    f

    f

    d

    h

    a

    aa

    n

    mjh

    V

    V ,

  • 設計手冊𝑓𝑐′ SD420 SD550 SD690

    𝑘𝑔𝑓

    𝑐𝑚2𝑀𝑃𝑎 α𝑠 =1.80 α𝑠 = 1.56 α𝑠 =1.83 α𝑠 = 1.58 α𝑠 = 1.87 α𝑠 = 1.61

    280 28 25 21 32 27 39 34350 35 22 20 28 25 35 30420 42 20 20 26 22 32 27490 49 20 20 24 21 29 25560 56 20 20 22 20 28 24630 63 20 20 21 20 26 22700 70 20 20 20 20 25 21770 77 20 20 20 20 23 20840 84 20 20 20 20 22 20900 90 20 20 20 20 22 20

    1000 100 20 20 20 20 21 20

    註:本表適用於內柱軸力大於0.15𝐴𝑔𝑓𝑐′。

  • Seismic Testing for Interior Beam-

    Column Joints500x600-mm Beam6-D32 top and bot.

    600x600-mm Col. 16-D32

    USD685 bars

  • 21 6

    cp

    yos

    b

    c

    f

    d

    h

    a

    a

    Test results

    𝑓𝑐′ = 100(132) 𝑀𝑃𝑎

    𝑓𝑦 = 685(697) 𝑀𝑃𝑎

    Design equation

    𝑃 = 0.05𝐴𝑔𝑓𝑐′

    𝛼𝑜 = 1.15

    19 mm 32

    mm 600

    b

    c

    d

    h

    Provided0.88

    ,

    n

    mjh

    V

    V

    4%-drift PerformanceRating = 3 Acceptable

  • • Development Length

    • Anchorage Length

    • Confinement

    • Joint Shear Strength

    • Mechanical Splices…

    Challenge for Connection Design

    using SD690 reinforcing steel bars

  • Anchorage Length for Headed Bars

    ℓ𝑑𝑡 ≥ 0.192𝑓𝑦𝑑𝑏

    𝑓𝑐′

    ACI 318-14, 8𝑑𝑏 , 150 𝑚𝑚 (MPa unit)

    ℓ𝑑𝑡 ≥ 0.06𝑓𝑦𝑑𝑏

    𝑓𝑐′

    (kgf/cm2 unit) ℓ𝑑𝑡 ≥ 0.016𝑓𝑦𝑑𝑏

    𝑓𝑐′

    (psi unit)

    (a)value of 𝑓𝑐′ ≤ 6000 psi (42 MPa);

    (b)bar specified 𝑓𝑦 ≤ 60 ksi (420 MPa);

    (c)bar size ≤ No. 11 (D36);

    (d)net bearing area of head 𝐴𝑏𝑟𝑔 ≥ 4𝐴𝑏;

    (e)normal-weight concrete;

    (f) minimum clear cover of 2𝑑𝑏

    (g)minimum clear spacing of 3𝑑𝑏 between bars.

    Conditions

  • Exterior Beam-column Joints

    under Cyclic Loading

  • Specimen Design and Details𝑓𝑐′ = 70 𝑀𝑃𝑎𝑓𝑦 = 734 𝑀𝑃𝑎 (𝑆𝐷690) 𝑓𝑦𝑡 = 843 𝑀𝑃𝑎 (𝑆𝐷790)

    Varying shear demands and Ash,ratio

    ℓ𝑎ℓ𝑑𝑡

    ≈ 1.0

    2𝑑𝑏 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

  • Global and Local Response @ 4% drift

    𝑉𝑒𝑥𝑝

    𝑉𝑛,𝐴𝐶𝐼= 0.85

    𝐴𝑠ℎ𝐴𝑠ℎ,𝐴𝐶𝐼

    = 1.00 (1.20)

    𝑤𝑖𝑡ℎ 𝑓𝑦𝑡 = 690 (843)𝑀𝑃𝑎

    Beam Yielding

  • Global and Local Response @ 6% drift

    𝑉𝑒𝑥𝑝

    𝑉𝑛,𝐴𝐶𝐼= 0.85

    𝐴𝑠ℎ𝐴𝑠ℎ,𝐴𝐶𝐼

    = 1.00 (1.20)

    𝑤𝑖𝑡ℎ 𝑓𝑦𝑡 = 690 (843)𝑀𝑃𝑎

    Followed by Joint Shear Failure

  • 𝑉𝑒𝑥𝑝

    𝑉𝑛,𝐴𝐶𝐼= 0.85

    BJ failure

    J failure

    𝑉𝑒𝑥𝑝

    𝑉𝑛,𝐴𝐶𝐼= 1.29

    ℓ𝑎ℓ𝑑𝑡

    ≈ 1.0

    2𝑑𝑏 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

    2𝑑𝑏 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

  • 𝑉𝑒𝑥𝑝

    𝑉𝑛,𝐴𝐶𝐼= 0.68

    ℓ𝑎ℓ𝑑𝑡

    = 1.6

    B failure

    2𝑑𝑏 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

    𝑓𝑐′ = 119 𝑀𝑃𝑎

    𝑓𝑦 = 744 𝑀𝑃𝑎

  • 𝑉𝑒𝑥𝑝

    𝑉𝑛,𝐴𝐶𝐼= 0.63 BJa failure

    ℓ𝑎ℓ𝑑𝑡

    = 0.63

    𝑓𝑐′ = 44.4 𝑀𝑃𝑎

    𝑓𝑦 = 707 𝑀𝑃𝑎 (𝑆𝐷685)

    Anchorage Failure!

  • Locations of the heads (or hooks)(ACI 352R-02, 4.5.3.2)

  • • Development Length

    • Anchorage Length

    • Confinement

    • Joint Shear Strength

    • Mechanical Splices…

    Challenge for Connection Design

    using SD690 reinforcing steel bars

  • 設計公式修訂建議(黃世建等人)

    • 橫箍柱 (ACI 318-14)

    47

    MPaf yt 800≤其中

    cg fAP ′3.0>當

    或 MPafc 70>′

    0 09

    max 0 3 1

    0.2

    c

    yt

    gsh c

    c yt ch

    gcf n p

    yt ch

    f.

    f

    AA f.

    sb f A

    Afk k k

    f A

    放寬使用90°-180°彎鉤並交錯配置,但須提高圍束箍筋量

    Required

  • ACI 352R-02 Design Example

  • • 韌性抗彎構架接頭區亦須負責傳遞柱軸力,故需要配置柱箍筋圍束柱核心混凝土。

    • 細則比照柱端部(耐震彎鉤、間隔、換端)

    • 除非梁構材貫穿接頭且梁寬最少為柱寬度之3/4,視為具有圍束作用時,則在該梁構材構入範圍內,平行該梁構材方向可配置較少之繫筋,每組橫向鋼筋之總斷面積得為柱規定值之半 (Ash,ratio > 0.50)

    • 箍筋間距仍不得超過 6𝑑𝑏及15 cm。

    接頭箍筋

  • Effect of Ash,ratio on

    Joint StrengthJ failure

    BJ failure

    C3

    C5

  • Joint Shear Strength Degradation

    Degradation of joint

    shear capacity

    B-type

    BJ-type

    Joint shear demand

    (proportional to beam flexure capacity)

    Jo

    int

    sh

    ea

    r fo

    rce

    Deformation or Drift

    2

    3

    1J-type

    Diagonal strut

    mechanism

    3

    Bond deterioration

    Concrete softening

    2Truss mechanism

    1cc

    Yield

    penertration

    Low Ash,ratio

    Degradation ofjoint shear capacity

    Deformation or Drift

    Jo

    int

    sh

    ea

    r c

    ap

    ac

    ity

    High

    Ash,ratio

    Yield

    penertration

  • Effect of Ash,ratio on

    Drift Capacity

    B3

    B5

  • • Development Length

    • Anchorage Length

    • Confinement

    • Joint Shear Strength

    • Mechanical Splices…

    Challenge for Connection Design

    using SD690 reinforcing steel bars

  • ACI Code 接頭剪力設計

    un VV

    接頭標稱剪力強度𝑉𝑛 = 𝛾 𝑓𝑐′𝐴𝑗

    接頭配置 𝑉𝑛 for 𝑓𝑐′

    in psi

    𝑉𝑛 for 𝑓𝑐′ in

    MPa

    𝑉𝑛 for 𝑓𝑐′ in

    Τ𝑘𝑔𝑓 𝑐𝑚2

    接頭四面皆受梁圍束

    20 𝑓𝑐′𝐴𝑗 1.67 𝑓𝑐

    ′𝐴𝑗 5.3 𝑓𝑐′𝐴𝑗

    接頭三面或一雙對面受梁圍束

    15 𝑓𝑐′𝐴𝑗 1.25 𝑓𝑐

    ′𝐴𝑗 4.0 𝑓𝑐′𝐴𝑗

    其他 12 𝑓𝑐′𝐴𝑗 1.00 𝑓𝑐

    ′𝐴𝑗 3.2 𝑓𝑐′𝐴𝑗

    (b) 接頭三面或兩對面有梁束制(a) 接頭四面有梁束制 (c) 其他束制條件者

    (b) 接頭三面或兩對面有梁束制(a) 接頭四面有梁束制 (c) 其他束制條件者

    (b) 接頭三面或兩對面有梁束制(a) 接頭四面有梁束制 (c) 其他束制條件者

    𝑉𝑛 = 0.083𝛾 𝑓𝑐′𝐴𝑗

    𝑉𝑛 = 0.265𝛾 𝑓𝑐′𝐴𝑗

    xbhbbj 2

    b

    x

    x

    h

    bj

    Joint effective area

    (psi)

    (MPa)

    (kgf/cm2) ACI 318

  • Case study, bj and -value per ACI 318

    • Beam width bb= 24 in.• Increasing square column section from 24x24 in. to 48x48 in.

    Plan view of connectionBeyond 𝑏𝑐xℎ𝑐 = 32x32,𝑏𝑏

    𝑏𝑗< 0.75,both 𝛾 values drop to 12

    Trans. beam

    Trans. beam

    bb=24"24"x24"Column

    48"x48"

    32"x32"

    Loading beam

    Loading beam

    bb=24"

    24"x24"Column

    48"x48"

    32"x32"

    Loading beam

    Loading beam

  • Frame subjected to Lateral Loading

    Interior joint Exterior joint

    Tee joint Knee joint

    Interior joint

    Exterior joint

  • Code Change Proposal

    接頭標稱剪力強度𝑉𝑛 = 𝛾 𝑓𝑐′𝐴𝑗

    𝑉𝑛 = 0.083𝛾 𝑓𝑐′𝐴𝑗

    𝑉𝑛 = 0.265𝛾 𝑓𝑐′𝐴𝑗

    (psi)

    (MPa)

    (kgf/cm2)

    柱連續性 梁連續性 橫向梁圍束 示意圖 𝛾值

    連續

    連續

    兩側皆有 20

    任一側無 15

    不連續

    兩側皆有 15

    任一側無 12

    垂直剪力方向構入接頭兩側面之橫向梁覆蓋接頭面寬度寬度達3/4以上,則該接頭視為具有橫向梁圍束作用

  • Case study, proposed -value

    • Beam width bb= 24 in.• Increasing square column section from 24x24 in. to 48x48 in.

    𝑏𝑏,𝑡𝑟

    ℎ𝑐< 0.75,𝛾 value drop down one category Plan view of connection

    Trans. beam

    Trans. beam

    bb=24"24"x24"Column

    48"x48"

    32"x32"

    Loading beam

    Loading beam

    bb=24"

    24"x24"Column

    48"x48"

    32"x32"

    Loading beam

    Loading beam

  • b

    x2

    x1

    hj=hcol

    bj

    Joint effective area

    jjj hbA

    (a)梁主筋貫穿梁柱接頭, hj=hcol (b)梁主筋錨定於接頭內, hj=ldt

    b

    x2

    x1

    hj=ldt

    bj

    Joint effective area

    𝑏𝑗 = 𝑏 + 𝑥1 + 𝑥2 ≤ 𝑏𝑐𝑜𝑙

    其中𝑥1及𝑥2分別為梁兩邊至柱邊之距離(圖6.3),代入上式計算時,𝑥1或𝑥2值不得超過 Τℎ𝑐𝑜𝑙 4。[黃世建等人(2014)]

    Effective Joint Area

    除非梁主筋之錨定長度皆超過3/4柱深度以上,接頭有效深度ℎ𝑗得為柱深度ℎ𝑐𝑜𝑙

    (設計手冊)

  • 第六章 梁柱接頭相關規定

    本章建議鋼筋混凝土梁柱構架接頭設計及細部配置之相關規定,係以符合韌性抗彎構架接頭之強度及韌性要求來撰寫。除非另有規定,本章之相關規定僅適用於梁柱接頭• 常重混凝土𝑓𝑐

    ′ ≤100 MPa (1000 kgf/cm2)• 縱向鋼筋 𝑓𝑦 ≤690 MPa (7000 kgf/cm

    2 )

    • 橫向鋼筋 𝑓𝑦𝑡 ≤790 MPa (8000 kgf/cm2 )

    6.1 剪力強度

    6.2 接頭箍筋

    6.3 接頭鋼筋伸展及錨定

    𝑉𝑛 = 𝛾 𝑓𝑐′𝐴𝑗

    𝐴𝑠ℎ

    20) and 6

    max( cp

    yos

    b

    c

    f

    d

    h

    a

    a

    (SI unit)ℓ𝑑𝑡 ≥ 0.192𝑓𝑦𝑑𝑏

    𝑓𝑐′

    𝑀𝑖𝑛𝑖𝑚𝑢𝑚 2𝑑𝑏 𝑐𝑙𝑒𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

    (SI unit)

  • References

    李宏仁、張又仁、張家榮、黃世建,(2014) 「高強度鋼筋混凝土梁柱接頭剪力強度測試」,國家地震工程研究中心報告,NCREE-14-008。

    李宏仁、徐富威、陳盈璋、黃世建(2016),高強度鋼筋混凝土五螺箍柱及預鑄梁柱接頭耐震性能測試,國家地震工程研究中心報告, NCREE-16-002。

    李宏仁、柳文皓、陳惠雅、黃世建(2016),具橫向梁及版之RC梁柱接頭耐震性能研究及資料庫建構,國家地震工程研究中心報告, NCREE-16-010。

    李宏仁、黃柏嘉、黃世建(2016),具橫向梁及版之新高強度鋼筋混凝土外部接頭耐震性能測試,國家地震工程研究中心報告, NCREE-16-012。

    • Brooke, N. J.; and Ingham, J. M., "Seismic Design Criteria for Reinforcement Anchorages at

    Interior RC Beam-Column Joints," Journal of Structural Engineering, V. 139, No. 11. 2013,

    pp. 1895-1905.

    • Kang, T. H. K.; Shin, M.; Mitra, N.; and Bonacci, J. F., "Seismic Design of Reinforced

    Concrete Beam-Column Joints with Headed Bars," ACI Structural Journal, V. 106, No. 6,

    Nov-Dec. 2009, pp. 868-877.

    • Lee, H.-J.; and Hwang, S.-J., "High-strength concrete and reinforcing steel in beam-column

    connections," Structures Congress 2013, Pittsburgh, PA, 2013, pp. 1606-1615.

    • Watanabe, K.; Kiyohara, T.; Tasai, A.; and Hasegawa, Y., "Deformation Capacity of High

    Strength RC Exterior Beam Column Joint with Beam Main Bars Anchored Mechanically,"

    Proceedings of the Japan Concrete Institute, V. 26, No. 2. 2004, pp. 481-486.

  • 李宏仁等人 (NCREE-16-002)62

  • ACE JOINT

    續接器

    Be a m unit Be a m unit

    Column unit

    Groute d Coupling S le e ve

    Ca s t-in-pla ce concre teGrout

    Lb = 6 m

    Lc = 3.2 m

    TOPS JOINT

  • 預鑄柱頭續接

  • 20 ~ 22

    17 ~ 19

    17 20

    18 21

    19 22

    S

    N

    W E W E

    柱續接鋼筋之應變

    • 接頭上下端柱筋皆可達到降伏• 上柱續接器端無明顯損壞

  • S

    S

    W E S N

    E

    E 23 ~ 28

    23 24 25 26 27 28

    梁續接鋼筋之應變

    • 梁柱交接面鋼筋可達降伏強度• 接頭區應變梯度明顯• 能充分續接鋼筋貫穿接頭區

  • 67BOLTOPS 在預鑄梁之應用

    預鑄柱 + 預鑄梁下半部及接頭 BOLTOPS套管續接避開梁塑鉸區