books sssabookseries mineralsinsoile frontmatter

Upload: ricardo-percilio

Post on 05-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    1/27

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    2/27

    Soil Science Society

    o

    merica Book Series

    Books in the series are available from the Soil Science Society ofAmerica

    677 South

    Segoe

    Road Madison WI 53711 USA.

    1.

    MINERALS N SOIL ENVIRONMENTS. Second Edition. 1989.

    J. B Dixon and

    S.

    B Weed

    editors

    R. C Dinauer

    m n ging editor

    2.

    PESTICIDES

    N

    THE SOIL ENVIRONMENT: PROCESSES IMPACTS

    AND MODELING.

    1990.

    H.

    H. Cheng

    editor

    S.

    H. Mickelson

    m n ging editor

    3. SOIL TESTING AND PLANT ANALYSIS. Third Edition. 1990.

    R. L Westerman editor S. H. Mickelson m n ging editor

    4. MICRONUTRIENTS IN AGRICULTURE. Second Edition. 1991.

    J. J. Mortvedt et aI. editors S. H. Mickelson m n ging editor

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    3/27

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    4/27

    Copyright © 1989 by the Soil Science Society of America, Inc.

    ALL RIGHTS RESERVED

    UNDER THE

    U.S. COPYRIGHT

    LAW OF 1978 (P.L. 94-553)

    Any and all uses beyond the fair use provision of the law require

    written permission from the publishers and/or author(s); not ap

    plicable to contributions prepared by officers or employees

    of

    the

    U.S. Government as part

    of

    their official duties.

    Second Printing 1992

    Soil Science Society

    of

    America, Inc.

    677 South Segoe Road, Madison, Wisconsin 53711 USA

    Library o Congress Cataloging in Publication Data

    Minerals in soil environments.

    (SSSA Book Series; no.

    1

    Includes bibliographies and index.

    1. Soil mineralogy.

    I

    Dixon, Joe Boris.

    II. Weed, S.

    B.

    (Sterling

    Barg)

    III. Dinauer,

    Richard C.

    S592.55.M56 1989 549 88-34929

    ISBN 0-89118-787-1

    Printed in the United States of America

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    5/27

    CONTENTS

    Page

    DEDICAnON

    XVll

    FOREWORD

    xix

    PREFACE xxi

    CONTRIBUTORS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXlll

    PERIODIC TABLE

    OF

    THE

    ELEMENTS XXVI

    Chapter

    An

    Introduction

    to

    Soil Mineralogy

    1

    D.

    G

    SCHULZE

    I Chemical and Structural Classification of Minerals. . . . . . . . . . . . . . . I

    A Halide Sulfate and Carbonate Minerals 3

    B Su l f i d e s 3

    C

    Oxides Hydroxides and Oxyhydroxides 4

    D. Silicates 6

    II. Phyllosilicate Minerals in Soils 6

    A Basic Structural Concepts 9

    B Structure and Properties of Phyllosilicate Minerals Common in

    So i l s

    16

    III. Aluminosilicate Minerals with Short-Range Order: Allophane and

    Imogolite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    IV Some Crystallographic Concepts 25

    A Periodicity in Crystals 25

    B

    The Unit

    Cell

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    26

    C Miller Indices

    27

    D. X-ray Diffraction 29

    V S umma r y 33

    VI

    Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    REFERENCES 34

    Chapter 2 Surface Chemistry of Soil Minerals

    5

    M B

    MC

    BRIDE

    I

    Nature

    of

    Mineral Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    A Diffuse Double-layer Model

    of

    Permanent-charge Minerals. . . . . 35

    B

    Structure

    of

    the Layer Silicate-Solution Interface

    40

    C Point of Zero Charge Concept for Variable-charge Minerals . . . 44

    D Diffuse Double-layer Model

    of

    Variable-charge Minerals. . . . . . . 47

    E Discrete-site Bonding Model

    of

    Variable-charge Minerals

    49

    F

    Specifically Adsorbed Ions on Variable-charge Minerals

    53

    II. Processes at Mineral Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    A Ion Exchange Equations and the Problem

    of

    Surface Activity 55

    B

    A Statistical Mechanical Description

    of

    Ion Exchange 59

    C Difficulties with Ion Exchange Models 63

    D

    General Rules

    of

    Cation Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . 65

    E

    Chemisorption of Cations and Anions 67

    F Clay Surface Acidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    G. Electron Transfer

    72

    H

    Clay Swelling Behavior 75

    I The Covolume Model

    of

    Particle Interaction. . . . . . . . . . . . . . . . . 80

    III. S umma r y 81

    IV

    Appe nd i x

    82

    REFERENCES 84

    v

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    6/27

    vi

    CONTENTS

    Chapter 3

    An

    Introduction to Organic Matter in Mineral Soils 89

    J. M OADES

    I

    The Nature of Organic Substances

    92

    A Plant Materials

    92

    B

    Humic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    C

    Nonhumic Substances-Carbohydrates

    107

    D

    Microbial Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    II. The Persistence of Organic Substances. . . . . . . . . . . . . . . . . . . . . . . . . 118

    A

    The Use of

    4C

    as a Tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    B Dating Techniques for Organic Matter . . . . . . . . . . . . . . . . . . . . 123

    III. Reactions of Well-Defined Chemicals with Clays

    127

    A Small Molecules .

    128

    B

    Macromolecules or Polymers 131

    C Predicted Behavior of Biopolymers in Soils . . . . . . . . . . . . . . . . . 134

    IV Natural Organo-Mineral Associations. . . . . . . . . . . . . . . . . . . . . . . . . . 135

    A Density Fractionations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    135

    B

    Fractionations by Sedimentation

    137

    C Physical Disaggregation of Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    D Associations of Organic Matter with Hydrous Oxides

    145

    V

    Conc lu s ion s

    lSI

    VI Acknowledgments

    152

    VII. Problems and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    152

    VIII. Supplemental Reading-Texts on Organic Matter . . . . . . . . . . . . . . . .

    152

    REFERENCES

    153

    Chapter 4 Mineral Equilibria and the Soil System 161

    DHANPAT RAI AND JAMES

    A

    KITTRICK

    I Fundamentals of Mineral Equilibria. . . . . . . . . . . . . . . . . . . . . . . . . . .

    163

    A Phase Rule . . . . . . . . .

    163

    B

    Enthalpy Entropy and Free Energy

    167

    C

    Thermochemical Data Base

    173

    D Role of Solubility Measurements in Understanding the Soil

    Sy s t em 177

    II. Use of Thermochemical Data in Understanding Soil Mineral

    Equilibria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    A Soil Mineral Weathering Sequences. . . . . . . . . . . . . . . . . . . . . . . . .

    179

    B

    Mechanisms That Control Aqueous Concentrations . . . . . . . . . . . 185

    C Geochemical Groundwater Modeling . 189

    D

    Selection

    of

    Appropriate Experiments or Experimental

    Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    III. Past Present and Future

    191

    IV Study Problems

    192

    REFERENCES

    194

    Chapter 5 Mineral Occurrence in Soil Environments 199

    B L.

    ALLEN AND

    B

    F HAJEK

    I

    Soil Taxonomy: Soil Mineralogy Relationships. . . . . . . . . . . . . . . . . .

    200

    A

    Orders

    201

    B Subo rde r s 201

    C

    Great Groups

    204

    D Subgroups 205

    E Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

    F

    Series 209

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    7/27

    CONTENTS vii

    II. Quartz and Other Silica Minerals 209

    III. Fe ld s p a r s 210

    IV Olivine Amphiboles Pyroxenes 213

    A Ol i v i n e 213

    B

    Amph i b o l e s 214

    C Pyroxenes 215

    V Mi c a s

    215

    A Biotite 216

    B

    Muscovite 217

    C Clay Mi c a 218

    VI. Vermiculite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

    VII. Chlorite 225

    VIII.

    Smec t i t e

    228

    A Inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

    B

    Formation by Pedogenesis and Alteration 229

    C

    Alteration to Other Minerals

    231

    D

    Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    231

    IX. Talc and Pyrophyllite 232

    X

    Kaolinite and Halloysite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

    A Kaolinite 233

    B Ha l l o y s i t e

    236

    XI. Serpentine 239

    XII. Palygorskite and Sepiol ite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    XIII. Zeolites 242

    XIV. Allophane and Imogolite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

    A Allophane 244

    B

    Imogolite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    XV. Carbonates Sulfates. Sulfides. and Chlorides. . . . . . . . . . . . . . . . . . . . 246

    A Carbonates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    B Su l f a t e s

    247

    C Su l f i d e s

    249

    D

    Chlorides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

    XVI. Aluminum Oxides 250

    XVII. Iron Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    A

    Magnetite and Ilmenite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    B

    Goe t h i t e 253

    C Lepidocrocite and Akaganeite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

    D

    Hematite

    255

    E

    Magh em i t e

    256

    F

    Ferrihydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    G. Iron Oxides and Soil Families 256

    XVIII. Manganese

    Oxides

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    XIX. Titanium and Zirconium Minerals 258

    XX. Phosphate Minerals 260

    XXI. S umma r y

    261

    XXII. Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

    REFERENCES 264

    Chapter 6 Carbonate Halide Sulfate and Sulfide Minerals 279

    HARVEY

    E

    DONER AND WARREN C LYNN

    I Calcite. Magneisum-Calcite. and Dolomite 279

    A Natural Occurrence 280

    B

    Crys t a l l og raphy 285

    C Formation and Stability 287

    D

    Identif ication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

    E Impact on Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

    II. Gypsum and Other Moderately Soluble Sulfates. . . . . . . . . . . . . . . . . 296

    A Natural Occurrence 296

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    8/27

    viii

    CONTENTS

    B Crystallography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

    C.

    Formation and Stability 297

    D Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    E

    Impact on Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

    III. Pyrite and Jarosite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    A

    Natural Occurrence 303

    B

    Crystallography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

    C Formation and Stability 305

    D

    Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    307

    E

    Impact on Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

    IV Soluble Minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

    A

    Natural Occurrence 309

    B Crystallography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    C

    Formation and Stability 314

    D Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

    E Impact on Soil 320

    V S umma r y

    320

    VI

    Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

    REFERENCES 324

    Chapter 7 Aluminum Oxides

    and

    Oxyhydroxides 33

    PA HO HSU

    I

    Nomenclature and Structural Properties. . . . . . . . . . . . . . . . . .

    331

    II. Methods

    of

    Identification and Determination

    338

    A

    X-ray Diffraction Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    338

    B Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

    C Infrared Absorption Analysis 343

    D Selective Dissolution 345

    III. Mechanism

    of

    Aluminum Hydroxide Formation 346

    A

    Composition and Structure of OH-AI

    Polymers

    . . . . . . . . . . . . . 347

    B Hydrolysis and Polymerization 351

    C

    Crystallization of Aluminum Hydroxides. . . . . . . . . . . . . . . . . . . . 353

    D Polymorphs of Aluminum Hydroxides . . . . . . . . . . . . . . . . . . . . 357

    IV Gibbsite in Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

    A Occurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

    B Genesis

    of

    Gibbsite in Soils 359

    V Formation

    of

    Aluminum Oxyhydroxides in Soils . . . . . . . . . . . . . . . . 362

    VI

    Reactions of Aluminum Hydroxide in Soils

    363

    A

    Reaction with Anions 364

    B

    Adsorption of Cations

    366

    C

    Stabilization

    of

    Soil Aggregates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

    VII. Problems and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

    REFERENCES 371

    Chapter 8

    Iron

    Oxides 79

    U

    SCHWERTMANN AND R M TAYLOR

    I Forms and Characteristics of Soil Iron Oxides 380

    A

    General 380

    B Goethite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

    C Hematite 387

    D Lepidocrocite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

    E

    Magnetite and Maghemite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

    F. Ferrihydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

    G

    Other Minerals 394

    II. Occurrence and Formation of Iron Oxides. . . . . . . . . . . . . . . . . . . . . .

    395

    A General Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    9/27

    CONTENTS

    ix

    B

    Thermodynamic Stability

    vs

    Kinetics 396

    C Occurrence and Modes of Formation in Soils 398

    III. Properties Relevant to Soils 407

    A Surface Structure 407

    B

    Surface Charge 407

    C Ion Adsorption 408

    D Adsorption

    of

    Organics 415

    E Aggregation and Cementation. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 416

    IV

    Iron Oxides and Microorganisms 419

    A Reduction

    of

    Iron Oxides by Microorganisms. . . . . . . . . . . . . . . . 419

    B

    Biotic Formation of Iron Oxides 420

    V Determination

    421

    A General 421

    B Goe t h i t e

    423

    C Hematite 424

    D

    Lepidocrocite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

    E Maghemite Magnetite 425

    F Ferr ihyd ri te Ferox yhite . . . . . . . . . . .. . . . . .. . . . . . .. . . . . . .. . . .

    426

    VI Acknowledgment 426

    VII. Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

    VIII. Supplemental Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    REFERENCES 427

    Chapter 9 Manganese Oxides and Hydroxides 439

    R M

    MC KENZIE

    I

    The Manganese Oxide Minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

    A Tunnel Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

    B

    Layer Structures 444

    C

    The Lower Oxides 446

    D

    Relation Between Tunnel and Layer Structures. . . . . . . . . . . . . . . 447

    II. Mineral Identification 449

    A X ray Diffraction 449

    B

    Infrared Spectroscopy 449

    III. Occurrence of the Minerals in Soils 451

    IV

    Oxidation

    of

    Manganese and Growth

    of Nodules.

    . . . . . . . . . . . . . . . 452

    V Formation of Manganese Minerals in Soils 455

    VI

    Chemical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

    A

    Chemical Composition 456

    B Surface Charge 457

    C

    Adso rp t i o n

    457

    VII.

    S umma r y

    460

    VIII. Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

    REFERENCES 461

    Chapter 10 Kaolin and Serpentine Group Minerals 467

    J

    B

    DIXON

    I

    Structural Properties

    of

    Kaolin Minerals 468

    A Kaolinite 468

    B

    Ha l loy s i t e 474

    II. Morphological Characteristics

    of

    Kaolinite and Halloysite 474

    A

    Kaolinite 474

    B Ha l loy s i t e 477

    III. Formation of Kaolin

    481

    A Rapid Synthesis of Kaolinite

    481

    B Equilibrium Environment and Conditions for Synthesis 482

    C Kaolinite Formation Induced by Plant

    Growth.

    . . . . . . . . . . . . . . 485

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    10/27

     

    CONTENTS

    D Kaolinite Formation from Hydroxy-AI-Interlayered

    Montmorillonite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

    E Isotopic Composition of Kaolins Formed at Different

    Temperatures 486

    F.

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

    IV Occurrence

    of

    Kaolin Minerals in Soils Rocks and Sediments 486

    A

    Stability

    of

    Kaolinite in Weathering Environments. . . . . . . . . . . . 486

    B Kaolinite in Young

    Soils

    . . . . . . . . . . . . . . . . . . . . . . . 487

    C Soils with Abundant Kaolinite Content 488

    D Rocks Containing Abundant Kaolinite 489

    E

    Formation and Distribution

    of

    Halloysite in Soils 489

    F. Soil Kaolinite-A Major Source

    of

    Ocean Sediments 493

    V Order-Disorder in Kaolins . . . . . . . . . . . . . . . . . . . . . . 495

    VI Interstratification

    of

    Kaolinite and 2: 1 Minerals 496

    VII. Isomorphous Substitution in Kaolinite and Halloysite . . . . . . . . . . . . 497

    VIII. Chemical Properties

    of

    Kaolinite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

    A Cation Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

    B

    Anion Exchange

    501

    C

    Flocculation and Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

    IX. Physical Properties

    of

    Kaolinite and Halloysite . . . . . . . . . . . . . . . . . . 506

    X

    Identification

    of

    Kaolinite and Halloysite . . . . . . . . . . . . . . . . . . . . . . . 508

    XI. Quantitative Analysis of Kaolinite and Halloysite 510

    XII. Serpentine Minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    511

    A

    Structure 511

    B Compos i t i o n 512

    C Morphological Properties 512

    D

    Thermal Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

    E

    Stability and Weathering. . . . . . . . . . . . . . . . . . . . . . . . . .

    515

    F. Synthesis

    517

    XIII. Problems and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

    XIV. Supplemental Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . 518

    REFERENCES 519

    Chapter The Pyrophyllite-Talc Group 527

    L

    W

    ZELAZNY AND

    G

    N. WHITE

    I Structural Properties and Mineral Identification 527

    A

    Structures and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

    B X-ray Diffraction 531

    C

    Thermal Analysis

    533

    D Infrared Analysis 537

    E

    Optical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

    II. Natural Occurrences 539

    A

    Geologic Extent

    539

    B

    Soil Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

    III. Equilibrium Environment and Conditions for Synthesis 543

    IV Chemical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    545

    V Physical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

    VI Quantitative Determinations 546

    VII. Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

    REFERENCES 547

    Chapter

    12

    Micas 551

    DELVIN S FANNING VISSARION

    Z

    KERAMIDAS AND

    MOHAMED A EL-DESOKY

    I Structural Properties and Mineral Identification 552

    A Structures Formulas and Nomenclature 552

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    11/27

    CONTENTS

    xi

    B

    X-Ray Diffraction

    XRD)

    .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

    C

    Differential Thermal Analysis DTA)

    571

    D. Thermogravimetry TG) 577

    E

    Infrared Spectroscopy IR) 578

    F

    Electron Microscopy 580

    G. Mossbauer

    Spectroscopy.

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . .

    . . . . . .

    581

    H. Nuclear Magnetic Resonance

    NMR)

    582

    II. Weathering

    and

    Synthesis Relationships. . . . . . . . . . . . . . . . . . . . . . . . 583

    A

    General Principles 583

    B

    Physical

    Weathering.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

    C

    Simple Transformation to Expansible

    2:

    I Minerals 584

    D. Mica-Vermiculite-Kaolinite Stability Diagram

    and

    Complex

    Transformat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

    E Pedogenic Mica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

    F

    Illitization in Geologic

    Columns

    603

    G. Glauconite Formation

    and Weathering.

    . . . . . . . . . . . . . . . . . . . . . 605

    III. Natural Occurrence 608

    A

    Occurrence in Soil Parent Materials 608

    B

    Occurrence in Soils 609

    IV. Chemical

    Properties.

    . . . . . . . . . . . . . . . .

    . .

    . . . . . . .

    . .

    . . . . . . . . . . . . .

    611

    A

    Properties Related to Ion Exchange. . . . . . . . . . . . . . . . . . . . . . . . .

    611

    B

    Chemical Composit ion 618

    V

    Physical

    Properties.

    . . . . . . . . . . . . . . . . . .

    . .

    . . . . . . .

    . .

    .

    . .

    . . . . . . . . . 618

    VI.

    Quantitative

    Determination 619

    VII.

    Conc l u s i o n s

    620

    VIII. Acknowledgments 622

    IX. Problems

    and

    Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

    X. Supplemental

    Reading.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

    REF ERENCES

    624

    Chapter 3 Vermiculites

    635

    LOWELL

    A DOUGLAS

    I

    Distr ibut ion in Soils 635

    II. Structure and Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

    III. Formation

    of Vermiculite.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

    A

    Release

    of

    Potassium .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

    B

    Oxidation

    of

    Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

    C. Hydroxyl

    Orientation.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

    D. Total Charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

    E

    Stability of Vermiculites 650

    IV. Identification

    of

    Vermiculites.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

    A

    X-ray Diffraction 653

    B

    Infrared Spectroscopy 657

    C

    Thermal Analysis 658

    D. Electron Microscopy 659

    E

    Total

    Charge.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

    F.

    Quantitative

    Determination

    of

    Vermiculite

    661

    V Ion Exchange 662

    A

    Cation Exchange

    Capacity.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

    B

    Cation

    Exchange.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

    C

    Ion Fixation 664

    VI.

    The

    Soil-Clay-Vermiculite Problem. . . . . . . . . . . . . . . . . . .

    . .

    . . . . . . 667

    VII. Problems

    and

    Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

    REFERENCES 668

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    12/27

    xii

    Chapter 14 Smectites

    CONTENTS

    675

    GLENN BORCHARDT

    I.

    Structural Properties and Mineral Identification. . . . . . . . . . . . . . . . . 675

    A.

    X-Ray Diffraction XRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

    B Electron Optical Properties TEM SEM) 679

    C

    Thermal Analysis 682

    D.

    Infrared IR) Spectroscopy 683

    E

    Elemental Analysis

    EA) 685

    F. Selective Dissolution Analysis SDA) 686

    G. M6ssbauer Spectroscopy MS) 687

    H. Other Methods

    of

    Smectite Identification. . . . . . . . . . . . . . . . . . . . 687

    II

    Natural Occurrence 689

    A.

    Geographic Extent 689

    B Soil Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

    C Sedimentary Occurrence 694

    III

    Equilibrium Environment and Conditions for Synthesis 697

    A.

    Conditions for Laboratory Synthesis. . . . . . . . . . . . . . . . . . . . . . . . 697

    B

    Transformation and Formation in Soils . . . . . . . . . . . . . . . . . . 697

    C Smectite Weathering 701

    IV. Chemical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    703

    A.

    Cation Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    703

    B Anion Exchange 707

    C Reaction Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707

    D.

    Molecular Sorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    708

    E

    Other Chemical Properties 708

    F. Smectites and Soil Fertility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

    V.

    Physical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

    A. Shrink-Swell

    709

    B

    Water

    Retention

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    711

    C Cohesion and Adhesion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

    D. Particle Size Distribution 713

    VI. Quantitative Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    713

    A.

    X-Ray Diffraction Methods

    713

    B. Surface Area Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

    C Cation Exchange Capacity Methods 715

    D. Other Methods

    of

    Quantitative Determination 715

    VII. Conc l u s i o n s 716

    VIII. Problems and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

    IX. Supplementary Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

    REFERENCES 718

    Chapter 15 Chlorites

    and

    Hydroxy Interlayered Vermiculite

    and

    Smectite 729

    RICHARD

    I.

    BARNHISEL AND PAUL

    M.

    BERTSCH

    I.

    Origin and Sources of Chlorite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

    II. Structural Properties and Mineral Identification of Chlorite 731

    A.

    Idealized Structures

    731

    B

    X-ray Diffraction Properties 733

    C Chemical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

    D. Thermal Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738

    E

    Infrared and M6ssbauer Properties 740

    III

    Weathering

    of

    Chlorite Minerals 742

    IV. Structural Properties and Mineral Identification

    of

    Hydroxy-

    Interlayered Vermiculite HIV) and Smectite HIS) 744

    A.

    Idealized Structure and Generalizations 744

    B Identification by X-ray Diffraction XRD) . . . . . . . . . . . . . . . . . 746

    C Identification by Thermal Analysis

    748

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    13/27

    CONTENTS xiii

    D. Identification by Infrared Analysis. . . . . . . . . . . . . . . . . . . . . . . . . .

    749

    E

    Characterization of Hydroxy-interlayer Materials by

    Conductometric

    and

    Potentiometric Titr imet ry . . . . . . . . . . . . . . . 749

    V

    Origin, Sources, Distribution,

    and

    Weathering

    of

    Hydroxy

    Interlayered Materials

    750

    A

    Origin

    and Sources.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    750

    B

    Distribution

    and

    Weathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

    VI. Physicochemical Properties of Hydroxy-Interlayered Vermiculite

    HIV)

    and

    Hydroxy-Interlayered Smectite HIS) . . . . . . . . . . . . . . . . .

    756

    A

    Physical

    Properties.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    756

    B

    Chemical

    Properties.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    757

    C

    Removal

    of

    Hydroxy Interlayers

    . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

    VII. Laboratory Synthesis of Hydroxy-Interlayered Vermiculite HIV)

    and Smectite HIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    763

    A

    Synthesis Methodology

    764

    B Type of Clay Mineral Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    769

    C

    Nature

    of

    Hydroxy-Interlayer

    Material.

    . . . . . . . . . . . . . . . . . . . . .

    771

    D Comparison of Synthetic

    and

    Naturally Interlayered Clays. . . . . 774

    VIII. Problems

    and

    Exerc ises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

    ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    778

    REFERENCES 779

    Chapter 16 Interstratification in Layer Silicates 789

    BRI1

    1 SAWHNEY

    I

    Regular Interstratification

    789

    A

    Characterization

    of

    Regularly Interstratified Layers

    . . . . . . . . . . .

    790

    B Examples of Regularly Interstratified Minerals and

    Interpretation

    of

    Their X-ray Diffraction Patterns . . . . . . . . . . . . 790

    II.

    Random

    Interstratification

    797

    A

    Characterization

    of

    Randomly Interstratified Layers. . . . . . . . . . .

    797

    B Examples of Randomly Interstratified Minerals and

    Interpretation of Their XRD Patterns. . . . . . . . . . . . . . . . . . . . . . . 807

    III. Formation ofInterstratified M ine ra l s . . . . . . . . . . . . . . . . . . . . .. . . . . 812

    A M ica V erm icul i te . . . . . . . . . . . .. . . . . .. . . . . .. . . . . . .. . . . . .. . .

    812

    B

    M ica Sm ec t i t e . . . . . . . . .. . . . .. . . . .. . . . .. . . .. . . . .. . . . .. . 813

    C

    Mechanism of Regular Interstratification . . . . . . . . . . . . . . . . . . . . 815

    IV. Recent

    D ev e lo pm en ts . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . .. 816

    V S um m ary . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . 819

    VI.

    Appendix Sample

    Calculation for One-Dimensional Diffraction

    Profile 820

    REFERENCES 824

    Chapter 17 Palygorskite and Sepiolite Group Minerals 829

    ARIEH

    SINGER

    I

    Basic Characteristics

    830

    A

    Structure

    . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . .

    830

    B

    Chemical Composition

    832

    C M or ph olo gy . . . . . .. . . . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .

    835

    D. Surface

    Properties.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838

    II. Mineral Identification 843

    A

    Field

    and

    Optical Identification 843

    B X-ray Identification 843

    C

    Thermal Analysis

    845

    D

    Transmission-

    and

    Scanning-Electron Microscopy TEM

    and

    SEM) 846

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    14/27

    xiv

    CONTENTS

    E Infrared and Mossbauer Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . 847

    III. Formation of Palygorskite and Sepiolite. . . . . . . . . . . . . . . . . . . . . . . . 849

    A Synthesis 849

    B

    Equilibrium Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

    C

    Environments of Occurrence 854

    D Pedogenic Formation

    of

    Palygorskite 860

    IV

    Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866

    REFERENCES

    866

    Chapter 18 Zeolites in Soils 873

    DOUGLAS

    W

    MING AND FREDERICK

    A

    MUMPTON

    I Structure and Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

    A Definition 874

    B

    Composition 874

    C

    Crystal Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    875

    II. Properties and Applications

    879

    A Mineralogical Properties 879

    B

    Cation-exchange Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

    C

    Adsorption and Molecular Sieving Properties 882

    III. Natural Occurrences 883

    A Geologic Occurrences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

    B Pedogenic Occurrences 887

    IV

    Formation of Zeolites 890

    A Equilibrium Environments and Conditions for Formation 890

    B Synthesis under Hydrothermal Condit ions. . . . . . . . . . . . . . . . . . . 892

    V

    Mineral Identification

    893

    A X-ray Diffraction 893

    B

    Morpho logy

    895

    C

    Optical Microscopy 896

    D

    Thermal Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900

    E Elemental Analysis . . . . . . . 901

    F. Other Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902

    VI Quantitative Determinations 904

    A X-ray Diffraction Methods 904

    B

    Cation-Exchange Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904

    C

    Adsorption Methods 905

    VII. Problems and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    906

    VIII. Acknowledgments

    906

    IX. Supplemental Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    906

    REFERENCES 907

    Chapter 19 Silica in Soils: Quartz and Disordered Silica Polymorphs 913

    L

    RICHARD DREES LARRY P WILDING NEIL E SMECK AND

    ABU L SENKA YI

    I

    Structure and Chemical

    Composition

    . . . . . . . 914

    A Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914

    B

    Chemical Composition 918

    II. Mineral Identification 921

    A Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921

    B

    Light Optical Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932

    C

    X-ray Diffraction 934

    D Thermal Properties.. . . . . . . . . 937

    E Infrared Spectroscopy 939

    III. Quantitative Determination 941

    A Quartz 941

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    15/27

    CONTENTS

    B

    Opal CT and Cristobalite .

    C

    Opal-A .

    IV.

    Formation

    and Solubility

    of

    Silica Minera ls .

    A Formation of

    Silica Minera ls .

    B

    Solubility of Silica Minera ls .

    C. Soil Factors Influencing Dissolution Kinetics .

    V

    Natural

    Occurrence

    .

    A Quartz

    .

    B

    Opal CT

    and Cristobalite

    .

    C. Opal-A .

    VI. Pedological Implications .

    A

    Impact

    on

    Soil

    Properties

    .

    B Quartz

    as a Stable Reference Mineral .

    C

    Silica as an Indicator of Provenance .

    D. Silica as

    an

    Index of

    Environmental

    History .

    VII. Problems

    and

    Exercises .

    REFERENCES .

    Chapter 20 Feldspars Olivines Pyroxenes

    and

    Amphiboles

    P. M.

    HUANG

    x

    942

    943

    943

    943

    948

    950

    954

    954

    956

    957

    959

    959

    961

    961

    963

    964

    965

    975

    I Structural Properties and Mineral Identification 976

    A Feldspars 976

    B

    Olivines Pyroxenes

    and Amphiboles.

    . . . . . . . . . . . . . . . . . . . . . . 997

    II. Natural Occurrence and Equilibrium Environment 1003

    A

    Feldspars 1003

    B Olivines Pyroxenes and Amphiboles. . . . . . . . . . . . . . . . . . . . . . . 1013

    III. Physicochemical

    Properties.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016

    A F e l d s p a r s

    1016

    B Olivines Pyroxenes

    and Amphiboles.

    . . . . . . . . . . . . . . . . . . . . . . 1029

    IV.

    Quantitative Determination

    1034

    A Feldspars 1034

    B

    Olivines Pyroxenes and Amphiboles. . . . . . . . . . . . . . . . . . . . . . . 1037

    V Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

    VI. Problems

    and Exercises.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

    VII. Supplementary

    Reading.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039

    REFERENCES 1039

    Chapter

    21

    Allophane

    and

    Imogolite

    1 51

    KOJI WADA

    I Structural Properties

    and

    Mineral Identification 1052

    A X-ray Diffraction 1052

    B Electron Microscopy 1053

    C. Electron Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054

    D.

    Chemical Analyses.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056

    E Infrared

    Spectroscopy 1059

    F

    X-ray Fluorescence

    Spectroscopy.

    . . . . . . . . . . . . . . . . . . . . . . . . . . 1060

    G. Nuclear Magnetic Resonance Spectroscopy 1060

    H.

    Thermal

    Analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061

    I

    Density

    and

    Surface-Area

    Measurement.

    . . . . . . . . . . . . . . . . . . . . 1062

    1

    Structure Models 1062

    II.

    Natural

    Occurrence 1064

    A Geographic Extent 1064

    B

    Soil

    Environment.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064

    C. Sedimentary Occurrence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

    III. Equilibrium Environment and Conditions for Synthesis 1068

    IV.

    Chemical Properties.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    16/27

    xvi

    CONTENTS

    A Ion Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070

    B

    Surface Acidity 1072

    C Specific Adsorption of Cations and Anions 1073

    D. Interaction with Organic Compounds

    . . . . . . . . . . . . . . . . . . . . . 1076

    V Physical and Engineering Properties 1077

    VI. Quantitative Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

    VII. Conclusion 1080

    VIII. Problems and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081

    REF ERENCES 1081

    Chapter 22 Phosphate Minerals 1089

    WILLARD

    L

    LINDSAY PAUL

    L

    G. VLEK AND SEN H. CHIEN

    I

    Classification

    and

    Structure

    of

    Phosphate Minerals 1089

    II. Occurrence

    of Phosphate Minerals in Soils 1102

    A Naturally Occurring Phosphate Minerals in Soils 1103

    B Reaction Products of Phosphate Fertilizers in Soils

    11

    03

    C Surface Reactions

    of

    Phosphate on Soil Minerals 1107

    III. Phosphate Mineral Equilibria in Soils . . . . . . . . . . . . . . . . . . . . . . . . . 1109

    A

    Phosphate Species in Soil Solution 1109

    B

    A Unified Phosphate Solubility Diagram 1111

    C Effect of Redox on Phosphate Stability . . . . . . . . . . . . . . . . . . . . . 1114

    D. Polyphosphate Equilibria in Soil 1115

    E Equilibria

    of

    Trace Element Phosphates . . . . . . . . . . . . . . . . . . . . . 1115

    IV. Physical Characterization of Phosphate Minerals in Soils 1117

    V

    Conc l u s i o n s

    1124

    VI. Problems and Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

    REFERENCES 1126

    Chapter 23 Titanium and Zirconium Minerals 1131

    A

    R

    MILNES

    AND R W

    FITZPATRICK

    I Geological and Geochemical Background: Titanium and Zirconium

    in Parent Materials 1132

    A Titanium 1132

    B

    Zirconium 1140

    II. Forms

    and

    Occurrence

    of

    Titanium and Zirconium in Soils. 1144

    A Residual Minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147

    B

    Minerals Formed Through Weathering or Alteration . 1153

    C

    Authigenic Minerals . . . . . . . 1157

    III. Chemical

    and

    Physical Properties

    of

    the Minerals Commonly

    Reported in Soils 1162

    A Crystal Structures and Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162

    B Stability Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166

    C Charge Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167

    D. Magnetic Properties 1171

    E

    Techniques of Identification 1174

    F Influence on Soil Structure and Induration 1180

    IV. Formation and Weathering

    of

    the

    Minerals

    . . . . . . . . . . . . . . . . . . . . 1183

    A Evidence for Titanium and Zirconium Mobility . . . . . . . . . . . . 1183

    B Synthesis of the Minerals 1186

    C Use

    of

    Titanium

    and

    Zirconium in Studies of Soil Formation 1190

    V

    Problems

    and

    Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194

    ACKNOWLEDGMENTS 1194

    REFERENCES 1194

    SUbject Index 1207

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    17/27

    DEDICATION

    Dr

    Marion

    L

    Jackson

    Emeritus Professor of Soil Science

    Department of Soil Science

    University of Wisconsin

    Madison Wisconsin

    It is very fitting that Minerals n

    Soil Environments. 2nd edition be ded

    icated to Professor Marion L Jackson

    because

    of

    his important contributions

    to the fledgling science

    of

    soil miner

    alogy during his long and distinguished

    career.

    Marion Leroy Jackson was born in

    Reynolds   ebraska   14 ovember

    1914 He received the B S degree max

    ima cum laude with high distinction

    in

    1936 and the

    M S

    degree in 1937 from

    the University of Nebraska. He began

    his career in soil science working as a

    land classification aide with the USDA

    in Nebraska. He

    was

    granted the Ph.D.

    in soil science at the University ofWis

    consin

    in 1939

    Early in his career Dr.

    Jackson

    was

    a soil chemist at Purdue

    University and then

    he

    returned to the

    University of Wisconsin. Dr. Jackson

    progressed through the professional

    ranks at the University

    of

    Wisconsin

    and

    he was

    selected Franklin Hiram

    King Professor in 1974. He was awarded an honorary Doctor of Science degree

    in 1974 from the University of Nebraska.

    In

    1986 Professor Jackson was eJected

    to the National Academy of Sciences.

    Through his research Professor Jackson developed the leading weathering

    sequence for clay minerals and a widely used set of methods for soil mineral

    analysis. He made many other contributions to the understanding

    of

    soil minerals

    their chemical properties and their roles

    in

    the environment. His scientific con

    tributions are documented in 241 scientific publications including two books Soil

    Chemical Analysis and Soil Chemical Analysis Advanced Course and

    14

    chapters

    in

    other books on soil chemistry soil mineralogy and other topics.

    Dr. Jackson trained

    59

    Ph.D. and

    18 M S

    students who occupy numerous

    positions of importance

    in

    clay and soil science

    in

    industry and

    in

    academia

    throughout the world. Also he advised 37 postdoctoral research associates during

    his tenure

    as

    a researcher and scholar.

    Professor Jackson served as president of the Soil Science Society of America

    and of the Clay Minerals Society. He was on the organizing committee of the

    first edition

    of

    Minerals n Soil Environments. He contributed to the National

    Research Council report on disposal of radioactive wastes and the U.S.S.R.-U.S A

    xvii

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    18/27

    xviii DEDICATION

    cooperative monograph on soils and climate. He contributed to the International

    Conference on Clays in Environmental Sciences and lectured in medical schools

    on trace substances in environmental health.

    Professor Jackson has given many distinguished lectures at scientific meetings

    including the Pioneer in Clay Science Lecture and the George W. Brindley Lecture

    for the Clay Minerals Society. He has addressed the National Academy Sinica in

    Nanking and Peking China and the European Academy o Sciences and Medicine

    in West Germany. The latter lecture was on the geochemistry

    o

    elements as

    related to health.

    Throughout his career Professor Jackson has had the generous support o his

    lovely wife Chrystie. She and Professor Jackson have four children.

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    19/27

    FOREWOR

    A thorough knowledge and appreciation o the minerals in soils is critical to

    our understanding and use

    o soils for the betterment o mankind while protecting

    our fragile environment. Scientists from many disciplines use this knowledge in

    fundamental and adaptive research on soil erosion weathering classification

    fertility physics chemistry and biochemistry as well as in the engineering aspects

    o

    soils. A critical new use is the application

    o

    this knowledge to waste-related

    environmental problems including toxic waste cleanup and landfill siting.

    The need for additional information on specific mineral groups as well as

    the availability o additional significant research results led to a series o symposia

    sponsored by Division

    S 9

    o

    SSSA in 1984 and 1985 and a complete revising

    o Minerals n Soil Environments This revision has much new material and

    greatly expanded coverage

    o

    surface chemistry mineral equilibria soil organic

    matter and numerous minerals. The editors have done a remarkable job

    o

    or

    ganizing the book and providing the direction for a readable and usable volume.

    The authors are world renowned and all have contributed state-of-the-art chapters.

    This book will be the first number in the newly established SSSA Book Series.

    Finally it is so very fitting that this book be dedicated to Professor M. L

    Jackson. He is one o the truly great soil scientists

    o

    this century and it has been

    my personal privilege to have received the benefits

    o

    his wisdom during my

    career at the University o Wisconsin.

    xix

    D. R. KEENEY

    president

    Soil Science Society o America

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    20/27

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    21/27

    PREF CE

    Like its predecessor the second edition o Minerals in Soil Environments was

    developed by Division

    S-9 o

    the Soil Science Society

    o

    America. Symposia on

    Recent Developments in Soil Mineralogy were held in 1984 and 1985 where

    materials were presented for 14 o the chapters. Due to the growth

    o

    research

    results and the need to develop

    full

    chapters on mineral groups that had been

    aggregated in the first edition, chapters on methods, shrink-swell, and interactions

    o organic compounds with minerals were eliminated. These subjects are covered

    in other publications-those dealing with mineralogical methods o analysis are

    covered in the second edition

    o Methods o Soil Analysis Part 1

    (1986). The

    new edition has been reorganized to better serve

    as

    a graduate text and

    as

    a

    reference for mineralogy o soils.

    Chapters from the first edition o

    Minerals in Soil Environments

    have been

    rewritten and several new chapters have been added. The first five chapters pro

    vide general coverage

    o

    introductory mineralogy, surface chemistry, mineral

    equilibria, soil organic matter, and mineral occurrence. The remaining 18 chapters

    are devoted to minerals in various chemical and structural groups. The authors

    were selected,

    as

    in the first edition, from among scientists

    who

    have particular

    interest in and experience with their subject matter. Thus, the book has an in

    ternational selection o

    38

    authors. The 23 chapters contain nearly 400 figures

    140

    tables, problems and exercises, and

    key

    references for study.

    The introductory chapter by

    D.

    G. Schulze is entirely new and contains 13

    new illustrations. A new chapter

    by

    M. B. McBride addresses the surface chemistry

    o minerals in a modern analytical way. A new chapter on organic matter by J.

    M. Oades is included because o the ubiquitous occurrence o this important soil

    component in association with minerals in surface horizons. Coverage

    o

    soil

    organic matter is more thorough and information from new methods

    o

    organic

    matter analysis are discussed. The chapter on mineral equilibria

    by

    D. Rai and

    J.

    A. Kittrick is more rigorous and detailed than in the previous edition. Also,

    it includes new material on mineral equilibria in relation to radioactive elements

    in the soil environment. B. L Allen and B F. Hajek have completely rewritten

    the chapter that interfaces mineralogy with soil taxonomy. Their chapter is a

    valuable reference on mineral occurrence in soils

    o

    the world.

    A new chapter on pyrophyllite and talc has been written

    by L W.

    Zelazny

    and

    G.

    N. White to introduce these minerals early in the book where they are

    usually taught to students. A new chapter on palygorskite and sepiolite has been

    written by

    A.

    Singer reflecting the author s experience in the Middle East where

    these minerals frequently occur. A significant new chapter on zeolites in soils has

    been written by D. W. Ming and F. A. Mumpton. A comprehensive new chapter

    on titanium and zirconium minerals has been written by A. R. Milnes and R.

    W. Fitpatrick o Australia. Each o the other chapters has been rewritten and

    xxi

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    22/27

    xxii

    PREFACE

    updated to keep it current with the recent literature. Thus the second edition

    o

    Minerals in Soil Environments

    has a vast amount

    o

    new information.

    During the preparation

    o

    such a large volume there have been many un-

    named scientists students and editors who have contributed to the final volume

    and

    we

    are grateful for their generous help.

    J. B.

    DIXON

    co-editor

    Department ofSoil

    and

    Crop Sciences

    Texas

    A M

    University

    College Station Texas

    S.

    B.

    WEED co-editor

    Department of Soil Science

    North Carolina State University

    Raleigh North Carolina

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    23/27

    B. L. Allen

    R. I Barnhisel

    Paul

    M

    Bertsch

    Glenn Borchardt

    Sen H Chien

    J B. Dixon

    Harvey E. Doner

    Lowell A. Douglas

    L. Richard Drees

    M A.

    EI-Desoky

    D. S. Fanning

    R.

    W. Fitzpatrick

    Ben F. Hajek

    Pa Ho

    Hsu

    P. M Huang

    V. Z. Keramidas

    James A. Kittrick

    Willard L. Lindsay

    Warren C. Lynn

    M B. McBride

    CONTRI UTORS

    Professor

    of

    Soils, Plant and Soil Science Department, Texas

    Tech University, Lubbock, Texas

    Professor

    of

    Agronomy and Geology, Department

    of

    Agronomy,

    University

    of

    Kentucky, Lexington, Kentucky

    Assistant Professor, Savannah River Ecology Laboratory, Uni

    versity

    of

    Georgia, Aiken, South Carolina

    Soil Mineralogist, California Division

    of

    Mines and Geology,

    San Francisco, California

    Soil Chemist, Agro-Economic Division, International Fertilizer

    Development Center, Muscle Shoals, Alabama

    Professor of Soil Mineralogy, Department

    of

    Soil and Crop Sci

    ences, Texas A M University, College Station, Texas

    Professor

    of

    Soil Chemistry, Department

    of

    Plant and Soil Bi

    ology, University of California, Berkeley, California

    Professor of Soil Mineralogy, Department of Soils and Crops,

    Cook College, Rutgers University, New Brunswick, New Jersey

    Associate Research Scientist, Department of Soil and Crop Sci

    ences, Texas A M University and Texas Agricultural Experi

    ment Station, College Station, Texas

    Formerly Graduate Student, Department

    of

    Agronomy, Uni

    versity

    of

    Maryland, College Park, Maryland. Now at Depart

    ment ofSoil Science, College ofAgriculture, University ofAssiut,

    Assiut, Egypt

    Professor

    of

    Soil Science, Department

    of

    Agronomy, University

    of

    Maryland, College Park, Maryland

    Principal Research Scientist, CSIRO Division

    of

    Soils, Glen Os

    mond, South Australia

    Professor ofSoil Science, Agronomy and Soils Department, Au

    burn University, Auburn, Alabama

    Professor

    of

    Soil Chemistry, Department

    of

    Soils and Crops,

    Cook College, Rutgers University, New Brunswick, New Jersey

    Professor

    of

    Soil Science, Department

    of

    Soil Science, University

    of Saskatchewan, Saskatoon, Saskatchewan, Canada

    Assistant Professor

    of

    Soil Science, Laboratory

    of

    Soil Science,

    School

    of

    Agriculture, Aristotelian University, Thessaloniki,

    Greece

    Professor of Soil Science, Department of Agronomy and Soils,

    Washington State University, Pullman, Washington

    Professor, Department

    of

    Agronomy, Colorado State University,

    Fort Collins, Colorado

    Soil Scientist, Soil Conservation Service, U.S. Department

    of

    Agriculture, National Soil Survey Laboratory, Lincoln, Nebraska

    Professor

    of

    Soil Chemistry, Department

    of

    Agronomy, Cornell

    University, Ithaca, New York

    xxiii

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    24/27

    xxiv

    R. M. McKenzie

    Douglas W.

    Ming

    A. R. Milnes

    Frederick A. Mumptou

    J.

    M.

    Oades

    Dhanpat

    Rai

    Brij

    L

    Sawhney

    Darrell G. Schulze

    Udo Schwertmann

    Abu L Senkayi

    Arieh Singer

    Neil

    E.

    Smeck

    R. M. Taylor

    Paul

    L. G.

    Vlek

    Koji

    Wada

    G. N. White

    Larry

    P.

    Wilding

    Lucian W. Zelazny

    CONTRIBUTORS

    Formerly Senior Principal Research Scientist, CSIRO Division

    of

    Soils, Glen Osmond, South Australia. Now retired, Netherby,

    South Australia

    Space Scientist, National Aeronautics and Space Administration,

    Lyndon

    B

    Johnson Space Center, Houston, Texas. Formerly

    Graduate Research Assistant, Department of Soil and Crop Sci

    ences, Texas A M University, College Station, Texas

    Principal Research Scientist, CSIRO Division of Soils, Glen Os

    mond, South Australia

    Doctor, Department ofEarth Sciences, State University of New

    York-College

    at

    Brockport, Brockport, New York

    Professor, Department of Soil Science, Waite Agricultural Re

    search Institute, University

    of

    Adelaide, Glen Osmond, South

    Australia

    Technical Leader, Geochemistry Section, Battelle, Pacific North

    west Laboratories, Richland, Washington

    Soil Chemist,

    The

    Connecticut Agricultural Experiment Station,

    New Haven, Connecticut

    Associate Professor of Agronomy, Department of Agronomy,

    Purdue University, West Lafayette,

    Indiana

    Professor

    of

    Soil Science, Institut f r Bodenkunde, Technische

    Universitat Miinchen, Freising-Weihenstephan, Federal Repub

    lic of Germany

    PRC Environmental Management, Inc.; 1 Dallas Center, 350 N

    St. Paul Street; Suite 2600; Dallas, Texas 75201. Formerly Re

    search Associate, Department

    of

    Soil

    and

    Crop Sciences, Texas

    A M University, College Station, Texas

    Professor of Soil Mineralogy, The Seagram Center for Soil and

    Water Sciences, Faculty of Agriculture, Hebrew University of

    Jerusalem, Rehovot, Israel

    Professor of Agronomy, Department of Agronomy, The Ohio

    State University, Columbus, Ohio

    Doctor, CSIRO Division

    of

    Soils, Glen Osmond, South Australia

    Inst.-Tropischen

    Pflanzenbau

    Grisebachstr.

    6,

    Goettingen

    D3400, Germany. Formerly Division Director, International

    Fertilizer Development Center-Africa, Lome, Togo

    Professor of Soils, Department of Agricultural Chemistry, Fac

    ulty

    of

    Agriculture, Kyushu University, Fukuoka, Japan

    Formerly Graduate Research Assistant, Agronomy Department,

    Virginia Polytechnic Institute and State University, Blacksburg,

    Virginia.

    Now

    Research Associate, Department ofSoil and

    Crop

    Sciences, Texas A M University, College Station, Texas

    Professor of Pedology, Department of Soil and Crop Sciences,

    Texas A M University

    and

    Texas Agricultural Experiment Sta

    tion, College Station, Texas

    Professor of Agronomy, Agronomy Department, Virginia Pol

    ytechnic Institute and State University, Blacksburg, Virginia

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    25/27

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    26/27

    xxvi

    PERIODIC

    T BLE

    PERIODIC T BLE

    O

    THE ELEMENTS

    Representative

    elements Transition elements-d

    I

    Group IA

    IIA IIIB

    IVB VB VIB

    VIIB

    VIII

    Valence

    Period

    shell

    s s2

    d

    1

    s

    2

    fx

    d

    2

    s

    2

    d

    3

    s

    2

    §

    dSs

     

    §

    d

    S

    s

    2

    d

    6

    s

    2

    §

    1

    n l

    Is

    1.008

    3 4

    n=

    2s2p

    Li

    Be

    6.941 9.012

    12

    n=3

    3s3p

    Na

    Mg

    22.99 24.31

    19

    20 21

    22 23 24 25

    26

    n=4

    4s3d4p K

    Ca

    Sc

    Ti

    V Cr Mn

    Fe

    39.10 40.08

    44.96 47.90

    50.94 52.00 54.94

    55.85

    37 38

    39 40 41 42 43

    44

    n=5

    5s4d5p

    Rb

    Sr

    Y

    Zr

    Nb Mo

    Tc

    Ru

    85.47

    87.62 88.91

    91.22 92.91 95.94 99.91 101.1

    55

    56 57 71

    72

    7

    74

    75

    76

    n=6 6s4f5d6p

    Cs Ba

    t

    f

    Ta

    W

    Re

    as

    133.0 137.3

    178.5 180.9

    183.9 186.2 190.2

    87

    88 89 103

    n=7

    7s5f6d7p

    Fr

    Ra

    j

    223 226.0

    57

    58 59

    60

    61

    62

    t Lanthanide

    series

    La

    Ce

    Pr

    Nd

    Pm

    Sm

    138.9 140.1

    140.9

    144.2 145 150.4

    89

    90

    91

    9

    93

    94

    j Actinide series

    Ac

    Th Pa

    U

    Np

    Pu

    227

    232

    231 238 237.0

    242

    § Variable valence shells.

  • 8/16/2019 Books Sssabookseries Mineralsinsoile Frontmatter

    27/27

    PERIODIC T BLE

    xxvii

    PERIODIC T BLE

    O

    THE ELEMENTS

    Noble gas

    Transition

    elements d

    Representative elements

    elements

    VIII

    IB

    liB lIlA IVA

    VA

    VIA

    VIlA

    0

    (d

    7

    s

     

    § (d

    B

    s

     

    §

    s d o

    s

    s2p

    s p

    s

    p

    3 s

    p

    4 s

    p

    S s

    p

    6

    2

    He

    4 003

    5

    6

    7

    8

    9 10

    B

    C

    N

    0

    F Ne

    10.81 12.01 14.01 16 00

    19 00

    20 18

    13

    14 15 16 17 18

    Al

    Si

    P

    S

    CI Ar

    26.98 28.09

    30 97 32 06

    35 45

    39 95

    27 28 29 30 31 32 33 34 35 36

    Co Ni

    Cu

    Zn Ga

    Ge As

    Se

    Br

    Kr

    58 93

    58.71

    63 54

    65 37 69 72

    72.59

    74 92

    78.96

    79.91

    83 80

    45

    46

    47

    48

    49

    50

    51

    52 53 54

    h

    Pd

    Ag

    Cd

    In

    Sn Sb

    Te I

    Xe

    102 9

    106 4

    107.9

    112 4

    114.9 118 7 12l 8 127 6 126 9 13l 3

    78

    79

    80

    81

    82 83

    84 85

    86

    r Pt Au

    Hg

    Tl

    Pb Bi Po At

    Rn

    192 2

    195.1

    197 0

    200 6

    204 4

    207 2 209 0

    210 210

    222

    63 64 65 66 67

    68

    69 70

    71

    Eu

    Gd

    Tb

    Dy

    Ho Er Tm Yb Lu

    152 157.2

    159 162.5

    164.9 167.3 168 9 173

    175

    95

    96 97 98

    99

    100

    101

    102

    103

    Am Cm

    Bk

    Cf

    Es

    Fm

    Md

    No Lr

    243 247 247 249

    254

    253

    256

    254 257