boson coherent statesmotivation for boson coherent states eigenvectors of annihilation operator...

61

Upload: others

Post on 17-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states

Michael Bauer

17.04.2012

1 / 19

Page 2: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Motivation for Boson coherent states

Eigenvectors of annihilation operator useful for second

quantisation

Coherent states are important for a path integral

formalism of many particle systems

2 / 19

Page 3: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Motivation for Boson coherent states

Eigenvectors of annihilation operator useful for second

quantisation

Coherent states are important for a path integral

formalism of many particle systems

2 / 19

Page 4: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Coherent states in 1D harmonic oscillator

H = p2

2m+ 1

2mω2q2 = ~ω(

n︷︸︸︷b†b +1

2), eigenstates |n〉

b ≡ 1√2(√

mω~ q + i√

m~ωp)

|φ〉 ≡ exp (φb†)|0〉,b|φ〉 = φ|φ〉, ∀φ ∈ C

|φ(x)|2 = |〈x|φ〉|2 ∼ e−(x−√

2<φ)2

Minimal uncertainty√

Var(x)Var(p)φ = ~2

ÈΦHxL 2

x2

Re Φ

3 / 19

Page 5: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Coherent states in 1D harmonic oscillator

H = p2

2m+ 1

2mω2q2 = ~ω(

n︷︸︸︷b†b +1

2), eigenstates |n〉

b ≡ 1√2(√

mω~ q + i√

m~ωp)

|φ〉 ≡ exp (φb†)|0〉,b|φ〉 = φ|φ〉, ∀φ ∈ C

|φ(x)|2 = |〈x|φ〉|2 ∼ e−(x−√

2<φ)2

Minimal uncertainty√

Var(x)Var(p)φ = ~2

ÈΦHxL 2

x2

Re Φ

3 / 19

Page 6: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Coherent states in 1D harmonic oscillator

H = p2

2m+ 1

2mω2q2 = ~ω(

n︷︸︸︷b†b +1

2), eigenstates |n〉

b ≡ 1√2(√

mω~ q + i√

m~ωp)

|φ〉 ≡ exp (φb†)|0〉,b|φ〉 = φ|φ〉, ∀φ ∈ C

|φ(x)|2 = |〈x|φ〉|2 ∼ e−(x−√

2<φ)2

Minimal uncertainty√

Var(x)Var(p)φ = ~2

ÈΦHxL 2

x2

Re Φ

3 / 19

Page 7: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Coherent states in 1D harmonic oscillator

H = p2

2m+ 1

2mω2q2 = ~ω(

n︷︸︸︷b†b +1

2), eigenstates |n〉

b ≡ 1√2(√

mω~ q + i√

m~ωp)

|φ〉 ≡ exp (φb†)|0〉,b|φ〉 = φ|φ〉, ∀φ ∈ C

|φ(x)|2 = |〈x|φ〉|2 ∼ e−(x−√

2<φ)2

Minimal uncertainty√

Var(x)Var(p)φ = ~2

ÈΦHxL 2

x2

Re Φ

3 / 19

Page 8: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Repetition: Hilbert space and basis for N Bosons

HN = H(1) ⊗H(2) ⊗ · · · ⊗ H(N) with basis |u(1)i1. . . u

(N)iN〉

Projection operator S = 1N !

∑p P

P |Ψs〉 = |Ψs〉 ∈ HNs ⊂ HN

|n1 . . . nj . . . 〉 ≡√

N !∏j nj !

S|un11 . . . u

njj . . . 〉

4 / 19

Page 9: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Repetition: Hilbert space and basis for N Bosons

HN = H(1) ⊗H(2) ⊗ · · · ⊗ H(N) with basis |u(1)i1. . . u

(N)iN〉

Projection operator S = 1N !

∑p P

P |Ψs〉 = |Ψs〉 ∈ HNs ⊂ HN

|n1 . . . nj . . . 〉 ≡√

N !∏j nj !

S|un11 . . . u

njj . . . 〉

4 / 19

Page 10: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Repetition: Hilbert space and basis for N Bosons

HN = H(1) ⊗H(2) ⊗ · · · ⊗ H(N) with basis |u(1)i1. . . u

(N)iN〉

Projection operator S = 1N !

∑p P

P |Ψs〉 = |Ψs〉 ∈ HNs ⊂ HN

|n1 . . . nj . . . 〉 ≡√

N !∏j nj !

S|un11 . . . u

njj . . . 〉

4 / 19

Page 11: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Repetition: Hilbert space and basis for N Bosons

HN = H(1) ⊗H(2) ⊗ · · · ⊗ H(N) with basis |u(1)i1. . . u

(N)iN〉

Projection operator S = 1N !

∑p P

P |Ψs〉 = |Ψs〉 ∈ HNs ⊂ HN

|n1 . . . nj . . . 〉 ≡√

N !∏j nj !

S|un11 . . . u

njj . . . 〉

4 / 19

Page 12: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Fock space

Fock space F spanned by basis |n1 . . . nj . . . 〉

F = H1 ⊕H2s ⊕ · · · =

⊕∞i=1Hi

s

F is not restricted to N particles

5 / 19

Page 13: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Fock space

Fock space F spanned by basis |n1 . . . nj . . . 〉

F = H1 ⊕H2s ⊕ · · · =

⊕∞i=1Hi

s

F is not restricted to N particles

5 / 19

Page 14: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Fock space

Fock space F spanned by basis |n1 . . . nj . . . 〉

F = H1 ⊕H2s ⊕ · · · =

⊕∞i=1Hi

s

F is not restricted to N particles

5 / 19

Page 15: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Second quantisation for Bosons

De�nitions

n̂i|n1 . . . ni . . . 〉 = ni|n1 . . . ni . . . 〉

bi|n1 . . . ni . . . 〉 =√ni|n1 . . . ni − 1 . . . 〉

b†i |n1 . . . ni . . . 〉 =√ni + 1|n1 . . . ni + 1 . . . 〉

with

n̂i = b†ibi, [bi, b†j] = δij, [bi, bj] = [b†i , b

†j] = 0, i = 1 . . .∞

6 / 19

Page 16: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Creation operators b†i

|n1 . . . ni . . . 〉 =(b†1)n1√n1!

. . .(b†i )

ni√ni!

. . . |0〉with bi|0〉 = 0, ∀bi

Eigenvectors ?

b†i |Ψs〉 =∑

n1...nj ...

cn1...nj ...b†i |n1 . . . nj . . . 〉

|n1 . . . nj . . . 〉 with lowest ni cannot be reproduced!

Fock space: vectors without hightest ni possible

7 / 19

Page 17: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Creation operators b†i

|n1 . . . ni . . . 〉 =(b†1)n1√n1!

. . .(b†i )

ni√ni!

. . . |0〉with bi|0〉 = 0, ∀bi

Eigenvectors ?

b†i |Ψs〉 =∑

n1...nj ...

cn1...nj ...b†i |n1 . . . nj . . . 〉

|n1 . . . nj . . . 〉 with lowest ni cannot be reproduced!

Fock space: vectors without hightest ni possible

7 / 19

Page 18: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Creation operators b†i

|n1 . . . ni . . . 〉 =(b†1)n1√n1!

. . .(b†i )

ni√ni!

. . . |0〉with bi|0〉 = 0, ∀bi

Eigenvectors ?

b†i |Ψs〉 =∑

n1...nj ...

cn1...nj ...b†i |n1 . . . nj . . . 〉

|n1 . . . nj . . . 〉 with lowest ni cannot be reproduced!

Fock space: vectors without hightest ni possible

7 / 19

Page 19: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Annihilation operators bi

[bi, bj] = 0⇒ common eigenbasis

Constructing eigenvectors

bi|φ〉 =∑

n1...nj ...

cn1...nj ...

√ni|n1 . . . ni − 1 . . . nj . . . 〉 = φi|φ〉

⇒ φicn1...ni−1... =√nicn1...ni..., ∀bi

⇒ cn1...ni... = φnii1√ni!cn1...0i...nj ... =

∏i φ

nii

1√ni!c0...0...

8 / 19

Page 20: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Annihilation operators bi

[bi, bj] = 0⇒ common eigenbasis

Constructing eigenvectors

bi|φ〉 =∑

n1...nj ...

cn1...nj ...

√ni|n1 . . . ni − 1 . . . nj . . . 〉 = φi|φ〉

⇒ φicn1...ni−1... =√nicn1...ni..., ∀bi

⇒ cn1...ni... = φnii1√ni!cn1...0i...nj ... =

∏i φ

nii

1√ni!c0...0...

8 / 19

Page 21: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Annihilation operators bi

[bi, bj] = 0⇒ common eigenbasis

Constructing eigenvectors

bi|φ〉 =∑

n1...nj ...

cn1...nj ...

√ni|n1 . . . ni − 1 . . . nj . . . 〉 = φi|φ〉

⇒ φicn1...ni−1... =√nicn1...ni..., ∀bi

⇒ cn1...ni... = φnii1√ni!cn1...0i...nj ... =

∏i φ

nii

1√ni!c0...0...

8 / 19

Page 22: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Annihilation operators bi

[bi, bj] = 0⇒ common eigenbasis

Constructing eigenvectors

bi|φ〉 =∑

n1...nj ...

cn1...nj ...

√ni|n1 . . . ni − 1 . . . nj . . . 〉 = φi|φ〉

⇒ φicn1...ni−1... =√nicn1...ni..., ∀bi

⇒ cn1...ni... = φnii1√ni!cn1...0i...nj ... =

∏i φ

nii

1√ni!c0...0...

8 / 19

Page 23: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states

Eigenvectors for all bi

|φ〉 =∑

n1...nj ...

c0...0...

∏l

(φlb†l )nl

nl!|0〉

= c0...0... exp(∑

l

φlb†l

)|0〉

with c0...0... ≡ 1 for simplicity

bi|φ〉 = φi|φ〉, ∀bi, {φi}i=1...∞ sequence in C

For every single sequence {φi}i=1...∞ ∼ |φ〉 we can

construct a coherent state!

9 / 19

Page 24: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states

Eigenvectors for all bi

|φ〉 =∑

n1...nj ...

c0...0...

∏l

(φlb†l )nl

nl!|0〉

= c0...0... exp(∑

l

φlb†l

)|0〉

with c0...0... ≡ 1 for simplicity

bi|φ〉 = φi|φ〉, ∀bi, {φi}i=1...∞ sequence in C

For every single sequence {φi}i=1...∞ ∼ |φ〉 we can

construct a coherent state!

9 / 19

Page 25: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states

Eigenvectors for all bi

|φ〉 =∑

n1...nj ...

c0...0...

∏l

(φlb†l )nl

nl!|0〉

= c0...0... exp(∑

l

φlb†l

)|0〉

with c0...0... ≡ 1 for simplicity

bi|φ〉 = φi|φ〉, ∀bi, {φi}i=1...∞ sequence in C

For every single sequence {φi}i=1...∞ ∼ |φ〉 we can

construct a coherent state!

9 / 19

Page 26: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

〈φ|b†i = 〈φ|φ∗i , trivial calculation of 〈φ|H|θ〉 in second

quantisation

〈φ|θ〉 = 〈0| exp(∑

l φ∗l bl)|θ〉 = exp

(∑l φ∗l θl)〈0|θ〉︸︷︷︸

1

,

→ not orthogonal (linearly dependent), not normalized

(here normalisation 〈0|θ〉 = 1)

Demand ||φ||2 = 〈φ|φ〉 = exp∑

i |φi|2 <∞⇒∑i |φi|2 <∞, ⇔ {φi}i ∈ `2

⇒ 〈φ|θ〉 <∞ (with Cauchy-Schwarz inequality)

10 / 19

Page 27: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

〈φ|b†i = 〈φ|φ∗i , trivial calculation of 〈φ|H|θ〉 in second

quantisation

〈φ|θ〉 = 〈0| exp(∑

l φ∗l bl)|θ〉 = exp

(∑l φ∗l θl)〈0|θ〉︸︷︷︸

1

,

→ not orthogonal (linearly dependent), not normalized

(here normalisation 〈0|θ〉 = 1)

Demand ||φ||2 = 〈φ|φ〉 = exp∑

i |φi|2 <∞⇒∑i |φi|2 <∞, ⇔ {φi}i ∈ `2

⇒ 〈φ|θ〉 <∞ (with Cauchy-Schwarz inequality)

10 / 19

Page 28: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

〈φ|b†i = 〈φ|φ∗i , trivial calculation of 〈φ|H|θ〉 in second

quantisation

〈φ|θ〉 = 〈0| exp(∑

l φ∗l bl)|θ〉 = exp

(∑l φ∗l θl)〈0|θ〉︸︷︷︸

1

,

→ not orthogonal (linearly dependent), not normalized

(here normalisation 〈0|θ〉 = 1)

Demand ||φ||2 = 〈φ|φ〉 = exp∑

i |φi|2 <∞⇒∑i |φi|2 <∞, ⇔ {φi}i ∈ `2

⇒ 〈φ|θ〉 <∞ (with Cauchy-Schwarz inequality)

10 / 19

Page 29: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness

Set of complete states∑

n |n〉〈n| = 1H

Fock space∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| != 1F

φ=ρeiθ

=

∫ ∞∏i=1

(ρiπ

dρidθi exp (−ρ2i ))(∏

k

exp (φkb†k)

)

|0〉〈0|

(∏l

exp (φ∗l bl)

)

11 / 19

Page 30: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness

Set of complete states∑

n |n〉〈n| = 1H

Fock space∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| != 1F

φ=ρeiθ

=

∫ ∞∏i=1

(ρiπ

dρidθi exp (−ρ2i ))(∏

k

exp (φkb†k)

)

|0〉〈0|

(∏l

exp (φ∗l bl)

)

11 / 19

Page 31: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness

Set of complete states∑

n |n〉〈n| = 1H

Fock space∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| != 1F

φ=ρeiθ

=

∫ ∞∏i=1

(ρiπ

dρidθi exp (−ρ2i ))(∏

k

exp (φkb†k)

)

|0〉〈0|

(∏l

exp (φ∗l bl)

)

11 / 19

Page 32: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness: calculate i-th integral

∫ 2π

0

∫ ∞0

ρiπ

dρidθie−ρ2i

∑n

1n!ρni e

inθi (b†i )n

︷ ︸︸ ︷exp (ρie

iθib†i ) |0〉〈0|

∑m

1m!ρmi e

−imθi (bi)m

︷ ︸︸ ︷exp (ρie

−iθibi)

=

∫ ∞0

ρiπ

dρie−ρ2i∑n,m

1√n!m!

ρn+mi

(∫ 2π

0

dθiei(n−m)θi

)︸ ︷︷ ︸

2πδnm

|ni〉〈mi|

= 2∑n

1

n!|ni〉〈ni|

∫ ∞0

ρidρie−ρ2i ρ2n

i︸ ︷︷ ︸n!2

=∑ni

|0 . . . ni . . . 0 . . . 〉〈0 . . . ni . . . 0 . . . | = 1Hi

12 / 19

Page 33: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness: calculate i-th integral

∫ 2π

0

∫ ∞0

ρiπ

dρidθie−ρ2i

∑n

1n!ρni e

inθi (b†i )n︷ ︸︸ ︷

exp (ρieiθib†i ) |0〉〈0|

∑m

1m!ρmi e

−imθi (bi)m

︷ ︸︸ ︷exp (ρie

−iθibi)

=

∫ ∞0

ρiπ

dρie−ρ2i∑n,m

1√n!m!

ρn+mi

(∫ 2π

0

dθiei(n−m)θi

)︸ ︷︷ ︸

2πδnm

|ni〉〈mi|

= 2∑n

1

n!|ni〉〈ni|

∫ ∞0

ρidρie−ρ2i ρ2n

i︸ ︷︷ ︸n!2

=∑ni

|0 . . . ni . . . 0 . . . 〉〈0 . . . ni . . . 0 . . . | = 1Hi

12 / 19

Page 34: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness: calculate i-th integral

∫ 2π

0

∫ ∞0

ρiπ

dρidθie−ρ2i

∑n

1n!ρni e

inθi (b†i )n︷ ︸︸ ︷

exp (ρieiθib†i ) |0〉〈0|

∑m

1m!ρmi e

−imθi (bi)m︷ ︸︸ ︷exp (ρie

−iθibi)

=

∫ ∞0

ρiπ

dρie−ρ2i∑n,m

1√n!m!

ρn+mi

(∫ 2π

0

dθiei(n−m)θi

)︸ ︷︷ ︸

2πδnm

|ni〉〈mi|

= 2∑n

1

n!|ni〉〈ni|

∫ ∞0

ρidρie−ρ2i ρ2n

i︸ ︷︷ ︸n!2

=∑ni

|0 . . . ni . . . 0 . . . 〉〈0 . . . ni . . . 0 . . . | = 1Hi

12 / 19

Page 35: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness: calculate i-th integral

∫ 2π

0

∫ ∞0

ρiπ

dρidθie−ρ2i

∑n

1n!ρni e

inθi (b†i )n︷ ︸︸ ︷

exp (ρieiθib†i ) |0〉〈0|

∑m

1m!ρmi e

−imθi (bi)m︷ ︸︸ ︷exp (ρie

−iθibi)

=

∫ ∞0

ρiπ

dρie−ρ2i∑n,m

1√n!m!

ρn+mi

(∫ 2π

0

dθiei(n−m)θi

)︸ ︷︷ ︸

2πδnm

|ni〉〈mi|

= 2∑n

1

n!|ni〉〈ni|

∫ ∞0

ρidρie−ρ2i ρ2n

i︸ ︷︷ ︸n!2

=∑ni

|0 . . . ni . . . 0 . . . 〉〈0 . . . ni . . . 0 . . . | = 1Hi

12 / 19

Page 36: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness: calculate i-th integral

∫ 2π

0

∫ ∞0

ρiπ

dρidθie−ρ2i

∑n

1n!ρni e

inθi (b†i )n︷ ︸︸ ︷

exp (ρieiθib†i ) |0〉〈0|

∑m

1m!ρmi e

−imθi (bi)m︷ ︸︸ ︷exp (ρie

−iθibi)

=

∫ ∞0

ρiπ

dρie−ρ2i∑n,m

1√n!m!

ρn+mi

(∫ 2π

0

dθiei(n−m)θi

)︸ ︷︷ ︸

2πδnm

|ni〉〈mi|

= 2∑n

1

n!|ni〉〈ni|

∫ ∞0

ρidρie−ρ2i ρ2n

i︸ ︷︷ ︸n!2

=∑ni

|0 . . . ni . . . 0 . . . 〉〈0 . . . ni . . . 0 . . . | = 1Hi

12 / 19

Page 37: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness: calculate i-th integral

∫ 2π

0

∫ ∞0

ρiπ

dρidθie−ρ2i

∑n

1n!ρni e

inθi (b†i )n︷ ︸︸ ︷

exp (ρieiθib†i ) |0〉〈0|

∑m

1m!ρmi e

−imθi (bi)m︷ ︸︸ ︷exp (ρie

−iθibi)

=

∫ ∞0

ρiπ

dρie−ρ2i∑n,m

1√n!m!

ρn+mi

(∫ 2π

0

dθiei(n−m)θi

)︸ ︷︷ ︸

2πδnm

|ni〉〈mi|

= 2∑n

1

n!|ni〉〈ni|

∫ ∞0

ρidρie−ρ2i ρ2n

i︸ ︷︷ ︸n!2

=∑ni

|0 . . . ni . . . 0 . . . 〉〈0 . . . ni . . . 0 . . . | = 1Hi

12 / 19

Page 38: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness

Fock space∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ|

=∑

n1...ni...

|n1 . . . ni . . . 〉〈n1 . . . ni . . . | = 1F

Why overcomplete? Linearly dependent!

13 / 19

Page 39: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness

Fock space∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ|

=∑

n1...ni...

|n1 . . . ni . . . 〉〈n1 . . . ni . . . | = 1F

Why overcomplete? Linearly dependent!

13 / 19

Page 40: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Overcompleteness

Fock space∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ|

=∑

n1...ni...

|n1 . . . ni . . . 〉〈n1 . . . ni . . . | = 1F

Why overcomplete? Linearly dependent!

13 / 19

Page 41: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Trace

TrA =∑n

〈n|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)

〈φ|A∑n |n〉〈n|φ〉

︷ ︸︸ ︷∑n

〈n|φ〉〈φ|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

14 / 19

Page 42: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Trace

TrA =∑n

〈n|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)

〈φ|A∑n |n〉〈n|φ〉

︷ ︸︸ ︷∑n

〈n|φ〉〈φ|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

14 / 19

Page 43: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Trace

TrA =∑n

〈n|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

) 〈φ|A∑n |n〉〈n|φ〉︷ ︸︸ ︷∑

n

〈n|φ〉〈φ|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

14 / 19

Page 44: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Trace

TrA =∑n

〈n|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

) 〈φ|A∑n |n〉〈n|φ〉︷ ︸︸ ︷∑

n

〈n|φ〉〈φ|A|n〉

=

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

14 / 19

Page 45: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Coherent state representation (bi, b†i )→ (∂φ∗i , φ

∗i )

∂φi |φ〉 = ∂φi∏l

∑nl

1

nl!(φlb

†l )nl |0〉

=

(∞∑n=1

1

n!nφn−1

i (b†i )n

)(∏l 6=i

∑nl

1

nl!(φlb

†l )nl

)|0〉

= b†i |φ〉

〈x|x̂|ψ〉 = xψ(x), 〈x|∂x|ψ〉 = ∂xψ(x), 〈x|ψ〉 = ψ(x)

〈φ|f〉 = f(φ) the φ−component of (not coherent) state f

〈φ|b†i |f〉 = φ∗i f(φ) , 〈φ|bi|f〉 = ∂φ∗i f(φ)

15 / 19

Page 46: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Coherent state representation (bi, b†i )→ (∂φ∗i , φ

∗i )

∂φi |φ〉 = ∂φi∏l

∑nl

1

nl!(φlb

†l )nl |0〉

=

(∞∑n=1

1

n!nφn−1

i (b†i )n

)(∏l 6=i

∑nl

1

nl!(φlb

†l )nl

)|0〉

= b†i |φ〉

〈x|x̂|ψ〉 = xψ(x), 〈x|∂x|ψ〉 = ∂xψ(x), 〈x|ψ〉 = ψ(x)

〈φ|f〉 = f(φ) the φ−component of (not coherent) state f

〈φ|b†i |f〉 = φ∗i f(φ) , 〈φ|bi|f〉 = ∂φ∗i f(φ)

15 / 19

Page 47: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Coherent state representation (bi, b†i )→ (∂φ∗i , φ

∗i )

∂φi |φ〉 = ∂φi∏l

∑nl

1

nl!(φlb

†l )nl |0〉

=

(∞∑n=1

1

n!nφn−1

i (b†i )n

)(∏l 6=i

∑nl

1

nl!(φlb

†l )nl

)|0〉

= b†i |φ〉

〈x|x̂|ψ〉 = xψ(x), 〈x|∂x|ψ〉 = ∂xψ(x), 〈x|ψ〉 = ψ(x)

〈φ|f〉 = f(φ) the φ−component of (not coherent) state f

〈φ|b†i |f〉 = φ∗i f(φ) , 〈φ|bi|f〉 = ∂φ∗i f(φ)

15 / 19

Page 48: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Coherent state representation (bi, b†i )→ (∂φ∗i , φ

∗i )

∂φi |φ〉 = ∂φi∏l

∑nl

1

nl!(φlb

†l )nl |0〉

=

(∞∑n=1

1

n!nφn−1

i (b†i )n

)(∏l 6=i

∑nl

1

nl!(φlb

†l )nl

)|0〉

= b†i |φ〉

〈x|x̂|ψ〉 = xψ(x), 〈x|∂x|ψ〉 = ∂xψ(x), 〈x|ψ〉 = ψ(x)

〈φ|f〉 = f(φ) the φ−component of (not coherent) state f

〈φ|b†i |f〉 = φ∗i f(φ) , 〈φ|bi|f〉 = ∂φ∗i f(φ)

15 / 19

Page 49: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Coherent state representation (bi, b†i )→ (∂φ∗i , φ

∗i )

∂φi |φ〉 = ∂φi∏l

∑nl

1

nl!(φlb

†l )nl |0〉

=

(∞∑n=1

1

n!nφn−1

i (b†i )n

)(∏l 6=i

∑nl

1

nl!(φlb

†l )nl

)|0〉

= b†i |φ〉

〈x|x̂|ψ〉 = xψ(x), 〈x|∂x|ψ〉 = ∂xψ(x), 〈x|ψ〉 = ψ(x)

〈φ|f〉 = f(φ) the φ−component of (not coherent) state f

〈φ|b†i |f〉 = φ∗i f(φ) , 〈φ|bi|f〉 = ∂φ∗i f(φ)

15 / 19

Page 50: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Coherent state representation (bi, b†i )→ (∂φ∗i , φ

∗i )

∂φi |φ〉 = ∂φi∏l

∑nl

1

nl!(φlb

†l )nl |0〉

=

(∞∑n=1

1

n!nφn−1

i (b†i )n

)(∏l 6=i

∑nl

1

nl!(φlb

†l )nl

)|0〉

= b†i |φ〉

〈x|x̂|ψ〉 = xψ(x), 〈x|∂x|ψ〉 = ∂xψ(x), 〈x|ψ〉 = ψ(x)

〈φ|f〉 = f(φ) the φ−component of (not coherent) state f

〈φ|b†i |f〉 = φ∗i f(φ) , 〈φ|bi|f〉 = ∂φ∗i f(φ)

15 / 19

Page 51: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Schrödinger equation

H({b†i , bi})|Ψ〉 = E|Ψ〉 → H({φ∗i , ∂φ∗i })Ψ(φ) = EΨ(φ)

〈φ|H|Ψ〉 = 〈φ|

(∑i,j

b†i〈i|T |j〉bj +1

2

∑i,j,k,l

b†ib†j〈ij|V |kl〉bkbl

)|Ψ〉

=

(∑i,j

φ∗i 〈i|T |j〉∂φ∗j +1

2

∑i,j,k,l

φ∗iφ∗j〈ij|V |kl〉∂φ∗k∂φ∗l

)〈φ|Ψ〉︸ ︷︷ ︸

Ψ(φ)

16 / 19

Page 52: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Schrödinger equation

H({b†i , bi})|Ψ〉 = E|Ψ〉 → H({φ∗i , ∂φ∗i })Ψ(φ) = EΨ(φ)

〈φ|H|Ψ〉 = 〈φ|

(∑i,j

b†i〈i|T |j〉bj +1

2

∑i,j,k,l

b†ib†j〈ij|V |kl〉bkbl

)|Ψ〉

=

(∑i,j

φ∗i 〈i|T |j〉∂φ∗j +1

2

∑i,j,k,l

φ∗iφ∗j〈ij|V |kl〉∂φ∗k∂φ∗l

)〈φ|Ψ〉︸ ︷︷ ︸

Ψ(φ)

16 / 19

Page 53: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Pm1...mi... = |〈m1 . . .mi . . . |φ〉|2

= |〈m1 . . .mi . . . |∑

n1...ni...

∏i φ

nii

1√ni!|n1 . . . ni . . . 〉|2

=∏

i|φi|2mimi!

, statistically independent Poisson

distributions with expectation value/variance |φi|2

〈N〉 = 〈∑

k b†kbk〉 = 〈φ|N |φ〉

〈φ|φ〉 =∑

k φ∗kφk

σ2 ≡ 〈φ|N2|φ〉〈φ|φ〉 − 〈N〉

2 =∑

k φ∗kφk

Relative width σ〈N〉 = 1√

〈N〉

〈N〉→∞−−−−→ 0

17 / 19

Page 54: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Pm1...mi... = |〈m1 . . .mi . . . |φ〉|2

= |〈m1 . . .mi . . . |∑

n1...ni...

∏i φ

nii

1√ni!|n1 . . . ni . . . 〉|2

=∏

i|φi|2mimi!

, statistically independent Poisson

distributions with expectation value/variance |φi|2

〈N〉 = 〈∑

k b†kbk〉 = 〈φ|N |φ〉

〈φ|φ〉 =∑

k φ∗kφk

σ2 ≡ 〈φ|N2|φ〉〈φ|φ〉 − 〈N〉

2 =∑

k φ∗kφk

Relative width σ〈N〉 = 1√

〈N〉

〈N〉→∞−−−−→ 0

17 / 19

Page 55: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Pm1...mi... = |〈m1 . . .mi . . . |φ〉|2

= |〈m1 . . .mi . . . |∑

n1...ni...

∏i φ

nii

1√ni!|n1 . . . ni . . . 〉|2

=∏

i|φi|2mimi!

, statistically independent Poisson

distributions with expectation value/variance |φi|2

〈N〉 = 〈∑

k b†kbk〉 = 〈φ|N |φ〉

〈φ|φ〉 =∑

k φ∗kφk

σ2 ≡ 〈φ|N2|φ〉〈φ|φ〉 − 〈N〉

2 =∑

k φ∗kφk

Relative width σ〈N〉 = 1√

〈N〉

〈N〉→∞−−−−→ 0

17 / 19

Page 56: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Boson coherent states: properties

Pm1...mi... = |〈m1 . . .mi . . . |φ〉|2

= |〈m1 . . .mi . . . |∑

n1...ni...

∏i φ

nii

1√ni!|n1 . . . ni . . . 〉|2

=∏

i|φi|2mimi!

, statistically independent Poisson

distributions with expectation value/variance |φi|2

〈N〉 = 〈∑

k b†kbk〉 = 〈φ|N |φ〉

〈φ|φ〉 =∑

k φ∗kφk

σ2 ≡ 〈φ|N2|φ〉〈φ|φ〉 − 〈N〉

2 =∑

k φ∗kφk

Relative width σ〈N〉 = 1√

〈N〉

〈N〉→∞−−−−→ 0

17 / 19

Page 57: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Poisson distribution for �xed i

0 5 10 15 20mi

0.05

0.10

0.15

0.20

0.25

Pmi

ÈΦi2=15

ÈΦi2=5

ÈΦi2=1

〈N〉 =∑

k |φk|2

18 / 19

Page 58: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Summary

Found eigenvectors for bi, left handed eigenvectors for b†i

|φ〉 ∼ {φi}i ∈ `2

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| = 1F

TrA =

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

19 / 19

Page 59: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Summary

Found eigenvectors for bi, left handed eigenvectors for b†i

|φ〉 ∼ {φi}i ∈ `2

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| = 1F

TrA =

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

19 / 19

Page 60: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Summary

Found eigenvectors for bi, left handed eigenvectors for b†i

|φ〉 ∼ {φi}i ∈ `2

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| = 1F

TrA =

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

19 / 19

Page 61: Boson coherent statesMotivation for Boson coherent states Eigenvectors of annihilation operator useful for second quantisation Coherent states are important for a path integral formalism

Summary

Found eigenvectors for bi, left handed eigenvectors for b†i

|φ〉 ∼ {φi}i ∈ `2

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi)

)exp (−

∑i

|φi|2)|φ〉〈φ| = 1F

TrA =

∫C∞

∞∏i=1

(1

πd(<φi)d(=φi) exp (−|φi|2)

)〈φ|A|φ〉

19 / 19