box girder computations

81
BOX GIRDER SUPER STRUCTURE A3 A2 A1 A B M D G P C F E L H N O K I J I Q S INPUT DIMENSION (mm) (Designation as per above figure) A = 430 G = 100 M = 300 S = 1800 B = 200 H = 250 N = 315 T = 350

Upload: mark-christopher-del-rosario

Post on 06-Dec-2015

352 views

Category:

Documents


69 download

DESCRIPTION

Box Girder

TRANSCRIPT

Page 1: Box Girder Computations

BOX GIRDER SUPER STRUCTURE

A3

A2

A1 AT

B MD

G P

C F

EL

H N

OK

I J I Q S

INPUT DIMENSION (mm) (Designation as per above figure)

A = 430 G = 100 M = 300 S = 1800B = 200 H = 250 N = 315 T = 350

Page 2: Box Girder Computations

C = 1800 I = 600 O = 150 A1 = 350D = 400 J = 3000 P = 150 A2 = 330E = 263.5 K = 200 Q = 430 A3 = 420F = 315 L = 1700 R = 600

420

330 Clear Carriage way = 7500

350 430 0.065 m Wearing Coat350

200 300400

100 150

1800 315

263.51700

250315

150200

600 3000 600 430 1800

Page 3: Box Girder Computations

400 300150

685.16

650

200

GEOMETRY OF END CROSS GIRDER

DATA :

1. C/C of span (mm) 250002. Effective Span (mm) = C/C Dist.-2 ( Width of End cross girder) 242003. C/C of web for outer box span (mm) 3936.54. Clear Carriage way (mm) 150005. Overall width of decking (mm) 164606. Concrete Grade M 307. Grade of Steel 4158. Thickness of wearing coat ( in m) 0.065

9. Permissible stresses in steel 2000

10. Permissible stresses in concrete 101.94

11. Modular Ratio m 1012. Density of parapet (t/m) 0.2

sst (kg / cm2)

scbc (kg / cm2)

G89
Put only Following Values. 25, 30, 35, 40 By Default it will take M25
G90
Put only 415, 500 By Default it will Take value of 415
Page 4: Box Girder Computations

Notes: This box indicate INPUT parameter.

This indicate UDL load on span.

16460OF FOUR LANE BRIDGE

7500 7500CLEAR ROAD WAY CLEAR ROAD WAY

1931.8 3936.5 4723.5c/c of web of Box girder 1800

1700 2200

Elastomeric Bearing

RCC Pedestel

RCC Pier Cap

2260 mm c/c of 2260 mm c/c of pedestelpedestel (All Dimensions are in mm)

25000 25000 mm c/c of Piermm c/c of Pier

Page 5: Box Girder Computations

Elastomeric Bearing RCC Super Structure IN M 30RCC Pedestal

RCC Pier cap

RCC Pier

RCC Sub Structure

FoundationGROUND LEVEL

Page 6: Box Girder Computations

R

Page 7: Box Girder Computations

600

Page 8: Box Girder Computations
Page 9: Box Girder Computations

25000mm c/c of Pier

Page 10: Box Girder Computations
Page 11: Box Girder Computations

JAYESH DRG-2 BG/DAX/DRG-Section

400 200

100

1700 2200

200

C/C of Pier C/C Of Bearing SECTIONAL ELEVATION 1-1400 600 2400 9100 OF SYMMETRY

A B

263.5685

315

1 13000 1843.0c/c of 1630 OF BOX GIRDER

Sofit Box

8660315 c/c of Box

685263.5

25000 Overall Span c/c of Bearing OF bearing OF SYMMETRY

24200A B Effective Span c/c of Bearing

PLAN AT SOFFIT LEVEL

OF PIER

Page 12: Box Girder Computations

(2) DESIGN OF CANTILEVER DECK SLAB

430 Wearing Coat (m.)0.065 X

350 KERB

200

400

1800X

Dead Load bending moment @ XX,

(1) DL due to parapet 0.2 1.8 0.43 0.317 t.m.2

(2) Parapet kerb = {A*A1 * 2.40 * (C-A/2)} 0.43 0.35 2.4 1.8 0.43 0.573 t.m.

2(3) Wearing coat = { (C-A) * Thk. Of wearing coat* (C-A/2)}

1.8 0.43 0.065 2.4 1.8 0.43 0.146 t.m.2

(4) Self weight of slab(a) {(C*B*C/2)*2.40}

1.8 0.2 1.8 2.4 0.778 t.m.2

(b) {1/2*C*(D-B)*(C/3)*2.40} 1 1.8 0.4 0.2 1.8 2.4 0.259 t.m.2 3

TOTAL DEAD LOAD BENDING MOMENT 2.073 t.m.

0.43 Minimum Clarance (IRC - 6:2000)Ground contect Area

0.15 0.5

0.97

2.1 DEAD LOAD BENDING MOMENT

2.2 LIVE LOAD BENDING MOMENT

2.2.1 CLASS A Vehicle

Page 13: Box Girder Computations

1.8

Effective Dispersion width = 1.2 a + b1 (Cl. 305.16.2, IRC-21:2000)

0.97 m.

0.38 m.

Effective Dispersion width bf =1.2 a + b1 1.2 0.97 0.38 1.544 m.

LIVE LOAD BENDING MOMENT = (Axle load/2) * a * Impact Factor

Impact factor 50% for cantilever slab as per Fig. 5 Cl. 211.2, IRC-6:2000

11.4 0.97 1.5 8.2935 t.m.2

0.43 Minimum Clarance in m.(IRC - 6:2000) Ground contect Area

Kerb 1.2 0.85

1.63 0.17

1.8

Effective Dispersion width (Cl. 305.16.3, IRC-21:2000) = 0.50(Wheel contact Area) + 2*(Slab thk. + W.C.)

Distance between edge to center of load = 0.43 0.4 0.5 0.83 m.2

So, Slab Thk. @ Load center = 0.2 0.4 0.2 0.83 0.292 m.1.8

Effective Dispersion width = 0.50 + 2 ( Slab thk. + W.C.) 0.50 2 0.292 0.065 1.214 m.

8.294 4.423 t.m/m1.544 1.214

When vehicals travels near expansion gap, Eff. Width available across the span.

Effective width available across the span,beff. = ( 1.2 x a)/2 + (0.25+W)

1.2 0.97 0.25 0.065 0.897 m.

a = (C-A) - 0.15 - 0.50/2 =

b1 = 0.25 + 2 (Thk. Of Wearing coat) =

For Class A Axle load 11.40 t

LIVE LOAD BENDING MOMENT = (11.40/2) * a * 1.50

2.2.2 CLASS AA Traked Vehicle

As c.g. of loads lying outside, No calculation of B.M. is reqd. Hence class A governs the design.

LIVE LOAD BENDING MOMENT / m. Width =

Page 14: Box Girder Computations

28.294 7.613 t.m/m

0.897 1.214

Service load = 0.2 t/m (Assumed)

So, B.M. = 0.20 * (Width of Cantilever - Half width of kerb) B.M. 0.20 1.8 0.43 0.317 t.m/m

2

TOTAL BENDING MOMENT (D.L. + L.L. + Services) = 2.073 4.423 0.317

(L.L.B.M./m. width taken) 6.813 t.m.

For M25 Concrete, m = 10

K = 0.338

j = 1- K/3 = 0.887

15.272

d reqd. = 21.121 cm. {d reqd. = ( Total BM / (Q*100)) }

d prov. = 36.2 cm d Prov. = 400 30(cover) - 16/2(half Dia.) 362 mm

d reqd. < d prov. Hence OK...

Ast Reqd. = 10.60

Provide 12 mm dia @ 280 mm c/c

16 mm dia @ 280 mm c/c

Ast Provided 11.22 In Cantilever projection of Box slab. OK….

For End 1 m. near EXPANSION GAP.

TOTAL BENDING MOMENT (D.L. + L.L. + Services) = 10.003 t.m.(L.L.B.M. taken at Expansion gap)

d reqd. = 25.593 cm. {d reqd. = Sqrt( Total BM / (Q*100)) }

d prov. = 36.2 cm d Prov. = 400 - 30(cover) - 16/2(half Dia.) = 362 mm

LIVE LOAD BENDING MOMENT near expan. gap =

(3) SERVICES

Q = 1/2 * scbc * k* j =

cm2

cm2

Page 15: Box Girder Computations

d reqd. < d prov. Hence OK...

Ast Reqd. = 15.57

Provide 12 mm dia @ 280 mm c/c

25 mm dia @ 280 mm c/c

Ast Provided 21.57 In Cantilever projection of Box slab. OK….

DISTRIBUTION STEEL

B.M. = 0.2 DLBM + 0.3 LLBM (Cl.305.18.2, IRC : 21-2000)

Dead Load BM = DL + Service = 2.390Live Load BM = 4.423

B.M. = 0.2 2.390 0.3 4.423

B.M. = 1.805 t.m.

Ast (Dist.) = 2.809

Ast Minimum = 3.6 ( 12% of gross area)

Ast Reqd. = 3.60

Provide 10 mm dia @ 150 mm c/c About top & bottom

Ast Provided 5.24 OK….

Provide 10 mm dia @ 140 mm c/c About bottom in span direction.

Ast Provided 5.61 (in Cantilever portion) OK….

cm2

cm2

cm2

cm2

cm2

cm2

cm2

Page 16: Box Girder Computations
Page 17: Box Girder Computations
Page 18: Box Girder Computations
Page 19: Box Girder Computations
Page 20: Box Girder Computations

JAYESH Steel Details

MAIN STEEL :Throughout Throughout

12 mm Tor 16 mm Tor 20 mm Tor 12280 mm c/c 280 mm c/c 280 mm c/c 280

10 mm Tor140 mm c/c 12 mm Tor 16 mm Tor 12

280 mm c/c 280 mm c/c 280Throughout

10 mm Tor 10 mm Tor150 mm c/c 150 mm c/c

10 mm Tor 8 mm Tor 8 mm Tor150 mm c/c at bottom 150 mm c/c 150 mm c/c

215 2185 3000 1030

DISTRIBUTION STEEEL :

Page 21: Box Girder Computations

JAYESH Steel Details

Page 22: Box Girder Computations

JAYESH ED-1 C/S Of End Diapharm

16460OF FOUR LANE BRIDGE

600 7500CLEAR ROAD WAY

6 250 20

A mm tor At Top.6 25

300 0 20mm tor At Top.

16 mm Tor 16 mm Tor2 Legged Stirps 2 Legged Stirrups

180 mm c/c. 180 mm c/c. 16 mm Tor2 Legged Stirrups

16 Tor 1900 180 mm c/c.180 mm c/c on both faces.

16 Tor180 mm c/c on both faces.

0 206 25

1800 430 600 A 3000 600 1800

6 25 400 mm tor At bottom.0 20 16 mm Tor

mm tor At bottom. 2 Legged Stirrups SECTION - AA180 mm c/c.

CROSS SECTION AT END DIAPHARM

Page 23: Box Girder Computations

LONGITUDINAL GIRDER

4.1 Max moment at mid span.

( i ) Class AA Tracked Vehicle70 Tonne Total Load

70/3.6 = 19.444 t/m.3.6

12.10.4 24.2 0.4

Mid span moment = 391.63 t.m.

Give value of impact factor = I. F. = 1.1 (cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 516.9516 t.m.

( ii ) Class 70R wheeled Vehicle

17 17 17 17 12 12 86.6412 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 4.1588

A E B12.1

0.4 24.2 0.4RA RB

( 4 ) LIVE LOAD BENDING MOMENT

Page 24: Box Girder Computations

c.g. of load from right of first load = 5.1238 m.Coincide distance = 5.4588 m.

Moment @ E = 441.49 t.m.

Give value of impact factor = I. F. = 1.18 (From fig. 5 cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 625.15 t.m.

( iii ) Class A Train (Two Lanes)

2.7 2.7 11.4 11.4 6.8 6.8 6.8 '6.82.66 . 1.10 . 3.20 . 1.20. . 4.3 . 3.0 .3.0 3 2.74

A E B12.1

0.4 24.2 0.4

c.g. of load from right of first load = 9.09 m.Coincide distance = 9.44 m.Distance from A = 2.66 m.

Moment @ E = 193.28 t.m.

Give value of impact factor = I. F. = 1.18 (From fig. 5 cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 547.37 t.m.

4.2 Max moment at quarter span.

Page 25: Box Girder Computations

( i ) Class AA Tracked Vehicle

Quarter of load distance (i.e. 1/4 X 3.6 m) = 0.9 70 T

3.6

6.050.4 24.2 0.4

Mid span moment = 293.67 t.m.

Give value of impact factor = I. F. = 1.1 ( cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 387.6444 t.m.

( ii ) Class 70R wheeled Vehicle

17 17 17 17 12 12 84.68 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 6.1200

A E B6.05

0.4 24.2 0.4

c.g. of load from right of first load = 5.1238 m.Coincide distance = 5.4588 m.

Moment @ E = 336.37 t.m.

Give value of impact factor = I. F. = 1.18 (From fig. 5 cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Page 26: Box Girder Computations

Moment With I.F. and R.F. = 476.30 t.m.

( iii ) Class A Train (Two Lanes)

1.75 2.7 2.7 11.4 11.4 6.8 6.8 6.8 '6.81.1 3.2 1.20. 4.3 3.0 . .3.0 3.0 3.65

A E B6.05

0.4 24.2 0.423.1

Moment @ E = 164.65 t.m.

Give value of impact factor = I. F. = 1.18 (From fig. 5 cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 466.2888 t.m.

4.3 Max moment at 3 m from left of span.

( i ) Class AA Tracked Vehicle70 T

3.6

30.4 24.2 0.4

Mid span moment = 162.80 t.m.

Give value of impact factor = I. F. = 1.1 (cl.211.3(b), IRC:6-2000)

Page 27: Box Girder Computations

Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 214.90 t.m.

( ii ) Class 70R wheeled Vehicle

17 17 17 17 12 12 83 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 7.8000

A E B3

0.4 24.2 0.4

c.g. of load from right of first load = 5.1238 m.

Moment @ E = 190.91 t.m.

Give value of impact factor = I. F. = 1.18 (From fig. 5 cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 270.33 t.m.

( iii ) Class A Train (Two Lanes)

11.4 11.4 6.8 6.8 6.8 6.81.2 4.3 3.0 . 3.0 . .3.0 9.5

A E B3 21.2

0.4 24.2 0.4

Page 28: Box Girder Computations

Moment @ E = 90.17 t.m.

Give value of impact factor = I. F. = 1.18 (From fig. 5 cl.211.3(b), IRC:6-2000)Give value of Reaction factor = R. F. = 1.2

Moment With I.F. and R.F. = 255.3614 t.m.

RECAPITULATION OF LIVE LOAD BENDING MOMENTS

Load Discription BENDING MOMENT (in tm)

.@ Mid @ @Span Quarter Beginning of

Span Widening.Live load

Class AA 516.95 387.64 214.90

Class 70R 625.15 476.30 270.33

Class A 547.37 466.29 255.36

DESIGN BM 625.150 476.30 270.33

Page 29: Box Girder Computations

Beginning of Widening of section from support (m) = 3

Dead Load Bending Moment

Super Imposed Dead Load (SIDL) of Super Structure

Wearing Coat ( t ) =Ht.X Clear carriage way X Density= 2.34 t/m.

Parapet ( t ) = 0.2 t/m = 0.4 t/m.

Kerb = Area X Density = 0.3612 t/m.

Services = 0.1 t/m = 0.2 t/m.

Total SIDL = 3.3012 t/m.

3.3012 t/m.

A C D E B3.00

0.4 6.0512.1

24.212.5

25

Reaction at A & B = 41.265 t

Bending Moment at mid span (E) = 241.4002 t.m.Bending Moment at quarter span (D) = 180.9842 t.m.Bending Moment at Widening (C) = 104.7141 t.m.

Dead Load Bending Moment due to self wt. of Super Structure

C/S Area of box at mid span = 8.069

u d l = 19.37 t/m.

19.37 t/m.

A C D E B3.00

0.4 6.0512.1

24.212.5

25

Reaction at A & B = 242.07 t

m2

F39
With the help of "MASSPROP" command in AUTOCAD.
Page 30: Box Girder Computations

Bending Moment at mid span (E) = 1416.11 t.m.Bending Moment at quarter span (D) = 1061.695 t.m.Bending Moment at Widening (C) = 614.2768 t.m.

Dead Load Bending Moment due to widening

C/S Area of box at End span = 10.86

C/S Area of box at mid span = 8.069

Difference of C/S Area = 2.791

Wt./R.m.(A X Density) = 6.6984 t/m.

Total Length of END Beam = 1 m.Length of Taperd Section of Beam = 2.4 m.

6.6984 t/m. 6.6984

A C D E B0.6 2.4

3.00.4 6.05

12.124.2

12.525

Reaction at A & B = 14.74 t

Bending Moment at mid span (E) = 11.92315 t.m.Bending Moment at quarter span (D) = 11.92315 t.m.Bending Moment at Widening (C) = 11.92315 t.m.

Total Reaction @ A & B ( i.e. Total DL due to half Span ) = 298.07 tTotal DL of Super Structure = 597 t

NOTE :

Summary of DLBM

Sr .No. LOAD

1 SIDL 241.4002 180.9842 104.71406

2 Self Wt.of Box (Running Section) 1416.11 1061.695 614.27683

3 Widning (Self Weight) 11.92315 11.92315 11.923152

m2

m2

m2

Put All Geometry in STAAD Analysis and Varify above data.

At MID Span (E)

't.m'

At Quarter Span (D)

't.m'

At Widening (C) 't.m'

G62
With the help of "MASSPROP" command in AUTOCAD.
G63
With the help of "MASSPROP" command in AUTOCAD.
Page 31: Box Girder Computations

TOTAL DLBM = 1669.433 1254.602 730.91405

Page 32: Box Girder Computations
Page 33: Box Girder Computations
Page 34: Box Girder Computations
Page 35: Box Girder Computations

SHEAR FORCE

Give Value of No. of GIRDER 4

Due To Dead Load

Due To SIDL

Super Imposed Dead Load (SIDL) of Super Structure

Wearing Coat ( t ) =Ht.X Clear carriage way X Density= 2.34 t/m.

Parapet ( t ) = 0.2 t/m = 0.4 t/m.

Kerb = Area X Density = 0.3612 t/m.

Services = 0.1 t/m = 0.2 t/m.

Total SIDL = 3.3012 t/m.

3.3012 t/m.

A C D E B3.00

0.4 6.0512.1

24.212.5

25

Reaction at A & B = 41.265 t

0.61.8

3.006.05

Shear Force,.@ A 41.265 3.3012 0.4 39.945 t.@ Y 39.945 3.3012 0.6 37.964 t.@ X 39.945 3.3012 1.8 34.002 t.@ C 39.945 3.3012 3.0 30.041 t.@ D 39.945 3.3012 6.05 19.972 t

Dead Load Shear Force due to self wt. of Super Structure19.37 t/m.

A C D E B

Y X

Section Y = Distance from support to edge of END BEAM Section X = Distance from support to centre of WIDENING Section C = Distance from support to Starting of WIDENING Section D = Distance from support to Quarter Span

Y X

Page 36: Box Girder Computations

3.000.4 6.05

12.124.2

12.525

Reaction at A & B = 242.07 t

Shear Force,.@ A 242.07 19.37 0.4 234.324 t.@ Y 234.324 19.37 0.6 222.704 t.@ X 234.324 19.37 1.8 199.466 t.@ C 234.324 19.37 3.00 176.227 t.@ D 234.324 19.37 6.05 117.162 t

Dead Load Shear Force due to widening

6.698 t/m. 6.698 t/m. Y X

A C D E B0.6 2.4

3.00.4 6.05

12.124.2

12.525

Reaction at A & B = 14.74 t

Shear Force,.@ A 14.74 6.70 0.4 12.057 t.@ Y 12.057 6.70 0.6 8.038 t.@ X 8.038 5.02 1.2 2.010 t.@ C 8.038 3.35 2.4 0.000 t.@ D 0.000 0.00 6.05 0.000 t

Total Reaction @ A & B ( i.e. Total DL due to half Span ) = 298.07 tTotal DL of Super Structure = 597 t

NOTE :

Summary of DLSF

Sr .No. LOAD

1 SIDL 39.94 37.96 34.00

Put All Geometry in STAAD Analysis and Varify above data.

Section A ( t )

Section Y ( t )

Section X ( t )

Page 37: Box Girder Computations

2 Self Wt.of Box (Running Section) 234.32 222.70 199.47

3 Widning (Self Weight) 12.06 8.04 2.01

TOTAL DLSF ( t ) = 286.33 268.71 235.48

Due To Live Load

FOR Twin Box Take R.F. = 1.2

AT Support Section

( A ) Class A Two Lane Vehicle

11.4 11.4 6.8 6.8 6.8 '6.8. 1.20. . 4.3 . 3.0 .3.0 3 9.7

B

24.2

11.4 24.2 23 6.8 18.7 15.7 12.7

24.238.20 t

S.F.@support with R.F. & I.F. (For Two Lane)

38.20 1.18 1.2 2

108.168 t

( B ) Class AA Traked Vehicle70 t

A B3.60

24.2

70 22.424.2

64.79 t

S.F.@support with R.F. & I.F. (For Two Lane)

64.79 1.1 1.2

85.527 t

RA =

RA =

Page 38: Box Girder Computations

( C ) Class 70R Wheeled Vehicle

17 17 17 17 12 12 8. 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 10.800

B

24.2RA RB

17 24.2 22.83 19.78 18.41 12 16.28

8 10.824.2

78.83 t

S.F.@support with R.F. & I.F. (For Two Lane)

78.83 1.18 1.2

111.619 t

Sr. No. LOADING S.F. ( t )

1 Class A ( 2 lane) 108.1682 Class AA Traked 85.5273 70R wheeled Vehicle 111.619

AT Section - ' Y ' ( 0.6 ) m. From support

( A ) Class A Two Lane Vehicle

11.4 11.4 6.8 6.8 6.8 '6.80.6 . 1.20. . 4.3 . 3.0 .3.0 3 9.1

B

24.2

11.4 23.6 22.4 6.8 18.1 15.1 12.1

24.236.96 t

S.F.@support with R.F. & I.F. (For Two Lane)

RA =

RECAPITULATION OF LIVE LOAD SHEAR FORCE At SUPPORT

RA =

Page 39: Box Girder Computations

36.96 1.18 1.2 2

104.658 t

( B ) Class AA Traked Vehicle70 t

0.6

A B3.60

24.2

70 21.824.2

63.06 t

S.F.@support with R.F. & I.F. (For Two Lane)

63.06 1.1 1.2

83.236 t

( C ) Class 70R Wheeled Vehicle

17 17 17 17 12 12 80.60 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 10.200

B

24.2RA RB

17 23.60 22.23 19.18 17.81 12 15.68

8 10.2024.2

76.35 t

S.F.@support with R.F. & I.F. (For Two Lane)

76.35 1.18 1.2

108.109 t

0.6 m.From Support.

Sr. No. LOADING S.F. ( t )

RA =

RA =

RECAPITULATION OF LLSF At

Page 40: Box Girder Computations

1 Class A ( 2 lane) 104.6582 Class AA Traked 83.2363 70R wheeled Vehicle 108.109

AT Section - ' X ' ( 1.8 ) m. From support

( A ) Class A Two Lane Vehicle

11.4 11.4 6.8 6.8 6.8 '6.81.8 . 1.20. . 4.3 . 3.0 .3.0 3 7.9

B

24.2

11.4 22.4 21.2 6.8 16.9 13.9 10.9

24.234.48 t

S.F.@support with R.F. & I.F. (For Two Lane)

34.48 1.18 1.2 2

97.636 t

( B ) Class AA Traked Vehicle70 t

1.8

A B3.60

24.2

70 20.624.2

59.59 t

S.F.@support with R.F. & I.F. (For Two Lane)

59.59 1.1 1.2

78.655 t

( C ) Class 70R Wheeled Vehicle

17 17 17 17 12 12 81.80 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 9.000

RA =

RA =

Page 41: Box Girder Computations

B

24.2RA RB

17 22.40 21.03 17.98 16.61 12 14.48

8 9.0024.2

71.39 t

S.F.@support with R.F. & I.F. (For Two Lane)

71.39 1.18 1.2

101.087 t

1.8 m.From Support.

Sr. No. LOADING S.F. ( t )

1 Class A ( 2 lane) 97.6362 Class AA Traked 78.6553 70R wheeled Vehicle 101.087

AT Section - ' C ' ( 3.00 ) m. From support

( A ) Class A Two Lane Vehicle

11.4 11.4 6.8 6.8 6.8 '6.83.00 . 1.20. . 4.3 . 3.0 .3.0 3 6.7

B

24.2

11.4 21.2 20 6.8 15.7 12.7 9.7

24.232.00 t

S.F.@support with R.F. & I.F. (For Two Lane)

32.00 1.18 1.2 2

90.615 t

( B ) Class AA Traked Vehicle

RA =

RECAPITULATION OF LLSF At

RA =

Page 42: Box Girder Computations

70 t3.0

A B3.60

24.2

70 19.424.2

56.12 t

S.F.@support with R.F. & I.F. (For Two Lane)

56.12 1.1 1.2

74.073 t

( C ) Class 70R Wheeled Vehicle

17 17 17 17 12 12 83.00 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 7.800

B

24.2RA RB

17 21.20 19.83 16.78 15.41 12 13.28

8 7.8024.2

66.43 t

S.F.@support with R.F. & I.F. (For Two Lane)

66.43 1.18 1.2

94.066 t

3 m.From Support.

Sr. No. LOADING S.F. ( t )

1 Class A ( 2 lane) 90.6152 Class AA Traked 74.0733 70R wheeled Vehicle 94.066

AT Section - ' D ' ( 6.05 ) m. From support

RA =

RA =

RECAPITULATION OF LLSF At

Page 43: Box Girder Computations

( A ) Class A Two Lane Vehicle

11.4 11.4 6.8 6.8 6.8 '6.86.05 . 1.20. . 4.3 . 3.0 .3.0 3 3.65

B

24.2

11.4 18.15 16.95 6.8 12.65 9.65 6.65

24.225.70 t

S.F.@support with R.F. & I.F. (For Two Lane)

25.70 1.18 1.2 2

72.768 t

( B ) Class AA Traked Vehicle70 t

6.1

A B3.60

24.2

70 16.3524.2

47.29 t

S.F.@support with R.F. & I.F. (For Two Lane)

47.29 1.1 1.2

62.427 t

( C ) Class 70R Wheeled Vehicle

17 17 17 17 12 12 86.05 . 1.37 . 3.05 . 1.37 . 2.13 . 1.52 . 3.96 4.750

B

24.2RA RB

RA =

RA =

Page 44: Box Girder Computations

17 18.15 16.78 13.73 12.36 12 10.23

8 4.7524.2

53.83 t

S.F.@support with R.F. & I.F. (For Two Lane)

53.83 1.18 1.2

76.219 t

6.05 m.From Support.

Sr. No. LOADING S.F. ( t )

1 Class A ( 2 lane) 72.7682 Class AA Traked 62.4273 70R wheeled Vehicle 76.219

RECAPITULATION OF DL & LL SHEAR @ VARIOUS SECTION

Sr. No. S.F. Due To Shear Force At Section in TonneSupport Sect - Y Sect - X Sect - C Sect - D

1 DL + SIDL 286.33 268.71 235.48 206.27 137.13

2 LIVE LOAD 111.619 108.109 101.087 94.066 76.219

DESIGN S.F.( t ) 397.94 376.81 336.56 300.33 213.35

CHECK FOR SHEAR STRESS & REINFORCEMENT CALCULATION

At Support Section :

MAX. Shear force = 397.94 t

SF / Girder = 397.94 99.49 t4

Shear Stress = 99.49 100065 220

6.96

< 21.582 OK….

Providing 12 mm dia. 4 legged stirrups,

RA =

RECAPITULATION OF LLSF At

Kg / Cm2

Kg / Cm2

Page 45: Box Girder Computations

Spacing ' S ' = 196.672 mm

Provide 12 mm dia. 4 legged stirrups, @ 180 mm C/C.

Shear Force Taken = 108.70 > 99.49 Hence OK….

At Section ' Y ':

MAX. Shear force = 376.81 t

SF / Girder = 376.81 94.20 t4

Shear Stress = 94.20 100065 220

6.59

< 21.582 OK….

Providing 12 mm dia. 4 legged stirrups,

Spacing ' S ' = 207.700 mm

Provide 12 mm dia. 4 legged stirrups, @ 180 mm C/C.

Shear Force Taken = 108.70 > 94.20 Hence OK….

At Section ' X ':

MAX. Shear force = 336.56 t

SF / Girder = 336.56 84.14 t4

Shear Stress = 84.14 100045 220

8.50

< 21.582 OK….

Providing 16 mm dia. 2 legged stirrups,

Spacing ' S ' = 206.701 mm

Provide 16 mm dia. 2 legged stirrups, @ 180 mm C/C.

Shear Force Taken = 96.62 > 84.14 Hence OK….

Kg / Cm2

Kg / Cm2

Kg / Cm2

Kg / Cm2

Page 46: Box Girder Computations

At Section ' C ' :

MAX. Shear force = 300.33 t

SF / Girder = 300.33 75.08 t4

Shear Stress = 75.08 100025 220

13.65

< 21.582 OK….

Providing 16 mm dia. 2 legged stirrups,

Spacing ' S ' = 231.637 mm

Provide 16 mm dia. 2 legged stirrups, @ 180 mm C/C.

Shear Force Taken = 96.62 > 75.08 Hence OK….

At Section ' D ' :

MAX. Shear force = 213.35 t

SF / Girder = 213.35 53.34 t4

Shear Stress = 53.34 100025 220

9.70

< 21.582 OK….

Providing 16 mm dia. 2 legged stirrups,

Spacing ' S ' = 326.071 mm

Provide 16 mm dia. 2 legged stirrups, @ 200 mm C/C.

Shear Force Taken = 86.96 > 53.34 Hence OK….

SHEAR REIFOREMENT DETAILS:

{ 1 } { 2 } { 3 } { 4 } { 5 }

Y X C D

Kg / Cm2

Kg / Cm2

Kg / Cm2

Kg / Cm2

Page 47: Box Girder Computations

0.4 0.6 1.82.4

3.006.05

Portion Dia. Legged C/C Dist.(No.) (mm) (No.) (mm)

1 12 4 1802 12 4 1803 16 2 1804 16 2 1805 16 2 200

Page 48: Box Girder Computations

m.m.m.m.

Page 49: Box Girder Computations

30.04 19.97

Section C ( t )

Section D ( t )

Page 50: Box Girder Computations

176.23 117.16

0.00 0.00

206.27 137.13

9.7

Page 51: Box Girder Computations

14.76

9.1

Page 52: Box Girder Computations

14.16

Page 53: Box Girder Computations

7.9

Page 54: Box Girder Computations

12.96

6.7

Page 55: Box Girder Computations

11.76

Page 56: Box Girder Computations

3.65

Page 57: Box Girder Computations

8.71

Page 58: Box Girder Computations
Page 59: Box Girder Computations
Page 60: Box Girder Computations

5.1 AT MID SPAN

Dead Load B.M. = 1669.43 t.m. for twin box (D.L. + S.I.D.L.)

Design B.M. = 1459.87 t.m. per box.

(All Dimensions are in mm.)250 315

79.057150

237.2 a = 25.46270.9431

200

146.990.31 461.86 420

881.86

q = 71.565051X = 237.17082 mmY = 79.056942 mmZ = 270.94306 mm

X1 = 90.314353 mmT = 146.85647 mm

T1 = 461.85647 mm

5.0 Reiforcement calculations and checking stresses at various section.

D8
(D.L. + S.I.D.L.) + (L.L.)
E27
(L+K-G)/I q = Tan -1((L+K-G)/(I))
E28
Cos(90-j) = x / (H)
E29
Sin(90-j) = y / (H)
E30
Z = (O+K) - (D20)
E32
X1 = Z/(Tanj)
E33
T=X - X1
E34
T1= T+(F)
Page 61: Box Girder Computations

a = 25.463345a = 420 mm

Provide 48 Nos. of 32 Tor in 3 rows

Ast = 385.991

Provide Clear Cover = 30 mm

Provide dia. Of Stirups = 12 mm

18 no.

16 no.

14 no.Total = 48 OK…….

Provision of No. of BAR in First Row

50 mmClear Side Cover = 40 mmDiameter of stirrups = 12 mmDiameter of Main Bar = 32 mm

NO. OF BAR in First raw = 9

Total Distance,

9 32 8 50 2 12 2 40

792 mm < 881.86 mmOK….

cm2

Provide no. Of bar in 1st Row =

Provide no. Of bar in 2nd Row =

Provide no. Of bar in 3rd Row =

Rein. Spacing (Betwn. In to In ) =

E36
a= Tan -1(O/N)
Page 62: Box Girder Computations

58 mm

64 mm

64 mm

c.g. of steel from bottom of girder, = 11.67 cm

d eff. = 208.33 cm

180 420 22320 3020

31.5 n[2] 10 [1] [5] 43 15 [3]

[4]25

[6][7]

(All Dimensions are in cm.)

Portion Length Depth c.g. from REMARK NO. AREA

cm cm Top (cm)X n

[1] 420 30 15 Rectangle 1 12600 189000[2] 180 20 10 Rectangle 1 3600 36000[3] 223 30 15 Rectangle 1 6690 100350[4] 180 20 26.67 Triangle 1 1800 48000[5] 31.5 10 33.33 Triangle 2 315.00 10500[6] 43 15 35 Triangle 1 322.5 11287.5[7] 25 30 2 -1500 22500

Due to Reinforcement 3859.9066 804147.2

Distance between end of Soffit to centre of 1st row =

Distance between centre of 1st row to centre of 2nd row =

Distance between centre of 2nd row to centre of 3rd row =

cm2

Page 63: Box Girder Computations

Sum = 27687.41 1176785

1107.50 47071.39

1107.496 n - 47071.39 4.553E-08Don't Delete this cell, it is useful for operation of Goal Seek…

N.A. from Top of girder = 40.9857 cm For finding out Value of n.

M.I. Of section @ N.A.,

18020

40.99 40 n20

-0.9920.99

(All Dimensions are in cm.)

Portion Length Depth c.g. from REMARK M.I. AREA M.I. +

cm cm Top (cm)

[1] 420 30 15 Rectangle 945000 12600 675.2588 9453261.2[2] 180 20 10 Rectangle 120000 3600 960.1163 3576418.5[3] 223 30 15 Rectangle 501750 6690 675.2588 5019231.5[4] 85.56416 20.985743 Eq. Rectn. 65899.73 1795.6274 220.2007 461298.14

180 20 26.67 Triangle 40000 1800 205.0359 409064.69

Due to Reinforcement = 108097517

M.I. Of section @ N.A., = 126555493

Section Modulus at Compression, Zc = 3087793

n2 + .= 0

cm4 cm2 h2 (A x h2)

cm4

cm3

H108
This Value comes after sum divided by width of inclined member of BOX Girder.
I108
This Value comes after sum divided by width of inclined member of BOX Girder.
F112
Every time Run Goal Seek… Command to get this value. For do this, Select L93 then go to Tools Menu and select Goal Seek…, put value zero in mid portion and put position of cell of n value in last portion.
C132
This row consider when Neutral axis more than inner depth of cantilever.
Page 64: Box Girder Computations

Section Modulus at Tension, Zt = 756243.29

Stresses in Concrete = 47.278631

< 101.94 OK…….

Stresses in Steel = 1930.4188

< 2000 OK…….47.28

40.99 Stress in Outer layer, 167.35 + 5.87 1930.41882167.35

= 1998.093

214.2 < 2000 OK…….167.35

1930.425.87

(All Dimensions are in cm.)

5.2 AT QUARTER SPAN

Dead Load B.M. = 1254.6021 t.m. for twin box (D.L. + S.I.D.L.)

Design B.M. = 1103.601 t.m. per box.

(All Dimensions are in mm.)250 315

237.1779.057

150

cm3

kg/cm2

kg/cm2

kg/cm2

kg/cm2

kg/cm2

kg/cm2

F141
Stress = Total Load/ Z
E152
d eff.=TOTAL depth of box girder D - Clear cover - Dia. Of Stirups - Half dia. Of main bar.
D164
(D.L. + S.I.D.L.) + (L.L.)
Page 65: Box Girder Computations

a = 25.46270.9431

200

146.990.31 461.86 420

881.86

q = 71.565051X = 237.17082 mmY = 79.056942 mmZ = 270.94306 mm

X1 = 90.314353 mmT = 146.85647 mm

T1 = 461.85647 mm

a = 25.463345a = 420 mm

Provide 38 Nos. of 32 Tor in 3 rows

Ast = 305.576

Provide Cover = 30 mm

Provide dia. Of Stirups = 12 mm

18 no.

16 no.

4 no.Total = 38 OK…….

cm2

Provide no. Of bar in 1st Row =

Provide no. Of bar in 2nd Row =

Provide no. Of bar in 3rd Row =

E182
(L+K-G)/I q = Tan -1((L+K-G)/(I))
E183
Cos(90-j) = x / (H)
E184
Sin(90-j) = y / (H)
E185
Z = (O+K) - (D20)
E187
X1 = Z/(Tanj)
E188
T=X - X1
E189
T1= T+(F)
E191
a= Tan -1(O/N)
Page 66: Box Girder Computations

58 mm

64 mm

64 mm

c.g. of steel from bottom of box, = 9.84 cm

d eff. = 210.16 cm

180 420 223

20 30 n

(All Dimensions are in cm.)

420 x n x n/2 + 223 x n x n/2 + 180 x n x n/2 + .= 10 x 305.576 x ( 210.16 .-n )

411.5 3055.7594 n - 642192 .= 0

N.A. from Top of girder = 35.97 cm 0Don't Delete this cell, it is useful for operation of Goal Seek…

M.I. Of the section @ N.A., For finding out Value of n.2

420 x 30.0 ^3 + 420 30 35.966 -15 .= 648348212

2

Distance between end of beam to centre of 1st row =

Distance between centre of 1st row to centre of 2nd row =

Distance between centre of 2nd row to centre of 3rd row =

n2 +

F235
Every time Run Goal Seek… Command to get this value. For do this, Select L216 then go to Tools Maanu and select Goal Seek…, put value zero in mid portion and put position of cell of n value in last portion.
Page 67: Box Girder Computations

223 x 30.0 ^3 + 223 30 35.966 -15 .= 915549412

2180 x 20 ^3 + 180 20 35.966 -10 .= 1560000

122

36.31 x 15.97 ^3 + 36.31 15.97 15.97 .= 4925512 2

2143.69 x 15.97 ^3 + 1/2 143.69 15.97 15.97 x 2 .= 146197

36 32

10 x 305.576 x 210.16 -35.96574 .= 92720625.3

M.I. Of the section @ N.A., = 110115054

Section Modulus at Compression, Zc = 3061665

Section Modulus at Tension, Zt = 632147

Stresses in Concrete = 36.04577

< 101.94 OK…….

Stresses in Steel = 1745.798

< 2000 OK…….

36.05

35.97

Stress in Outer layer, 174.19 + 4.04 1745.79797174.19

174.19 214.2

= 1786.309

cm4

cm3

cm3

kg/cm2

kg/cm2

kg/cm2

kg/cm2

kg/cm2

E275
d eff.= D - Clear cover - Dia. Of Stirups - Half dia. Of main bar.
Page 68: Box Girder Computations

< 2000 OK…….1745.80 4.04

5.3 AT BEGINNING OF WIDENING SECTION

Dead Load B.M. = 730.91405 t.m. for twin box (D.L. + S.I.D.L.)

Design B.M. = 635.78558 t.m. per box.

(All Dimensions are in mm.)250 315

237.1779.057

150a = 25.46

270.9431

200

146.990.31 461.86 420

881.86

q = 71.565051X = 237.17082 mmY = 79.056942 mmZ = 270.94306 mm

X1 = 90.314353 mmT = 146.85647 mm

T1 = 461.85647 mm

kg/cm2

D286
(D.L. + S.I.D.L.) + (L.L.)
E304
(L+K-G)/I q = Tan -1((L+K-G)/(I))
E305
Cos(90-j) = x / (H)
E306
Sin(90-j) = y / (H)
E307
Z = (O+K) - (D20)
E309
X1 = Z/(Tanj)
Page 69: Box Girder Computations

a = 25.463345a = 420 mm

Provide 26 Nos. of 32 Tor in 3 rows

Ast = 209.078

Provide Cover = 30 mm

Provide dia. Of Stirups = 12 mm

14 no.

12 no.

0 no.Total = 26 OK…….

58 mm

64 mm

64 mm

c.g. of steel from bottom of box, = 8.75 cm

d eff. = 211.25 cm

180 420 223

20 30 n

cm2

Provide no. Of bar in 1st Row =

Provide no. Of bar in 2nd Row =

Provide no. Of bar in 3rd Row =

Distance between end of beam to centre of 1st row =

Distance between centre of 1st row to centre of 2nd row =

Distance between centre of 2nd row to centre of 3rd row =

E313
a= Tan -1(O/N)
Page 70: Box Girder Computations

(All Dimensions are in cm.)

420 x n x n/2 + 223 x n x n/2 + 180 x n x n/2 + .= 10 x 209.078 x ( 211.25 .-n )

411.5 2090.7827 n - 441669.8 .= 0

N.A. from Top of girder = 30.3194 cm 0.0006016Don't Delete this cell, it is useful for operation of Goal Seek…

M.I. Of the section @ N.A., For finding out Value of n.2

420 x 30 ^3 + 420 30 30.319 -15 .= 3902026.6812

2223 x 30 ^3 + 223 30 30.319 -15 .= 2071790.35

122

180 x 20 ^3 + 180 20 30.319 -10 .= 1606363.9212

287.13 x 10.32 ^3 + 87.13 10.32 10.32 .= 31914.5388

12 2

292.87 x 10.32 ^3 + 1/2 92.87 10.32 10.32 x 2 .= 25515.4848

12 32

10 x 209.078 x 211.25 -30.31942 .= 68440690.8

M.I. Of the section @ N.A., = 75850791 76078301.7

n2 +

cm4

F357
Every time Run Goal Seek… Command to get this value. For do this, Select L338 then go to Tools Maanu and select Goal Seek…, put value zero in mid portion and put position of cell of n value in last portion.
Page 71: Box Girder Computations

Section Modulus at Compression, Zc = 2509227

Section Modulus at Tension, Zt = 420492.3

Stresses in Concrete = 25.33791

< 101.94 OK…….

Stresses in Steel = 1512.003

< 2000 OK…….

25.34

30.32

Stress in Outer layer, 180.93 + 2.95 1512.00284180.93

214.2

180.93 = 1536.688

< 2000 OK…….1512.00

2.95

CALCULATION OF WEB REIFORCEMENT : (Skin Reinforcement)

2 2Skew Web Dimension : Length = 1800 600 1897.3666 mm

Width = 250 mm

Total Steel Req. = 1897.37 250 474.34

cm3

cm3

kg/cm2

kg/cm2

kg/cm2

kg/cm2

kg/cm2

kg/cm2

As per Cl.305.10, IRC - 21:2000, Min. Shrinkage reiforcement shall be 250 mm2 of Steel area per metre.

mm2

E396
d eff.= D - Clear cover - Dia. Of Stirups - Half dia. Of main bar.
Page 72: Box Girder Computations

1000

Provide 7 Numebrs 10 mm at top and bottom.

+Provide 0 Numebrs 0 mm at top and bottom.

Ast provided = 549.710 OK….

7 10On Each Faces.

Third raw 7 32Second ra 8 32First raw 9 32

mm2

Page 73: Box Girder Computations

Don't Delete this cell, it is useful for operation of Goal Seek…

For finding out Value of n.

Page 74: Box Girder Computations

Don't Delete this cell, it is useful for operation of Goal Seek…For finding out Value of n.

Page 75: Box Girder Computations

Don't Delete this cell, it is useful for operation of Goal Seek…For finding out Value of n.

Page 76: Box Girder Computations