bragg angle (2 thêta)

2
3 8 13 18 23 28 Bragg angle (2 thêta) Diffraction intensity Supplementary Fig. 1. Wide-angle x-ray diffractogram of Crypthecodinium cohnii starch. Diffraction peaks at 2 (Bragg angle) values of 9.9°, 11.2°, 15°, 17°, 18.1° and 23.3° characterize an A-type starch.

Upload: wallace-sloan

Post on 30-Dec-2015

16 views

Category:

Documents


0 download

DESCRIPTION

Diffraction intensity. 3. 8. 13. 18. 23. 28. Bragg angle (2 thêta). Supplementary Fig. 1. Wide-angle x-ray diffractogram of Crypthecodinium cohnii starch. Diffraction peaks at 2 q (Bragg angle) values of 9.9°, 11.2°, 15°, 17°, 18.1° and 23.3° characterize an A-type starch. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bragg angle (2 thêta)

3 8 13 18 23 28

Bragg angle (2 thêta)

Dif

fra

cti

on

in

ten

sit

y

Supplementary Fig. 1. Wide-angle x-ray diffractogram of Crypthecodinium cohnii starch. Diffraction peaks at 2 (Bragg angle) values of 9.9°, 11.2°, 15°, 17°, 18.1° and 23.3° characterize an A-type starch.

Page 2: Bragg angle (2 thêta)

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 10 20 30 40 50 60 70 Heterocapsa ---------- ---------- ---------- ---------- ---------- ---------- ---------- Guillardia MRRSVLSAAA VLSLSLSLLS LTPSNASTGV SSFSSSHRIP SLTRSALRLS KEGKGEDDKY GDPEAYVPQG Cyanophora ---------- ---------- ---------- ---------- ---------- ---------- ---------- Peptides .......... .......... .......... .......... .......... .......... ..........

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 80 90 100 110 120 130 140 Heterocapsa ---------- ---------- ---------- ---------- ---------- ---------- ---------- Guillardia GSKVTRNFMT CEDLRMSLRG GAGSDAIVPD QKLQIVFVSA EIAPWSVTGG LGAVCDGLPR ALAKLGHRVM Cyanophora -----MNIAP VSELQAAID- -------QAE KKLTIVFVGS ECTPWSKTGG LGDVMRDLPV NLAQRGHRVM Peptides .......... .......... .......... .......... ......KTGG LGEAFDGLPV ALAALGHR..

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 150 160 170 180 190 200 210 Heterocapsa ---------- --WDTAYAGE VPMGNSVEPV RAFHAFESKV DRVFIDHECF LGKVWGKTGS MLYGPEWGKD Guillardia SIAPRYDQYY DAWDTEFTAE VPLGDTTTTV RFFHAFKKGV DRVFVDHPLF LEKVWGLSKQ KLYGPKWGKD Cyanophora SIQPRYDQYF DAWDTAVRSS IKVNGKLEDV GFFHITSKGV DRIFIDHPWF LAKVWGITGN KLYGAKTGVD Peptides .......... .......... .......... .........V DYVFLDHLWF .......... KLYGPEWGKD ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 220 230 240 250 260 270 280 Heterocapsa FADNQWRFTY FAKAVLKIIQ ELPLG---GY VYGGDSIVVV NDWHCGMVPV FLSMMKKSCP KDWANTKSAL Guillardia YEDNQLRFAM FCAAAMAATE KLSLG---GY PYGQDVIFVA NDWHAALVPM YLKKAQKEG- TGWFKAKSAC Cyanophora YPDNPMRFAL MCQAALEAPL RIPLPDPAGT VYGEDVIFVC NDWHSALVPI YLKANYKTR- GLYQNAKSIF Peptides FADNQ..... .......... .......... .......... .......... .......... ......KSNF

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 290 300 310 320 330 340 350 Heterocapsa LIHNAVFQGR FDRDDPEEPK TEVYGLPEAI MSTFTFNMPI KVGRTEAKVK ---------- ---RCINWMG Guillardia LLHNMVFQGR FPYDPNAASR ---LRLPQAM VDEMVTKQPL KVGRQKKASK GLKESVEIPN PPMDVLNFLT Cyanophora LLHNIIYQGR FPLEFWPALN -----LPEAA KKDLVFESCF APPPLDGISE ----QPIISL KPMAMMNFLQ Peptides LNHDSVFQGR .......... .......... .......... .......... .......... ..........

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 360 370 380 390 400 410 420 Heterocapsa CAAKYVDRIL TVSPTYAWEI INLPEMGCEL DDIFMAKGVT GIVNGVKETV SPMNATFTKK AEMPSTFSVK Guillardia GAIKFSDAVL TVSPQYAKEV ASSSAKGAEL EKILTKTGIK GILNGVEDIV NPSNAELGLD IMYDG----- Cyanophora AGFIHADRIC TVSPQFAAEV ASGPRGGVEL DKYIRAKGIT GIMNGMDIEM WDASKDKFLV TKYTAS---- Peptides .......... ........... .......... .......... .......... .......... ..........

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 430 440 450 460 470 480 490 Heterocapsa DVDEKKAELK AQLQEMYGLP VSAETPLCVF VGRMDLQKGY DYLLAALTAV LKN-VDLQLI IIGTGRADLV Guillardia ASLEKKAQGK TAMQKSLGFA VDENIPMFVF MGRLDAQKGV DIMFEAIDSA LKGGMNAQFV TMGSGIEELE Cyanophora SVDEGKAANK AVLQAEMGLK VSPTTPLIAF VGRLDDQKGA DCMVEAMPYL VNT-LGAQVV CYGSGREDMA Peptides .......... .......... .......... .......... PVALAALTAV .......... ..........

....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| 500 510 520 530 540 550 560 Heterocapsa ASSKALAKKF PEKIYLAG-W CGAERYAMVA GADYNLMPSR WEPCGLAQLE SMRFGTLPVV AQTGGLVDTV Guillardia EVAAELEERY PNNFKAVLSF KGQEKYKTYA AADFAIMPSR YEPCGLVQME GMRFGTLPIV CPTGGLLDTV Cyanophora AKFKALEKQF PGMAKGKTAF VPKEEHTLMA GADYVLMPSR FEPCGLVQLH AMKYGAVPIV SCTGGLKDSV Peptides .......... .......... .......... .......... .......... ..RFGTLPIV AQLGLR....

Supplementary Fig. 2. Protein alignment of three GBSS sequences from Cyanophora paradoxa (ABW83990), Guillardia theta (CAH04621) and Heterocapsa triquetra (EST contig of : DT386072 and DT385740). In bold location and peptide sequences identified through mass spectrometry analysis from the Crypthecodinium cohnii major starch granule bound protein.