brain imaging techniques pet mikrolesions single cell lesions 2-deoxyglucose multi-unit patch clamp...

34
Brain imaging techniques PET Mikrolesion s Single cell Lesions 2-Deoxyglucose Multi- unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec min hour day year -3 -2 -1 0 1 2 3 4 5 6 7 8 Log time (sec) Lamina Neuron Dendrit e Synapse 4 3 2 1 0 -1 -2 -3 -4 so lu ti on (m m) Brain Column

Upload: regan-grass

Post on 31-Mar-2015

228 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Brain imaging techniques

PET

Mikrolesions

Single cell

Lesions

2-DeoxyglucoseMulti-unit

Patch clamp

EEG & MEGTMS

fMRI

Optical Imaging

millisecundum sec min hour day year -3 -2 -1 0 1 2 3 4 5 6 7 8

Log time (sec)

Lamina

Neuron

Dendrite

Synapse

4

3

2

1

0

-1

-2

-3

-4

Lo g Re

sol

uti

on

(m m)

Brain

Column

Page 2: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Patch-clamp recordings: a single channel

Page 3: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Patch-clamp recording

techniques

Page 4: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Even parallel dendritic and somatic patches are possible

Page 5: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

A typical result:the I-V curve

Page 6: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Electric activity of the brain on different scales

Page 7: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Lengyel Máté: Egysejt modellek II / Modellek az idegrendszer-kutatásban - ELTE TTK, 2003 tavaszi félévhttp://www.rmki.kfki.hu/~lmate/kurz/

7

Discovery of the electricity in animals:

1792

Galvani, De Viribus - Electricitatis in Motu Musculari.

Page 8: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Lengyel Máté: Egysejt modellek II / Modellek az idegrendszer-kutatásban - ELTE TTK, 2003 tavaszi félévhttp://www.rmki.kfki.hu/~lmate/kurz/

8

Discovery of the electroencephalography (EEG)

1924.

Hans Berger

The first EEG recordThe alpha rythmElectric signs of epilepsy

Investigated the telepathy

Page 9: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Elektroencephalography (EEG) and magnetoencephalography (MEG)

Page 10: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

ECIC

V

dVext

IC

IR

RECR

ICIaxial

Iaxial

IC

IR

IC

IR

I ~CSD

I ~CSD

I ~CSD

The source of the EC potential is the sumof the capacitive and resistive currents

The sum of IR is not zero,

But the sum of ICSD

is zero

for the whole cell!

Page 11: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Multi ElectrodeArray

Original current sourcedensity distribution

Sink

Source

Zero

T(d)

The forward problem

Page 12: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Multi ElectrodeArray

Original current sourcedensity distribution

Sink

Source

Zero

T(d)

The forward problem

Page 13: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

The origin of the EEG and MEG

Page 14: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Normal resting EEG

F z

C z

P z

A 1

A 2

F p 2

F 4

C 4

P 4

O 2

F 8

T4

T6

F p 1

F 3

C 3

P 3

O 1

F 7

T3

T5

F z

C z

P z

A 1

A 2

F p 2

F 4

C 4

P 4

O 2

F 8

T4

T6

F p 1

F 3

C 3

P 3

O 1

F 7

T3

T5

B and:

D el ta

T heta

A lpha

B eta

G am m a

F z

C z

P z

A 1

A 2

F p 2

F 4

C 4

P 4

O 2

F 8

T4

T6

F p 1

F 3

C 3

P 3

O 1

F 7

T3

T5

Page 15: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

EEG imaging with dipole localization

Page 16: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Evoked potentials

20 µV

2 µV

Page 17: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

The auditory evoked potential:

Page 18: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Extracellular recordings

Page 19: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Extracellular recordings

Identification of excitatory and inhibitoryconnections by correlation requiresparallel recording of hundreds of neurons.

Page 20: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Active feedback via electrodes

Page 21: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Positron emission tomography (PET)

Page 22: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec
Page 23: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

PET-based functional brain imaging

Page 24: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

The MRI machine

Page 25: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

The MRI machine

Page 26: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec
Page 27: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

The BOLD response: the basis of the fMRI

Page 28: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

High resolution functional brain imagingwith fMRI

Page 29: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Mind-reading with fMRI

Results:Learning on 1750 picturesSelection from 120 new pics: 92%Selection from 1000 new pics: 82%

Page 30: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Direction selective neurons in the motor cortex

Both the motor and the somato-sensory cortex represents the whole body

Each cell is tuned to a specific direction

Page 31: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Brain-machine interface in monkeys

The direction and speed of the planed movement could be determined from the activity of the cells and their directional tuning.

Page 32: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

BMI with invasive electrodes

Page 33: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

BMI with non-invasiv electrodes

Page 34: Brain imaging techniques PET Mikrolesions Single cell Lesions 2-Deoxyglucose Multi-unit Patch clamp EEG & MEG TMS fMRI Optical Imaging millisecundum sec

Arm prosthesis driven by the nerves

It is more easy to decode the planed motion from the activity of the peripheral nerves.